Sine-Square Deformation (SSD)

and its Relevance to String Theory

Tsukasa Tada
 Riken Nishina Center

Based on work with N. Ishibashi and [arXiv:1404.6343]

Conformal Field Theory in 2 dim.

(Holomorphic part of)
$\mathcal{H}_{\text {amiltonian }} \sim L_{0}=\frac{1}{2 \pi i} \oint d z z T(z)$

Let us consider a simple (almost trivial)

 modification to the HamiltonianAdd L_{1} and $L_{-1}, \frac{1}{2 \pi i} \oint d z z^{2} T(z)$
L_{0}, L_{1}, L_{-1} form $S L(2, \mathbb{R})$ subalgebra of Virasoro algebra

Global Conformal Transformation on the Riemann surface

Introduce

$$
L_{+} \equiv \frac{L_{1}+L_{-1}}{2} \quad L_{-} \equiv \frac{L_{1}-L_{-1}}{2 i}
$$

Now the modification

$$
\begin{aligned}
& e^{-i t_{0} L_{0}-i t_{+} L_{+}-i t-L_{-}}\left(x_{0} L_{0}+x_{+} L_{+}+x_{-} L_{-}\right) e^{i t_{0} L_{+}+i t_{+} L_{+}+i t_{-} L_{-}} \\
& =x_{0}^{\prime} L_{0}+x_{1}^{\prime} L_{+}+x_{2}^{\prime} L_{-} \\
& =\quad L_{0} \quad x_{0}^{\prime}=1, x_{1}^{\prime}=x_{2}^{\prime}=0
\end{aligned}
$$

$$
\left(x_{0}\right)^{2}-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}=\left(x_{0}^{\prime}\right)^{2}-\left(x_{1}^{\prime}\right)^{2}-\left(x_{2}^{\prime}\right)^{2}
$$

What does

$$
\mathcal{H} \sim L_{0}-L_{+}
$$ suggest?

$$
\begin{aligned}
& \text { at does } \\
& 0-L_{+} \\
& \text {gest? } \\
& \text { "Continuous Spectrum" } \\
& \hline
\end{aligned}
$$

c.f. "Level" structure of excited states in CFT

$$
L_{0}-L_{+}
$$

To motivate further, let me

introduce an interesting work

by A. Gendiar, R. Krcmar and T.

Nishino

Prog. Theor. Phys. 122 (2009) 953;
ibid. 123 (2010) 393.

They Started With

1d systems w/ nearest neighbor coupling

$$
\mathcal{H}=-\sum J_{n, n+1}\left(\sigma_{n} \cdot \sigma_{n+1}\right)
$$

and

Open Boundary Condition

$$
\begin{gathered}
\mathcal{H}=-\sum J_{n, n+1}\left(\sigma_{n} \cdot \sigma_{n+1}\right) \\
J_{1,2}=J_{2,3}=\cdots=J_{N-1, N} \equiv J \\
J_{0,1}=J_{N, N+1}=0
\end{gathered}
$$

$$
\mathcal{H}=-\sum J_{n, n+1}\left(\sigma_{n} \cdot \sigma_{n+1}\right)
$$

$$
\mathcal{H}=-\sum J_{n, n+1}\left(\sigma_{n} \cdot \sigma_{n+1}\right)
$$

A. Gendiar, R. Krcmar and T. Nishino Prog. Theor. Phys. 122 (2009) 953; ibid. 123 (2010) 393.

The mechanism behind this deformation was clarified by H. Katsura and his collaborators.

H. Katsura, J. Phys. A:Math.Theor. 44 (2011) 252001
I. Maruyama, H. Katsura and T. Hikihara, Phys.Rev.B84(2011)165132

Closed Hamlitonian

$$
\mathcal{H}_{c}=\sum_{n=1}^{N} h_{n, n+1}
$$

$$
\mathcal{H}_{ \pm 1}=\sum_{n=1}^{N} e^{ \pm 2 \pi i \frac{n}{N}} h_{n, n+1}
$$

$$
\begin{aligned}
& \mathcal{H}_{c}=\sum_{n=1}^{N} h_{n, n+1} \\
& \mathcal{H}_{ \pm 1}=\sum_{n=1}^{N} e^{ \pm 2 \pi i \frac{n}{N}} h_{n, n+1} \\
& \mathcal{H}_{S S D} \equiv \frac{1}{2} \mathcal{H}_{c}-\frac{1}{4}\left(\mathcal{H}_{+1}+\mathcal{H}_{-1}\right) \\
& \frac{1}{2}-\frac{1}{4}\left(e^{2 \pi i \frac{n}{N}}+e^{-2 \pi i \frac{n}{N}}\right)=\frac{1}{2}\left(1-\cos 2 \pi \frac{n}{N}\right) \\
& =\sin ^{2} \pi \frac{n}{N} \\
& \mathcal{H}_{S S D}=\sum_{n=1}^{N} \sin ^{2}\left(\pi \frac{n}{N}\right) h_{n, n+1}
\end{aligned}
$$

$$
\mathcal{H}_{c}=\sum_{n=1}^{N} h_{n, n+1}
$$

$$
\mathcal{H}_{S S D}=\sum_{n=1}^{N} \sin ^{2}\left(\pi \frac{n}{N}\right) h_{n, n+1}
$$

$$
\begin{aligned}
& \mathcal{H}_{c}=\sum_{n=1}^{N} h_{n, n+1} \\
& \mathcal{H}_{S S D}=\sum_{n=1}^{N} \sin ^{2}\left(\pi \frac{n}{N}\right) h_{n, n+1}
\end{aligned}
$$

Katsura (2011), Maruyama, Katsura, Hikihara (2011)

Provided

■

$\mathcal{H}_{ \pm 1}$ annihilates \mathcal{H}_{c} 's vacuum |vac \rangle

$$
\text { Q } \mathcal{H}_{ \pm 1}|\mathrm{vac}\rangle=0
$$

Either $\mathcal{H}_{\text {SSD }}$'s vacuum is unique or $\mathcal{H}_{\text {SSD }}$ is bounded below

$$
\mid \text { vac }\rangle \text { is also } \mathcal{H}_{\mathrm{SSD}} \text { 's vacuum }
$$

$$
\begin{gathered}
\text { 〇⿴囗 } \mathcal{H}_{ \pm 1}|\mathrm{vac}\rangle=0 \\
\mathcal{H}_{S S D} \equiv \frac{1}{2} \mathcal{H}_{c}-\frac{1}{4}\left(\mathcal{H}_{+1}+\mathcal{H}_{-1}\right) \\
\mathcal{H}_{c}|\mathrm{vac}\rangle=E_{0}|\mathrm{vac}\rangle \\
\mathcal{H}_{\mathrm{SSD}}|\mathrm{vac}\rangle=\frac{E_{0}}{2}|\mathrm{vac}\rangle
\end{gathered}
$$

2D Cft On A Cylinder

$$
\begin{gathered}
\mathcal{H}_{c}=\frac{2 \pi}{\ell}\left(L_{0}+\bar{L}_{0}\right)-\frac{\pi c}{6 \ell} \\
\mathcal{H}_{ \pm 1}=\frac{2 \pi}{\ell}\left(L_{ \pm 1}+\bar{L}_{\mp 1}\right) \\
L_{0}|0\rangle=\bar{L}_{0}|0\rangle=0 \\
\operatorname{sl}(2, \mathrm{c}) \text { invariance } \quad L_{ \pm 1}|0\rangle=\bar{L}_{c 1}^{\prime}|0\rangle=0 \\
\mathcal{H}_{ \pm 1}|\mathrm{vac}\rangle=0
\end{gathered}
$$

$$
\begin{array}{r}
\mathcal{H}_{c}=\frac{2 \pi}{\ell}\left(L_{0}+\bar{L}_{0}\right)-\frac{\pi c}{6 \ell} \quad \mathcal{H}_{ \pm 1}=\frac{2 \pi}{\ell}\left(L_{ \pm 1}+\bar{L}_{\mp 1}\right) \\
\mathcal{H}_{S S D}=\frac{1}{2} \mathcal{H}_{c}-\frac{1}{4}\left(\mathcal{H}_{+1}+\mathcal{H}_{-1}\right) \\
\sim \frac{1}{2}\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right)+(\text { anti-holomorphic }) \\
\mathcal{H}_{\mathrm{SSD}}|0\rangle=\frac{E_{0}}{2}|0\rangle \\
E_{0}=-\frac{\pi c}{6 l}
\end{array}
$$

H. Katsura, J. Phys. A: Math. Theor. 45 (2012) 115003.
$\mathcal{H}_{\mathrm{SSD}}|0\rangle=\frac{E_{0}}{2}|0\rangle\left\langle\mathcal{H}_{c} \mid 0\right\rangle=E_{0}|0\rangle$

$$
E_{0}=-\frac{\pi c}{6 l}
$$

H. Katsura, J. Phys. A: Math. Theor. 45 (2012) 115003.

Implication For String Theory?

Non-Trivial Modification (Deformation)

Affects Boundary Condition

搃 World Sheet Dynamics Of

D-Brane
 Open/Closed Duality

Implication For String Theory?

Non-Trivial Modification (Deformation) Affects B D-Brane总答 World Sheet Dynamics Of

Let Me Elaborate

Boundary condition - set by hand
Compartmentalize characteristic physics
Useful to concentrate each idiosyncrasy
Often non-perturbative effects involve different boundary conditions

D-brane, open closed duality
Understanding Non-perturbative dynamics in terms of the world sheet gravity

Lagrangean

$-\frac{2 \pi^{2} g}{\ell}\left\{n^{2} \phi_{n} \phi_{-n}-\frac{\alpha}{2}\left(n(n+1) \phi_{n} \phi_{-n-1}+n(n-1) \phi_{n} \phi_{-n+1}\right)\right\}$

$$
\begin{gathered}
\mathcal{L}_{\alpha}=\frac{g \ell}{2} \sum_{n, k} \dot{\phi}_{n} \dot{\phi}_{-n-k} N r^{|k|} \\
-\frac{2 \pi^{2} g}{\ell}\left\{n^{2} \phi_{n} \phi_{-n}-\frac{\alpha}{2}\left(n(n+1) \phi_{n} \phi_{-n-1}+n(n-1) \phi_{n} \phi_{-n+1}\right)\right\}
\end{gathered}
$$

Now conjugate momenta are

$$
\begin{gathered}
\pi_{n}=g \ell \sum_{k} N r^{|k|} \dot{\phi}_{-n-k} \\
\mathcal{H}_{\alpha}=\sum_{n} \pi_{n} \dot{\phi}_{n}-\mathcal{L}_{\alpha} \quad{ }^{\text {Provided }} \\
=\frac{1}{2 g \ell}\left[\pi_{n} \pi_{-n}-\frac{\alpha}{2} \pi_{n} \pi_{-n+1}-\frac{\alpha}{2} \pi_{n} \pi_{-n-1}\right. \\
\\
+(2 \pi g)^{2} n^{2} \phi_{n} \phi_{-n}-\frac{\alpha}{2}(2 \pi g)^{2} n(n+1) \phi_{n} \phi_{-n-1} \\
\\
\left.-\frac{\alpha}{2}(2 \pi g)^{2} n(n-1) \phi_{n} \phi_{-n+1}\right]
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{H}_{\alpha}= & \frac{1}{2 g \ell}\left[\pi_{n} \pi_{-n}-\frac{\alpha}{2} \pi_{n} \pi_{-n+1}-\frac{\alpha}{2} \pi_{n} \pi_{-n-1}\right. \\
& +(2 \pi g)^{2} n^{2} \phi_{n} \phi_{-n}-\frac{\alpha}{2}(2 \pi g)^{2} n(n+1) \phi_{n} \phi_{-n-1} \\
& \left.-\frac{\alpha}{2}(2 \pi g)^{2} n(n-1) \phi_{n} \phi_{-n+1}\right] \\
= & \frac{2 \pi}{\ell}\left(L_{0}+\bar{L}_{0}-\frac{\alpha}{2}\left(L_{1}+\bar{L}_{1}+L_{-1}+\bar{L}_{-1}\right)\right)
\end{aligned}
$$

$\mathcal{H}_{+1}+\mathcal{H}_{-1}$
$=\frac{2 \pi}{\ell}\left(L_{1}+\bar{L}_{1}+L_{-1}+\bar{L}_{-1}\right)=\frac{1}{2 g \ell} \sum_{n \in \mathbb{Z}}\left\{\pi_{n} \pi_{-(n+1)}+\pi_{n} \pi_{-(n-1)}\right.$
$\left.+(2 \pi g)^{2} n(n+1) \phi_{n} \phi_{-(n+1)}+(2 \pi g)^{2} n(n-1) \phi_{n} \phi_{-(n-1)}\right\}$

$$
\mathcal{L}_{\alpha}=\frac{1}{2} \int_{0}^{\ell} d x\left\{\left(\partial_{t} \varphi\right) F(x)\left(\partial_{t} \varphi\right)-\left(\partial_{x} \varphi\right) G(x)\left(\partial_{x} \varphi\right)\right\}
$$

$$
F(x)=N \sum_{k \in \mathbb{Z}} r^{|k|} e^{2 \pi i k x / \ell}=N \delta(x)
$$

$$
\mathcal{H}_{\alpha}=\frac{2 \pi}{\ell}\left(L_{0}+\bar{L}_{0}-\frac{\overline{k \in \mathbb{Z}}}{2}\left(L_{1}+\bar{L}_{1}+L_{-1}+\bar{L}_{-1}\right)\right)
$$

$$
\begin{aligned}
G(x)= & 1-\alpha \cos \frac{2 \pi x}{\ell} \\
& =2 \sin ^{2} \frac{\pi x}{\ell}
\end{aligned} \begin{gathered}
\quad \alpha=1
\end{gathered}
$$

$$
=2 \sin ^{2} \frac{\pi x}{\ell} \quad \alpha=1
$$

$$
r \equiv \frac{1-\sqrt{1-\alpha^{2}}}{\alpha}
$$

$$
\begin{aligned}
\mathcal{H}_{S S D} & =\frac{1}{2} \mathcal{H}_{c}-\frac{1}{4}\left(\mathcal{H}_{+1}+\mathcal{H}_{-1}\right) \quad r \equiv \frac{\alpha}{\alpha} \\
& =\frac{\pi}{\ell}\left(L_{0}+\bar{L}_{0}-\frac{L_{1}+\Sigma_{-1}+\bar{L}_{1}+\bar{L}_{-1}}{2}\right)-\frac{\pi c}{12 \ell}
\end{aligned}
$$

Worldsheet Metric $g^{a b}$

$$
\begin{gathered}
\mathcal{L}_{\mathrm{SSD}}=\frac{1}{2} \int_{0}^{\ell} d x\left\{\left(\partial_{t} \varphi\right) \frac{g^{11}}{\left.\hat{\downarrow} \delta(x)\left(\partial_{t} \varphi\right)-\left(\partial_{x} \varphi\right) 2 \sin ^{2} \frac{\pi x}{\ell}\left(\partial_{x} \varphi\right)\right\}}\right. \\
\mathcal{H}_{\mathrm{SSD}}=\frac{\pi}{\ell}\left(L_{0}+\bar{L}_{0}-\frac{L_{1}+L_{-1}+\bar{L}_{1}+\bar{L}_{-1}}{2}\right)-\frac{\pi c}{12 \ell}
\end{gathered}
$$

Non-Trivial Divergence Confirmed

Difficult To Tackle Directly

Explore States Other Than $|0\rangle$

Other Than

* "Excited" states
- work in progress

A candidate for the implied "continuous" states

$$
\sum_{r=2}^{\infty} \sum_{k=3}^{r+1} \frac{\mu^{k}}{k!} \frac{(r-2)!}{(k-3)!(r-k+1)!} L_{-r}|0\rangle
$$

μ : continuous parameter

* Exotic states

Other Than
 $|0\rangle$

- Exotic states

by H. Katsura

$$
\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right) \sum_{r=2}^{\infty} L_{-r}|0\rangle=0
$$

Other Than $\quad|0\rangle$

* Exotic states

by H. Katsura

$$
\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right)
$$

$=0$

$$
\left.\left|\sum_{r=2}^{\infty} L_{-r}\right| 0\right\rangle \mid \rightarrow \infty
$$

Other Than

* Exotic states

by H. Katsura

$$
\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right) \quad \sum_{r=2}^{\infty} \sum_{k=3}^{r+1} \frac{\mu^{k}}{k!} \frac{(r-2)!}{(k-3)!(r-k+1)!} L_{-r}|0\rangle \text { te }
$$

$$
\left|\sum_{r=2}^{\infty} L_{-r}\right| 0 \mid \rightarrow \infty
$$

So as the previously mentioned candidate states

Other Than

* Exotic states

$$
\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right) e^{L_{-1}}|h\rangle=0{\begin{array}{c}
L_{0}|h\rangle=h|h\rangle \\
L_{n}|h\rangle=0 \\
(n>0)
\end{array}}_{\begin{array}{c}
\text { The lowest energy state } \\
\text { for } h \text { seo }
\end{array}}
$$

Other Than

* Exotic states

$$
\begin{gathered}
L_{0}|h\rangle=h|h\rangle \\
L_{n}|h\rangle=0 \\
\quad(n>0)
\end{gathered}
$$

$$
\left(L_{0}-\frac{L_{1}+L_{-1}}{2}\right)
$$

$$
=0
$$

$\left.\left|e^{L_{-1}}\right| h\right\rangle \mid \rightarrow \infty$
 Need More Work To Understand The Whole Structure

Summary

Sine Square Deformation

String Theory

Duality

Divergence In Worldsheet

Dynamics

Condensation of
world sheet metric

Thank You For Your Atention

