Progress in String Cosmology

Gary Shiu

University of Wisconsin & HKUST

String Cosmology

Observational cosmology has given us a new window into our universe, complementary to particle physics experiments.

Quantitative info about our universe, both at its earliest moment and at the present time, but many puzzles remain....

Dark Matter

Many candidates with widely different signatures:

Dark Matter

Many candidates with widely different signatures:

String theory not only provide new candidates (& mediation mechanisms) but serves as arbitrator of models. [Soler's talk] GS, Soler, Ye, Phys. Rev. Lett. 110, 241304 (2013); Feng, GS, Soler, Ye, arXiv: 1401.5880, to appear in PRL; JHEP 1405, 065 (2014) [arXiv:1401.5890 [hep-ph]].

Dark Energy

A question for quantum gravity:

"The problem of the vacuum energy density or cosmological constant – why it is zero or extremely small by particle physics standards – really only arises in the presence of gravity, since without gravity, we don't care about the energy of the vacuum. Moreover, it is mainly a question about quantum gravity, since classically it would be more or less natural to just decide – as Einstein did – that we do not like the cosmological constant, and set it to zero." (E. Witten, hep-ph/0002297)

Dark Energy

A question for quantum gravity:

"The problem of the vacuum energy density or cosmological constant – why it is zero or extremely small by particle physics standards – really only arises in the presence of gravity, since without gravity, we don't care about the energy of the vacuum. Moreover, it is mainly a question about quantum gravity, since classically it would be more or less natural to just decide – as Einstein did – that we do not like the cosmological constant, and set it to zero." (E. Witten, hep-ph/0002297)

Can metastable $\Lambda > 0$ vacua be realized in string theory?

Dark Energy

A question for quantum gravity:

"The problem of the vacuum energy density or cosmological constant – why it is zero or extremely small by particle physics standards – really only arises in the presence of gravity, since without gravity, we don't care about the energy of the vacuum. Moreover, it is mainly a question about quantum gravity, since classically it would be more or less natural to just decide – as Einstein did – that we do not like the cosmological constant, and set it to zero." (E. Witten, hep-ph/0002297)

Can metastable $\Lambda > 0$ vacua be realized in string theory?

de Sitter model building deeply related to moduli stabilization.

Work w/ Haque, Underwood, Van Riet, Danielsson, Koerber, Wrase, Sumitomo, McGuirk,Chen,Tye,Junghans; 0810.5328, 0907.2041, 0910.4581, 1103.4858, 1107.2925, 1112.3338, 1212.5178, 1407.0019 [See Junghans's talk]

Three Pillars of Modern Cosmology

Three Pillars of Modern Cosmology

Planck scale 10⁻⁴³s

Inflation is in good agreement with data

but ... it is an *effective theory* in search of a fundamental description!

Alan Guth

To solve the flatness & horizon problems, need to satisfy

"Slow-roll":
$$\epsilon = \frac{1}{2} M_P^2 \left(\frac{V'}{V}\right)^2 << 1$$
; $\eta = M_P^2 \frac{V''}{V} << 1$

These conditions are sensitive to **Planck scale physics**:

These conditions are sensitive to **Planck scale physics**:

$$\delta V \sim \frac{V}{M_P^2} \phi^2 \quad \longrightarrow \quad \eta \sim \mathcal{O}(1)$$

Effective Field Theory:

- Physics can be understood scale by scale.
- Short distance physics: "irrelevant operators".

These conditions are sensitive to Planck scale physics:

$$\delta V \sim \frac{V}{M_P^2} \phi^2 \quad \longrightarrow \quad \eta \sim \mathcal{O}(1)$$

Effective Field Theory:

- Physics can be understood scale by scale.
- Short distance physics: "irrelevant operators".

Examples:

Fermi theory of weak interaction

Particle Physics

Precision tests, such as those that constrain the proton lifetime, are sensitive to GUT scale physics

INFLATION & UV PHYSICS

A sufficient degree of UV completeness is needed to calculate such corrections.

This applies to <u>any</u> model of inflation.

Models with detectable non-Gaussianities and gravity waves are even more UV sensitive!

Primordial B-mode?

BICEP2 Collaboration

Any massless field experiences quantum fluctuations during inflation:

Inflation stretches these to macroscopic scales:

Any massless field experiences quantum fluctuations during inflation:

Inflation stretches these to macroscopic scales:

Two massless fields that are guaranteed to exist are:

h_{ii}

graviton

Goldstone boson

of broken time translations

Two massless fields that are guaranteed to exist are:

Two massless fields that are guaranteed to exist are:

What the doctor ordered?

BICEP2 Collaboration

Dust is not entirely settled ...

[Mortonson & Seljak] [Flauger, Hill & Spergel]

More data is needed ...

BICEP2 Collaboration

More data is needed ...

BICEP2 Collaboration

BICEP2 and Inflation

If the **BICEP2** results are confirmed to be primordial, natural interpretations:

Inflation took place

The energy scale of inflation is the GUT scale

$$E_{\rm inf} \simeq 0.75 \times \left(\frac{r}{0.1}\right)^{1/4} \times 10^{-2} M_{\rm Pl}$$

The inflaton field excursion was super-Planckian

$$\Delta\phi\gtrsim \left(rac{r}{0.01}
ight)^{1/2}M_{\mathrm{Pl}}$$
 Lyth '96

Great news for string theory due to strong UV sensitivity!

Assumptions in the Lyth Bound

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

Assumptions in the Lyth Bound

- single field
- slow-roll

Bunch-Davies initial conditions

vacuum fluctuations

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Assumptions in the Lyth Bound

- single field
- slow-roll

Bunch-Davies initial conditions

vacuum fluctuations

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

Cook and Sorbo Senatore, Silverstein, Zaldarriaga Barnaby, Moxon, Namba, Peloso, GS, Zhou Mukohyama, Namba, Peloso, GS
Assumptions in the Lyth Bound

- single field
- slow-roll

Bunch-Davies initial conditions

vacuum fluctuations

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

Cook and Sorbo

Senatore, Silverstein, Zaldarriaga

Barnaby, Moxon, Namba, Peloso, GS, Zhou

Mukohyama, Namba, Peloso, GS

Only known model of particle production that:

Detectable tensors w/o too large non-Gaussianity

- Chiral, non-Gaussian tensor spectrum
- Can accommodate a blue tensor tilt

due to an *axionic* a FA F coupling

Super-Planckian Fields in Effective Field Theory

Large Field Inflation

Concerns arise if we consider coupling the theory to the UV degrees of freedom (KK states, string states, etc) of a putative theory of quantum gravity.

Challenges of Large Field Inflation

Large Field Inflation in String Theory

Large corrections, unless the inflaton couples weaker than gravitationally to everything else.

This even stronger UV sensitivity intrinsic to *large field inflation* should be explained in the UV-completion.

Attempts to construct large field inflation models in string theory:

Marchesano, GS, Uranga, arXiv:1404.3040 [hep-th]

Super-Planckian Fields in String Theory

The two key requirements for large-field inflation are:

The field space has to allow super-Planckian displacements.

Kinematic constraint

The potential has to be controlled over a super-Planckian range.

Dynamical constraint

D3-brane Inflation

[Dvali and Tye]; [GS, Tye]; [Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang]; [Dvali, Shafi, Solganik]; [Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi]; [Chen, Ouyang, GS]; [Chen, Hung, GS] and many others.

D3-brane Inflation

[Dvali and Tye]; [GS, Tye]; [Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang]; [Dvali, Shafi, Solganik]; [Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi]; [Chen, Ouyang, GS]; [Chen, Hung, GS] and many others.

D3-brane Inflation

[Dvali and Tye]; [GS, Tye]; [Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang];[Dvali, Shafi, Solganik];[Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi]; [Chen, Ouyang, GS];[Chen, Hung, GS] and many others.

More natural candidates are fields with symmetries.

"Symmetries dictate interactions"

Natural Inflation

Freese, Frieman, Olinto

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates:

Natural Inflation

Freese, Frieman, Olinto

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates:

Natural Inflation

Freese, Frieman, Olinto

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates:

Successful inflation requires a super-Planckian decay constant:

 $f > M_{\rm pl}$

Axions in String Theory

String theory has many **higher-dimensional form-fields**:

e.g. $F = \mathrm{d}A$ 3-form flux ______ 1 ____ 2-form gauge potential: gauge symmetry: $A \to A + \mathrm{d}\Lambda$

Integrating the 2-form over a 2-cycle gives an **axion**:

$$a(x) \equiv \int_{\Sigma_2} A$$

The gauge symmetry becomes a **shift symmetry**.

Axions with super-Planckian decay constants don't seem to exist in controlled limits of string theory. Svrcek and Witten

Banks et al.

N-flation

Dimopoulos et al.

Quantum corrections to the Planck mass also scale with the number of axions: $\delta M_{\rm pl}^2 \sim N \Lambda_{\rm UV}^2$

So, we don't win parametrically!

Other scenarios with multiple axions: [Kim, Nilles, Peloso]; [Berg, Pajer, Sjors]

Axion Monodromy

= a combination of chaotic inflation and natural inflation

McAllister, Silverstein and Westphal (see also: Kaloper, Lawrence and Sorbo) A new and better version: Marchesano, GS, Uranga

Axion Monodromy

= a combination of chaotic inflation and natural inflation

McAllister, Silverstein and Westphal (see also: Kaloper, Lawrence and Sorbo) A new and better version: Marchesano, GS, Uranga

The axion periodicity is lifted, but the symmetry still constrains corrections to the potential:

The axion periodicity is lifted, allowing for super-Planckian displacements. The UV corrections to the potential should still be constrained by the underlying symmetry.

The axion periodicity is lifted, allowing for super-Planckian displacements. The UV corrections to the potential should still be constrained by the underlying symmetry

Axion Monodromy

The axion shift symmetry in string theory is broken only by non-perturbative effects (instantons) or boundaries [Wen, Witten];[Dine, Seiberg]

Non-perturbative effects \rightarrow discrete symmetry (no monodromy)

A 5-brane wrapping the 2-cycle breaks the axion shift symmetry:

$$V = 2T_5 \int_{\Sigma_2} \mathrm{d}^2 \sigma \sqrt{-\det(G+A)}$$

$$= 2T_5 \sqrt{\ell_{\Sigma_2}^2 + a^2}$$

anti-5-brane

McAllister, Silverstein and Westphal

Axion Monodromy

Road blocks found in earlier attempts (and some quick fixes):

- η problem \Rightarrow NS5-branes (not D5-branes)
- Gauss's law \Rightarrow anti 5-brane wrapping "homologous" cycles.
- Brane annihilation \Rightarrow far from each other, at different warped throats

• Backreaction \Rightarrow whole system embedded into another throat.

Axion Monodromy Inflation Siverstein & Westphal '08

Combine chaotic inflation and natural inflation

Early developments:

Idea:

◆ McAllister, Silverstein, Westphal → String scenarios

★ Kaloper, Lawrence, Sorbo → 4d framework

figure taken from McAllister, Silverstein, Westphal '08

Axion Monodromy Inflation Siverstein & Westphal '08

Combine chaotic inflation and natural inflation

Early developments:

Idea:

- ◆ McAllister, Silverstein, Westphal → String scenarios
 exceedingly complicated, uncontrollable ingredients, backreaction, ...
- ← Kaloper, Lawrence, Sorbo → 4d framework

figure taken from McAllister, Silverstein, Westphal '08

Axion Monodromy Inflation Siverstein & Westphal '08

Combine chaotic inflation and natural inflation

Early developments:

Idea:

- ◆ McAllister, Silverstein, Westphal → String scenarios
 exceedingly complicated, uncontrollable ingredients, backreaction, ...
- ★ Kaloper, Lawrence, Sorbo → 4d framework

UV completion?

figure taken from McAllister, Silverstein, Westphal '08

F-term Axion Monodromy Inflation

 Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

F-term Axion Monodromy Inflation

Idea:

 Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

Use same techniques to generate an inflation potential

F-term Axion Monodromy Inflation

 Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

Idea: Use same techniques to generate an inflation potential

- Simpler models, all sectors understood at weak coupling
- Spontaneous SUSY breaking, no need for brane-anti-brane
- Clear endpoint of inflation, allows to address reheating

Toy Example: Massive Wilson line

Simple example of axion: (4+d)-dimensional gauge field integrated over a circle in a compact space Π_d

$$\phi = \int_{S^1} A_1$$
 or $A_1 = \phi(x) \eta_1(y)$

Toy Example: Massive Wilson line

Simple example of axion: (4+d)-dimensional gauge field integrated over a circle in a compact space Π_d

$$\phi = \int_{S^1} A_1$$
 or $A_1 = \phi(x) \eta_1(y)$

- ϕ massive if $\Delta \eta_1 = -\mu^2 \eta_1 \Rightarrow kS^1$ homologically trivial in Π_d (non-trivial fibration)

$$F_2 = dA_1 = \phi \, d\eta_1 \sim \mu \phi \, \omega_2 \quad \Rightarrow \text{ shifts in } \phi \text{ increase energy}$$

via the induced flux F₂

⇒ periodicity is broken and shift symmetry approximate

MWL and twisted tori

- Simple way to construct massive Wilson lines: consider compact extra dimensions Π_d with circles fibered over a base, like the twisted tori that appear in flux compactifications
- There are circles that are not contractible but do not correspond to any harmonic 1-form. Instead, they correspond to torsional elements in homology and cohomology groups

Tor
$$H_1(\Pi_d, \mathbb{Z}) = \text{Tor } H^2(\Pi_d, \mathbb{Z}) = \mathbb{Z}_k$$

MWL and twisted tori

- Simple way to construct massive Wilson lines: consider compact extra dimensions Π_d with circles fibered over a base, like the twisted tori that appear in flux compactifications
- There are circles that are not contractible but do not correspond to any harmonic 1-form. Instead, they correspond to torsional elements in homology and cohomology groups

Tor
$$H_1(\Pi_d, \mathbb{Z}) = \operatorname{Tor} H^2(\Pi_d, \mathbb{Z}) = \mathbb{Z}_k$$

* Simplest example: twisted 3-torus $\tilde{\mathbb{T}}^3$

$$H_1(\tilde{\mathbb{T}}^3,\mathbb{Z}) = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_k$$

$$d\eta_1 = kdx^2 \wedge dx^3 \longrightarrow F = \phi \, k \, dx^2 \wedge dx^3$$

two normal one 1-cycles

one torsional 1-cycle

 $\mu = \frac{kR_1}{R_2R_3}$

under a shift $\phi \rightarrow \phi + 1$ F₂ increases by k units

MWL and monodromy

Question:

How does monodromy and approximate shift symmetry help prevent wild UV corrections?

Torsion and gauge invariance

- Twisted tori torsional invariants are not just a fancy way of detecting non-harmonic forms, but are related to a hidden gauge invariance of these axion-monodromy models
- * Let us again consider a 7d gauge theory on $M^{1,3} \ge \widetilde{\mathbb{T}}^3$

Instead of A₁ we consider its magnetic dual V₄

$$V_4 = C_3 \wedge \eta_1 + b_2 \wedge \sigma_2 \xrightarrow{d\eta_1 = k \sigma_2} dV_4 = dC_3 \wedge \eta_1 + (db_2 - kC_3) \wedge \sigma_2$$

Torsion and gauge invariance

- Twisted tori torsional invariants are not just a fancy way of detecting non-harmonic forms, but are related to a hidden gauge invariance of these axion-monodromy models
- \clubsuit Let us again consider a 7d gauge theory on $M^{1,3}$ x $\tilde{\mathbb{T}}^3$

Instead of A₁ we consider its magnetic dual V₄

$$V_4 = C_3 \wedge \eta_1 + b_2 \wedge \sigma_2 \xrightarrow{d\eta_1 = k \sigma_2} dV_4 = dC_3 \wedge \eta_1 + (db_2 - kC_3) \wedge \sigma_2$$

From dimensional reduction of the kinetic term:

$$\int d^7 x \, |dV_4|^2 \longrightarrow \left(\int d^4 x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2 \right)$$

- Gauge invariance $C_3 \rightarrow C_3 + d\Lambda_2$ $b_2 \rightarrow b_2 + k\Lambda_2$
- Generalization of the Stückelberg Lagrangian

Quevedo & Trugenberger '96

Effective 4d theory

The effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

describes a massive axion, has been applied to Kallosh et al. '95 QCD axion \Rightarrow generalized to arbitrary V(φ) Duali, Jackiw, Pi '05 Duali, Folkerts, Franca '13

Reproduces the axion-four-form Lagrangian proposed by Kaloper and Sorbo as 4d model of axion-monodromy inflation with mild UV corrections

It is related to an F-term generated mass term

Groh, Louis, Sommerfeld '12
Effective 4d theory

Effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2 \qquad F_4 = dC_3 \\ d\phi = *_4 db_2$$

Gauge symmetry UV corrections only depend on F₄

$$\mathcal{L}_{\text{eff}}[\phi] = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} \mu^2 \phi^2 + \Lambda^4 \sum_{i=1}^{\infty} c_i \frac{\phi^{2i}}{\Lambda^{2i}}$$
$$\sum_n c_n \frac{F^{2n}}{\Lambda^{4n}} \longrightarrow \mu^2 \phi^2 \sum_n c_n \left(\frac{\mu^2 \phi^2}{\Lambda^4}\right)^n$$

- \Rightarrow suppressed corrections up to the scale where V(ϕ) ~ Λ^4
- \Rightarrow effective scale for corrections $\Lambda \rightarrow \Lambda_{eff} = \Lambda^2/\mu$

Effective 4d theory

Effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2 \qquad F_4 = dC_3 \\ d\phi = *_4 db_2$$

Gauge symmetry UV corrections only depend on F₄

Discrete symmetries and domain walls

The integer k in the Lagrangian

$$\int d^4x \, |F_4|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

corresponds to a discrete symmetry of the theory broken spontaneously once a choice of four-form flux is made. This amounts to choose a branch of the scalar potential

Discrete symmetries and domain walls

The integer k in the Lagrangian

$$\int d^4x \, |F_4|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

corresponds to a discrete symmetry of the theory broken spontaneously once a choice of four-form flux is made. This amounts to choose a branch of the scalar potential

- Branch jumps are made via nucleation of domain walls that couple to C₃, and this puts a maximum to the inflaton range
- Domain walls analysed in string constructions:

Berasaluce-Gonzalez, Camara, Marchesano, Uranga '12

- They correspond to discrete symmetries of the superpotential/ landscape of vacua, and appear whenever axions are stabilised
- k domain walls decay in a cosmic string implementing $\phi \rightarrow \phi+1$

Massive Wilson lines in string theory

- * Simple example of MWL in string theory: D6-brane on $M^{1,3} \, x \, \tilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det\left(G + 2\pi\alpha' F_2\right)} = d\mathrm{vol}_{M^{1,3}} \left(|F_2|^2 + \mathrm{corrections}\right)$$

Massive Wilson lines in string theory

- * Simple example of MWL in string theory: D6-brane on $M^{1,3} \, x \, \tilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det\left(G + 2\pi\alpha' F_2\right)} = d\mathrm{vol}_{M^{1,3}} \left(|F_2|^2 + \mathrm{corrections}\right)$$

For small values of φ we recover chaotic inflation, but for large values the corrections are important and we have a potential of the form

$$V = \sqrt{L^4 + \langle \phi \rangle^2} - L^2$$

Similar to the D4-brane model of Silverstein and Westphal except for the inflation endpoint

Massive Wilson lines in string theory

- * Simple example of MWL in string theory: D6-brane on $M^{1,3} \, x \, \tilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det\left(G + 2\pi\alpha' F_2\right)} = d\mathrm{vol}_{M^{1,3}} \left(|F_2|^2 + \mathrm{corrections}\right)$$

For small values of φ we recover chaotic inflation, but for large values the corrections are important and we have a potential of the form

$$V = \sqrt{L^4 + \langle \phi \rangle^2} \underbrace{-L^2}$$

Similar to the D4-brane model of Silverstein and Westphal except for the inflation endpoint

Massive Wilson lines and flattening

The DBI modification

$$\langle \phi \rangle^2 \rightarrow \sqrt{L^4 + \langle \phi \rangle^2} - L^2$$

can be interpreted as corrections due to UV completion

- E.g., integrating out moduli such that H < m_{mod} < M_{GUT} will correct the potential, although not destabilise it *Kaloper, Lawrence, Sorbo* '11
- In the DBI case the potential is flattened: argued general effect due to couplings to heavy fields Dong, Horn, Silverstein, Westphal '10
- Large vev flattening also observed in examples of confining gauge theories whose gravity dual is known [Witten'98]

Dubousky, Lawrence, Roberts '11 a' corrections to EFT [See Junghans's talk] are important for inflation and moduli stabilization.

We can integrate a bulk p-form potential C_p over a p-cycle to get an axion

$$F_{p+1} = dC_p, \quad C_p \to C_p + d\Lambda_{p-1} \qquad c = \int_{\pi_p} C_p$$

If the p-cycle is torsional we will get the same effective action

$$\int d^{10}x |F_{9-p}|^2 \longrightarrow \int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

We can integrate a bulk p-form potential C_p over a p-cycle to get an axion

$$F_{p+1} = dC_p, \quad C_p \to C_p + d\Lambda_{p-1} \qquad c = \int_{\pi_p} C_p$$

If the p-cycle is torsional we will get the same effective action

$$\int d^{10}x |F_{9-p}|^2 \longrightarrow \int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

✤ The topological groups that detect this possibility are
Tor $H_p(\mathbf{X}_6, \mathbb{Z}) = \text{Tor } H^{p+1}(\mathbf{X}_6, \mathbb{Z}) = \text{Tor } H^{6-p}(\mathbf{X}_6, \mathbb{Z}) = \text{Tor } H_{5-p}(\mathbf{X}_6, \mathbb{Z})$

one should make sure that the corresponding axion mass is well below the compactification scale (e.g., using warping)

Franco, Galloni, Retolaza, Uranga '14

- Axions also obtain a mass with background fluxes
- Simplest example: $\phi = C_0$ in the presence of NSNS flux H₃

$$W = \int_{\mathbf{X}_6} (F_3 - \tau H_3) \wedge \Omega \qquad \tau = C_0 + i/g_s$$

We also recover the axion-four-form potential

$$\int_{M^{1,3} \times \mathbf{X}_6} C_0 H_3 \wedge F_7 = \int_{M^{1,3}} C_0 F_4 \qquad F_4 = \int_{\text{PD}[H_3]} F_7$$

- Axions also obtain a mass with background fluxes
- Simplest example: $\phi = C_0$ in the presence of NSNS flux H₃

$$W = \int_{\mathbf{X}_6} (F_3 - \tau H_3) \wedge \Omega \qquad \tau = C_0 + i/g_s$$

We also recover the axion-four-form potential

$$\int_{M^{1,3} \times \mathbf{X}_6} C_0 H_3 \wedge F_7 = \int_{M^{1,3}} C_0 F_4 \qquad F_4 = \int_{\mathrm{PD}[H_3]} F_7$$

M-theory version: Beasley, Witten '02

A rich set of superpotentials obtained with type IIA fluxes

$$\int_{\mathbf{X}_6} e^{J_c} \wedge (F_0 + F_2 + F_4) \qquad J_c = J + iB$$

potentials higher than quadratic

Massive axions detected by torsion groups in K-theory

F-term Axion Monodromy Inflation

A broad class of large field inflationary scenarios that can be implemented in any limit of string theory w/ rich pheno:

A wide variety of potentials (topology in the sky!):

$$V(\phi) \propto \phi, \phi^{2/3}, \phi^2, \dots, \text{ or even } V(\phi) = \sum_n c_n \phi^n \text{ with } n > 2$$

F-term Axion Monodromy Inflation

A broad class of large field inflationary scenarios that can be implemented in any limit of string theory w/ rich pheno:

A wide variety of potentials (topology in the sky!):

$$V(\phi) \propto \phi, \phi^{2/3}, \phi^2, \dots, \text{ or even } V(\phi) = \sum_n c_n \phi^n \text{ with } n > 2$$

Non-Gaussianity

If Gaussian: completely specified $\langle \zeta(\mathbf{k}) \rangle = (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') P_s(k)$ The leading non-Gaussianity $\langle \zeta(\mathbf{k_1})\zeta(\mathbf{k_2})\zeta(\mathbf{k_3}) \rangle$ characterized by its size \mathbf{f}_{NL} and \mathbf{shape} (functional form) Complete single field result: [Chen,Huang,Kachru, GS]

 $f_{NL}^{equil} \sim \mathcal{O}(\gamma^2)$

Current bound [Planck]: $f_{NL}^{local} = 2.7 \pm 5.8$ $f_{NL}^{equil} = -42 \pm 75$

Large non-Gaussianity probes UV physics!

Local shape:

 $f_{NL}^{local} \sim \mathcal{O}(\epsilon)$ Equilateral shape:

Holographic Non-Gaussianity

• Motivated partly by CHKS, various shape templates have been proposed:

• Inflation is approx. dS, holography may offer an organizing principle for NG:

$$\langle \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} \rangle' = -\frac{1}{2 \operatorname{Re} \langle \Theta_{\mathbf{k}} \Theta_{-\mathbf{k}} \rangle'}$$
$$\langle \zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \rangle' = \frac{2 \operatorname{Re} \langle \Theta_{\mathbf{k}_{1}} \Theta_{\mathbf{k}_{2}} \Theta_{\mathbf{k}_{3}} \rangle'}{\prod_{j=1}^{3} \left(-2 \operatorname{Re} \langle \Theta_{\mathbf{k}_{j}} \Theta_{-\mathbf{k}_{j}} \rangle' \right)}$$

[Maldacena]; [Schalm, GS, van der Aalst]

Inflation is a successful effective theory in search of a microscopic description.

* Superconductivity

Effective theory

Microscopic theory

* Weak Interaction

Office of Science U.S. Department of Energy

Grdon Research Conferences

String Theory & Cosmology

New Ideas Meet New Experimental Data

May 31 - June 5, 2015 The Hong Kong University of Science and Technology Hong Kong, China

Chair: Gary Shiu

Vice Chair: Ulf Danielsson

Application Deadline

Applications for this meeting must be submitted by **May 3, 2015**. Please apply early, as some meetings become oversubscribed (full) before this deadline. If the meeting is oversubscribed, it will be stated here. *Note*: Applications for oversubscribed meetings will only be considered by the Conference Chair if more seats become available due to cancellations.

Check out the website: http://www.grc.org/programs.aspx?id=16938

Hong Kong Institute for Advanced Study

御清聴有難う御座います THANKS