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Certification of many-body quantum states



The problem

Does this complex quantum 
system have a given quantum 
property? E.g.: is it entangled?



Quantum estimation
Standard scenario: (i) different quantum states are prepared, (ii) a quantum  
operation is applied to these states and (iii) measurements are performed.
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Goal: to extract information 
about the system from the 
measurement statistics.
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• State estimation: no channel, the measurement operators are perfectly 
known, the prepared state(s) are inferred from the observed statistics.

• Channel estimation: the state(s) and measurements are perfectly 
known, the channel is inferred from the observed statistics.

• Measurement estimation: no channel, the prepared state(s) are 
perfectly known, the measurement operators are inferred from the 
observed statistics.

Any quantum estimation problem problem relies on crucial assumptions.

Assuming perfect knowledge of the devices in the experiment may be 
questionable, in view of the high complexity of experimental setups.
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In which Hilbert space does this setup live?!

Assumptions in quantum estimation
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Device-independent estimation
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P preparations
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Goal: to extract information about the system only from the measurement 
statistics and without making any modeling or a priori assumption on the devices, 
which are seen as black boxes.

P r1, r2 p,m1,m2( ) = tr ρpMr1
m1 ⊗Mr2

m2( )



Entanglement detection

An N-particle quantum state is entangled if: ρ ≠ piρi
(1) ⊗!⊗

i=1

N

∑ ρi
(N )

States that can be written in this form are separable, or non-entangled. They can 
be prepared using only local quantum operations and classical communication.

ρS

ρE

Separable

Entangled



Standard entanglement detection
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Standard entanglement detection
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P r1, r2 m1,m2( ) = tr ρMr1
m1 ⊗Mr2

m2( )

In standard entanglement detection, measurements are assumed to be known. 

By performing an enough number of measurements, one can compute the value 
of an entanglement witness or even reconstruct the whole state and check its 
entanglement properties.



Standard entanglement detection

ρ
+1 σ i ⊗σ j = tr ρ σ i ⊗σ j( )

Example: two qubits. C2 ⊗C2
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Standard entanglement detection

ρ
+1 σ i ⊗σ j = tr ρ σ i ⊗σ j( )
One can now measure an entanglement witness, e.g.:

One can perform full tomography, reconstruct 
the quantum state and apply an entanglement 
criterion, such as partial transposition.

Example: two qubits. C2 ⊗C2

-1 +1 -1

σ X σY σ Z σ X σY σ Z

σ X ⊗σ X + σ Z ⊗σ Z ≤1

ρ =

ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11
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#
#
#
#
#
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DI entanglement detection

…

1 … R

ρ

1 M…

1 … R

1 M

P r1, r2 m1,m2( ) = tr ρMr1
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Now, no assumption is made on the applied measurements.

Bell inequalities are the only device-independent entanglement witnesses.

Full reconstruction is impossible as the Hibert space is unknown.
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Quantum estimation

Is this system entangled?

Challenges:

1) The full reconstruction of a quantum state 
requires measuring a number of parameters that 
grows exponentially with the number of particles.

2) Even if the full quantum state is available, 
detecting some relevant quantum properties 
requires solving a problem that involves a number 
of parameters that also grows exponentially.

3) Even if a scalable amount of information is 
available, say all two-body correlation functions, 
detecting the entanglement may again require 
solving an exponentially growing problem.

One needs to efficiently extract relevant information from restricted data.



Miguel Sukhi
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Connector tensor network

The method assumes that the whole state is available.

Intuition: for a given state 𝜌, the goal is to understand if it is entangled.

𝜌! =#
"

𝑝"𝜌"
($)⨂⋯⨂𝜌"

(!)

Consider a non-positive map 𝑊:𝐵 𝐶&! ⊗𝐶&! → 𝐵 𝐶&" such that for all states 
𝜌, 𝜎 ≥ 0 one has:

𝑊 𝜌⨂𝜎 ≥ 0

If 𝑑' < 𝑑"( the map contracts the space. If we apply the map to the initial state, 
say on the last two particles, one gets:

1$…!*(⨂𝑊 𝜌! = 4𝜌!*$



Connector tensor network

If the initial state is separable, then the resulting operator is also a separable state.
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Connector tensor network

If the initial state is separable, then the resulting operator is also a separable state.

1$…!*(⨂𝑊 𝜌! = 4𝜌!*$

4𝜌!*$ = 1$…!*(⨂𝑊 #
"

𝑝"𝜌"
($)⨂⋯⨂𝜌"

(!) =#
"

𝑝"𝜌"
($)⨂⋯⨂𝑊 𝜌"

(!*$)⨂𝜌"
(!) ≥ 0

The idea of the method is to apply these contraction maps until getting an operator 
small enough to apply standard entanglement criteria, or even check positivity.

Remark: an entanglement witness is an example of these maps 
where the final state is a scalar. 𝑊 𝜌⨂𝜎 ≥ 0



Tensor networks

Tensor network notation: a tensor made of the contraction of different tensors. 
The open indices in the network are the indices of the resulting tensor, while the 
connected, also known as bond, indices are contracted.
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(d) (e)
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an open index a bond index

(a) | ⟩𝑣 = ∑" 𝑣"| ⟩𝑖

(b) 𝑀 = ∑"+𝑀"+ ⟩𝑗 ⟨𝑖

(c) 𝐴 = ∑"+, 𝐴"+, ⟩𝑗 ⟩𝑘 ⟨𝑖|

(d) Matrix multiplication: 𝑅 = 𝑁𝑀

(e) General tensor network



Tensor networks
Usually employed to represent quantum states in a many-body context, but they 
can apply to any object consisting of indices, for example correlations.

i1 i2 i3 iN i1 i2 i3 iN

i1 i2 i3 iN

Known forms: MPS and MERA

(a)

(b)

(d)

(c)

local

𝑃 𝑎$…𝑎!|𝑥$…𝑥!



Connector tensor network
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(c) The object to be detected is 
coarse grained until a 
standard criterion, say a 
witness, is applied to it. This 
witness can usually also be 
seen as the last step of the 
connector network.
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(c)

See-saw: all connectors 𝑊+-"
are fixed but 𝑊" that is 
optimized. Denote by 𝐶 the 
tensor resulting from 
applying 𝑊+-" to the initial 
tensor 𝑃. Then we look for:

min𝑊" 𝐶

such that 𝑊" is a connector. 
If a negative value is 
obtained the object 𝑃 has 
the desired properties.
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(c)

See-saw: all connectors 𝑊+-"
are fixed but 𝑊" that is 
optimized. Denote by 𝐶 the 
tensor resulting from 
applying 𝑊+-" to the initial 
tensor 𝑃. Then we look for:

min𝑊" 𝐶

such that 𝑊" is a connector. 
If a negative value is 
obtained the object 𝑃 has 
the desired properties.

The set of connectors or 
subsets of it can be 
characterized by linear or 
semi-definite programming.



Bell non-locality

𝑃 𝑎$…𝑎!|𝑥$…𝑥!

The problem is defined by the number of 
parties 𝑁, of measurements 𝑚 and of results 𝑟. 

The observed correlations 𝑃 𝑎$…𝑎!|𝑥$…𝑥!
are defined by a vector of size 𝑚!𝑟!.
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Bell non-locality

𝑃 𝑎$…𝑎!|𝑥$…𝑥!

The problem is defined by the number of 
parties 𝑁, of measurements 𝑚 and of results 𝑟. 

The observed correlations 𝑃 𝑎$…𝑎!|𝑥$…𝑥!
are defined by a vector of size 𝑚!𝑟!.

𝑥$

𝑎$

𝑥(

𝑎(

…
𝑥!

𝑎!

Detecting if a point is local can be solved by linear programming:

∃ 𝑝"≥ 0 such that 𝑃 𝑎$…𝑎!|𝑥$…𝑥! = ∑".$/ 𝑝" 𝑃0,"ext

The number of extreme points is 𝑛 = 𝑟2!. Already in the simplest scenario, 
𝑟 = 𝑚 = 2, the linear program becomes prohibitive for 𝑁 ≳ 10.
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Bell connectors

• A wiring is a (uninteresting) connector. 

• A (normalized) Bell inequality is a connector:

• A family of 𝑛 Bell inequalities can be used to 
define a connector, where the resulting 
conditional probability distribution has 𝑛 inputs 
and two outputs, where 𝑃 𝑎 = 0|𝑥 = 𝛽4.

1 ≥ 𝛽 = #
3#3$4#4$

𝑤3#3$4#4$𝑃0 𝑎$𝑎(|𝑥$𝑥( ≥ 0 𝑥$𝑎$ 𝑥(𝑎(
𝑊

𝑥$

𝑎$

𝑥$ 𝑥(𝑎(
𝑊4

𝑎$

𝑥𝑎
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Bell connectors
• Connectors can be characterized by linear programming: they should map 

local correlations in the input scenario 𝑁" , 𝑚" , 𝑟" into local correlations of 
the output scenario 𝑁' , 𝑚' , 𝑟' .

• Given a map 𝑊, one should prove that, for all extreme local points 𝑃0!,,
ext in 

𝑁" , 𝑚" , 𝑟" , one has:

where 𝑃',+ext are the extreme local points in the 𝑁' , 𝑚' , 𝑟' scenario.

• Everything is linear: linear programming.

• Same considerations apply to optimizations over connectors.

∃ 𝑝+≥ 0 such that 𝑊 𝑃0!,,
ext = ∑+.$/ 𝑝+ 𝑃0",+

ext
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Connectors are especially powerful when the object under study also has a tensor-
network structure. 

Example: measurements 𝜎4 and 𝜎5 on the GHZ state | ⟩GHZ = $
(
| ⟩0 ⊗! + | ⟩1 ⊗! .

The resulting distribution can be written in an MPS representation with bond 
dimension 4. 
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Similar considerations apply to entanglement, but now:

• Connectors should transform separable states into separable states.
• We consider relaxations to the set of separable states and use SDP.
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Similar considerations apply to entanglement, but now:

• Connectors should transform separable states into separable states.
• We consider relaxations to the set of separable states and use SDP.
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Examples:

• We apply the considerations to six-qubit 
PPT states constructed from UPB bases and 
detect them.

• We also consider mixed states of 60 qubits 
with efficient MPDO decomposition.



Entanglement marginal problems

Miguel Navascués, Flavio Baccari and Antonio Acín

arxiv:2006.09064

Miguel Flavio



Entanglement marginal problem

Consider a system, denoted by 𝒜. Subsets of this systems are denoted by 𝐼. 
Finally, we denote by ℐ a set of subsets of 𝒜 or, in other words a subset of its 
power set, ℐ ⊂ 𝒫 𝒜 .



Entanglement marginal problem

Consider a system, denoted by 𝒜. Subsets of this systems are denoted by 𝐼. 
Finally, we denote by ℐ a set of subsets of 𝒜 or, in other words a subset of its 
power set, ℐ ⊂ 𝒫 𝒜 .

Entanglement marginal problem: given 
𝜌7 7∈ℐ a set of marginals of a system 𝒜, 

are they compatible with a separable state 
𝜎 on 𝒜?

The problem is non-trivial if the marginals: 
• are separable and
• overlap, in which case they satisfy the 

compatibility conditions: 
tr7\; 𝜌7 = tr;\7 𝜌; .

𝜌]

𝜌^
𝜌_

𝜌`
𝜌a



Classical marginal problem

Consider a system, denoted by 𝒜. Subsets of this systems are denoted by 𝐼. 
Finally, we denote by ℐ a set of subsets of 𝒜 or, in other words a subset of its 
power set, ℐ ⊂ 𝒫 𝒜 .

Classical marginal problem: is an ensemble of locally compatible measures 𝑝7 7∈ℐ
compatible with a global measure 𝑝?

The problem is non-trivial, in the sense that local compatibility is not sufficient.



Classical marginal problem

Consider a system, denoted by 𝒜. Subsets of this systems are denoted by 𝐼. 
Finally, we denote by ℐ a set of subsets of 𝒜 or, in other words a subset of its 
power set, ℐ ⊂ 𝒫 𝒜 .

Classical marginal problem: is an ensemble of locally compatible measures 𝑝7 7∈ℐ
compatible with a global measure 𝑝?

The problem is non-trivial, in the sense that local compatibility is not sufficient.

If the entanglement marginal problem has a solution, then:

where 𝑝7 are the reduced measures of 𝑝.
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Hierarchy of necessary conditions

Define the states:

They satisfy the following conditions, valid for any 𝐿:

Doherty-Parrilo-Spedalieri



Hierarchy of necessary conditions

Now, given the reduced states 𝜌7 7∈ℐ we check whether they satisfy the previous 
conditions for any value of 𝐿. This can be done by SDP.

We denote each condition by ℍ0. All together they define a hierarchy ℍ. If a test in 
the hierarchy is not satisfied, the reduced states must come from an entangled state.
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Based on previous work by 
Navascués, Ozari and 
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Convergence of the hierarchy

Based on previous work by 
Navascués, Ozari and 
Plenio, PRA09

The hierarchy ℍ tends to the set of separable states with compatible measures.

The hierarchy is complete for the problem if, and only if the classical marginal 
problem is trivial, that is, it follows from local compatibility.
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/*$
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Example
Nearest-neighbour states in the line: 𝜌+,+<$, 𝒜 = 1,… , 𝑛 , ℐ = 𝐼+ +.$

/*$
and 𝐼+ = 𝑗, 𝑗 + 1 .

The hierarchy is complete because the classical problem has a trivial solution:

𝑝 𝑋$, 𝑋(, … , 𝑋/*$, 𝑋/ =
𝑝 𝑋$, 𝑋( 𝑝 𝑋(, 𝑋= …𝑝 𝑋/*$, 𝑋/

𝑝 𝑋( 𝑝 𝑋= …𝑝 𝑋/*$

ℋ+ = ℋsym 𝑑+ , 𝐿 ⨂ℋsym 𝑑+<$, 𝐿

Every step ℍ0 is polynomial in 𝑛.
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Another example
Nearest-neighbour states in the ring: 𝜌+,+<$, 𝒜 = 1,… , 𝑛 , ℐ = 𝐼+ +.$

/
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Nearest-neighbour states in the ring: 𝜌+,+<$, 𝒜 = 1,… , 𝑛 , ℐ = 𝐼+ +.$

/
and 𝐼+ = 𝑗, 𝑗 + 1 .

The hierarchy is now not complete because the previous trick does not work.

𝑝 𝑋$, 𝑋(, … , 𝑋/*$, 𝑋/
𝑝 𝑋$, 𝑋( 𝑝 𝑋(, 𝑋= …𝑝 𝑋/*$, 𝑋/

𝑝 𝑋( 𝑝 𝑋= …𝑝 𝑋/*$

Not possible to 
include the last 
reduced state.

However, the classical problem has a solution for ̅𝐼+ = 1, 𝑗 + 1, 𝑗 + 2 , 𝑗 = 1, … , 𝑛 − 2.

Convergent hierarchy
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The general case of infinite systems is challenging: set of infinite marginals. Yet, the 
problem becomes tractable as soon as symmetries are considered.

Before moving to hierarchies, using results by Wang and Navascués, one has:

Proposition: consider an infinite 𝐷-dimensional lattice 𝒜 = ℤ> and the reduced 
states of all sublattices of size 2. They are the marginal of a translation and 
reflection invariant separable state for the whole hypercubic lattice if they are  
fully separable and symmetric under the reflection of each orthogonal axis.

For the chain, the corresponding set of states is given by the set of separable 
states satisfying 𝜌$( = 𝜌($. 
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Infinite systems with symmetries

Reduced 𝑘-particle state of an infinite chain with translational invariance (TI). 
The local TI (LTI) compatibility conditions for the state imply: tr$𝜌 = tr,𝜌.

Again, the same problem has been considered in the classical case, with LTI: 

The same techniques apply and the hierarchy converges to separable states 
with measures that satisfy LTI. The classical problem is known to be trivial, LTI 
necessary and sufficient, hence the hierarchy converges.

Similar hierarchies can be defined for 2D, although without convergence.
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Connector tensor networks: 
• General method applicable to the detection of many properties: 

entanglement, non-locality, supra-quantumness, steering,…
• Especially useful when the input state has an efficient tensor-network 

structure: 60 qubits, or 100 boxes.
• No guarantee of good performance.
• Extension to other systems and to initial partial information.

Entanglement marginal problem:
• Hierarchies for entanglement detection from reduced states.
• Polynomial scaling in many relevant scenarios. E.g.: application to nearest 

neighbour states of 1D chains of 100 particles.
• Connection to the classical marginal problem.
• Applicable to infinite systems with symmetries.


