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Introduction
A large class of 4d N = 2 superconformal gauge theories arise as the partially-twisted compactification of a
six-dimensional (2, 0) theory on a punctured Riemann surface C with certain real codimension-two defects of
the six-dimensional theory at the punctures. The moduli space Mg,n of C can be identified with the space
of exactly marginal deformations of the 4d SCFT. In a degeneration limit, C can be decomposed into three-
punctured spheres (“fixtures”) connected by cylinders, where the fixtures correspond to some kind of “matter”
and the cylinders to weakly-coupled gauge groups. Different pair-of-pants decompositions of C correspond to
different weakly-coupled gauge theory presentations of the same theory, related by S-duality. By classifying
these basic building blocks, we can build up an arbitrary surface C as a “tinkertoy”.

Seiberg-Witten solutions
This construction also realizes the Seiberg-Witten curve of the gauge theory as a branched cover of C. By
reducing any 4dN = 2 gauge theory on S1, one obtains a 3dN = 4 sigma model with hyperkähler targetM,
which is a fibration over the 4d Coulomb branchM→ B with generic fiber ∼ T 2r. For these theories,M is
the moduli space of solutions to Hitchin’s equations on C . Denoting the Higgs field Φ(z), the 4d Coulomb
branch is parametrized by

φk(z) ∼ Tr(Φ(z)k) ∈ H0(C,K⊗kC )

and the Seiberg-Witten curve Σ is given by the spectral curve of the Hitchin system

Σ : {det(xdz − Φ(z)) = 0} ⊂ KC

Codimension-two defects of the 6d (2, 0) theory
Codimension-two defects are in 1-1 correspondence with homomorphisms

ρ : su(2)→ g

or, equivalently, with nilpotent orbits Oρ in g. Nilpotent orbits in any simple lie algebra g are classified by
pairs (l, Ol), where l is a Levi subalgebra of g, and Ol is a distinguished nilpotent orbit in l. For classical g,
nilpotent orbits are equivalently classified by certain partitions, which we write as a Young diagram. For g
exceptional, nilpotent orbits are classified as above.

When J = AN−1, DN , E6, one can also introduce a sector of “twisted” defects, where, upon traversing a
non-contractible cycle on C, the fields undergo a monodormy o ∈ A, the outer-automorphism group of J .
When o is non-trivial, the defect is labeled by a nilpotent orbit in g, where g∨ is the subalgebra of j invariant
under o.

The effect on the Coulomb branch of the theory due to the presence of a defect labeled by Oρ ∈ g is de-
termined by the properties of a nilpotent orbit Oρ̃ ∈ g∨. These nilpotent orbits are related by the Spaltenstein
map:

d : Ng/G→ N∨g /G∨

which is defined for any simple g. For a nilpotent orbit in su(N), d is an isomorphism and is given by taking
the transpose of the Young diagram labeling Oρ. For other g, it is in general no longer an isomorphism, but
satisfies d3 = d.

A puncture corresponds to a local boundary condition for the Higgs field Φ(z). For an untwisted defect,
this is

Φ(z) ∼
[

Φ−1

z
+ Φ0 + . . .

]
dz

where Φ−1 ∈ d(Oρ) and Φ0 ∈ j.

When o is non-trivial, j splits into a direct sum of eigenspaces under the action of o:

j = j1 + j−1, for o of order 2
j = j1 + jω + jω2, for o of order 3

The boundary condition for the Higgs field in each case is then

Φ(z) ∼

[
Φ−1

z
+

Φ−1/2

z1/2
+ Φ0 + . . .

]
dz

Φ(z) ∼

[
Φ−1

z
+

Φ−2/3

z2/3
+

Φ−1/3

z1/3
+ Φ0 + . . .

]
dz

where Φ−1 ∈ d(Oρ), Φ−1/2 ∈ j−1, Φ−1/3 ∈ jω, Φ−2/3 ∈ jω2, and Φ0 ∈ j1 ≡ g∨.

S-duality invariants
To check our identifications, we compute the following S-duality invariants
•Graded Coulomb branch dimensions
•Higgs branch dimension
•Global symmetry group (acts as hyperkähler isometries of the Higgs branch)
• Level kGi

of each non-abelian factor Gi ⊂ Gglobal, defined by the current algebra

Jaµ(x)Jbν(0) =
3kG
4π4

δab
gµνx

2 − 2xµxν

(x2)4
+

2

π2
fabc

xµxνx · Jc

(x2)3

• Conformal anomaly coefficients (a, c), defined via

T
µ
µ =

c

16π2
(Weyl)2 − a

16π2
(Euler)

Superconformal Index
The superconformal index contains all information about the protected spectrum of an SCFT which can be
obtained from representation theory alone. It is evaluated by the following trace formula

I(µi) = Tr(−1)Fe−µiTie−βδ, δ = 2{Q,Q†}

where

• The trace is over the states of the theory on S3 in the radial quantization.

• {Ti} is a set of generators for the Cartan of SU(1, 1|2), which is the subalgebra of the 4d N = 2 supercon-
formal algebra, SU(2, 2|2), commuting with Q.

• States with δ 6= 0 cancel pairwise, so the index counts states with δ = 0.

Since SU(1, 1|2) has rank 3, the SCI depends on 3 superconformal fugacities (p, q, t), as well as fugaci-
ties parametrizing the Cartans of the flavor symmetry of each puncture, which is given by the centralizer of
ρi(SU(2)).

For these theories, the SCI has been shown by Gadde et al to take the form of a correlation function in a 2d
TQFT on C:

Ig,n(a1, . . . , an) =
∑
λ

(Cλλλ)2g−2+n
n∏
i=1

fλ(ai)

This expression also holds for non-Lagrangian SCFTs, allowing us to study the BPS spectrum of these theo-
ries. In particular, we can use the SCI to determine Gglobal for each fixture.

S-duality of E6 + 4(27)

E6 gauge theory with 4 fundamentals is realized as the 4-punctured sphere:

The S-dual is an SU(2) gauging of the SU(4)54 × SU(2)7 × U(1) SCFT, with an additional half-hyper in the
fundamental.

Connections with F-theory

The worldvolume theory on n D3-branes at a IV ∗, III∗, or II∗ singularity in F-theory is an N = 2 SCFT.
For n = 1, these are, respectively, the (E6)6, (E7)8, and (E8)12 SCFTs of Minahan-Nemeschansky. For higher
n, the properties of these theories were computed by Aharony and Tachikawa:

Besides numerous examples of n = 1, 2, we find examples of n = 3, 4 by compactifying the E6 (2, 0) theory
on the following three-punctured spheres:

Work in progress

1. Tinkertoy catalog for E7 and E8.

2. S3-twisted D4 theory

•Outer-automorphism group, A, enhances to S3 for D4

• S3 is non-abelian, so we are no longer measuring twists by H1(C,A), but by Hom(π1(C), A).

3.Z2-twisted A2N theory

• Compactifying the A2N (2, 0) theory on S1 with a Z2-twist gives 5d N = 2 SYM with a non-trivial
discrete theta angle.
• This leads to various subtleties.
• Recent work by mathematicians on “exotic nilpotent cones” might be relevant.


