
Is Unitarity an option?
Giacomo Mauro D'Ariano  

Università degli Studi di Pavia

Workshop on Quantum Information, Computation, and Foundation 
Yukawa Institute for Theoretical Physics, Kyoto University 

held online

Om the web  September 17th 2020



‣ Motivations for the posed question “Is Unitarity an option?”:  

‣ The “information paradox” 

‣ What we learn at school 

‣ Quantum falsification tests 

‣ Impossibility of  falsification of: 

‣ purity of  states 

‣ atomicity of  transformations 

‣ max-entanglement of  states  

‣ unitarity of  transformations 

‣ pure realisation of  mixed states and unitary realisations of  transformations 

‣ Customary and minimal mathematical axiomatisations of  QT: the spurious postulate 

‣ Conclusions: Copenhagen interpretation vs interpretations of  the unnecessary postulate

Index of  the talk



THE INFORMATION PARADOX

(1) An evaporating black hole scrambles quantum information without destroying it.  
(2) A freely falling observer encounters nothing unusual upon crossing the event horizon of  a black hole.  
(3) An observer who stays outside a black hole detects no violations of  relativistic effective quantum field theory.

unitarity can be temporarily violated during the black hole evaporation process, accommodating 
violations of  monogamy of  entanglement and the no-cloning principle, and allowing assumptions 
(1), (2), and (3) to be reconciled 

This puzzle has spawned many audacious ideas, beginning with Hawking’s bold proposal that 
unitarity fails in quantum gravity.

S. Lloyd and J. Preskill, JHEP 08 2014 126



THE INFORMATION PARADOX

Violation of  unitarity by Hawking radiation does not violate energy-momentum conservation

H. Nikolic(Boskovic Inst., Zagreb) Feb 15, 2015



THE INFORMATION PARADOX

This is the essence of  the black hole information paradox (BHIP): unlike any other classical 
or quantum system, black holes may not conserve information, thus violating unitarity.

Some physicists speculate that quantum gravity may actually be non-unitary

The Black Hole Information Paradox 
Stefano Antonini, John Martyn, Gautam Nambiar,14/10/2018

When this phenomenon is analyzed closer, we discover that it takes pure states to mixed 
states, a violation of  unitarity, a fundamental property of  quantum physics.



THE INFORMATION PARADOX

Unitarity? Non consistent with AdS/CFT

Joe Polchinski, Simons Symposium, Caneel Bay 2/5/13 



Why unitarity cannot be violated?



The “actual” quantum evolutions are reversible… 
Information is conserved… 
The “actual” quantum state is pure…

MOTIVATIONS FOR UNITARITY



What we learn at school

2 1.3. INTERPRETAZIONE STATISTICA

e sostituendo il valore dell’energia E con la somma del termine cinetico e di quello
di energia potenziale tempo-indipendente
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le due equazioni (1.3) conducono all’equazione di Schrödinger
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Nell’Approfondimento 1.A è riportata la derivazione euristica dovuta a Fermi, che
non utilizza le relazioni di Planck e di De Broglie, ma deriva l’equazione da un
parallelismo fra meccanica ondulatoria e particellare a partire da semplici principi
variazionali.

Calcolando la complessa coniugata dell’equazione (1.5), si ottiene l’equazione
di Schrödinger per la funzione d’onda complessa coniugata  ⇤ (x, t)
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Si noti come l’equazione per  ⇤ (x, t) si ottiene equivalentemente con l’inversione
temporale corrispondente al cambiamento di variabile t ! �t. Ciò è anche in
accordo con la forma di onda viaggiante (1.2).1

1.3 Interpretazione statistica della funzione d’onda

Dopo aver ricavato l’equazione di Schrödinger, resta ora da capire l’interpretazio-
ne della funzione d’onda complessa nell’equazione. Tale interpretazione è stata
suggerita da Born nel 1926, e a↵erma che il modulo quadro della funzione d’onda
| (x, t) |2 sia la densità di probabilità2 di trovare la particella nella posizione x.
In altre parole, | (x, t) |2d3x è la probabilità di trovare la particella nel volumetto
infinitesimo d3x centrato in x al tempo t.3

1.3.1 Conservazione della normalizzazione

Per poter adottare l’interpretazione probabilistica è necessario che la funzione d’on-
da sia normalizzabile a ogni tempo, ovvero le soluzioni  (x, t) dell’equazione di

1L’inversione del vettor d’onda k ! �k non influisce sulla forma dell’equazione di Schrödinger
in quanto il vi appare quadraticamente attraverso il Laplaciano.

2Opportuni richiami a concetti base di teoria delle probabilità possono essere trovati nel Ripasso
1.B.

3Nel seguito useremo la notazione dx ⌘ d3 x.

versione: 21 dicembre 2019 G. M. D’Ariano

von Neumann collapse

OK for Free Field Theory 
(but what about collapse?)

Quantum “Mechanics” (non relativistic)



Unitarity in interacting QFT
Unitarity in quantum field theory?

The necessity for Faddeev–Popov ghosts follows from the 
requirement that quantum field theories yield unambiguous, non-
singular solutions. This is not possible in the path integral 
formulation when a gauge symmetry is present since there is no 
procedure for selecting among physically equivalent solutions 
related by gauge transformation. The path integrals overcount field 
configurations corresponding to the same physical state; the 
measure of the path integrals contains a factor which does not allow 
obtaining various results directly from the action.

It is possible, however, to modify the action, such that methods such 
as Feynman diagrams will be applicable by adding ghost fields 
which break the gauge symmetry. 

The ghost fields do not correspond to any real particles in 
external states: they appear as virtual particles in Feynman 
diagrams – or as the absence of gauge configurations. However, 
they are a necessary computational tool to preserve unitarity. 



Should the “actual” quantum 
evolution be reversible?

Is the “actual” quantum state pure?

Should information be conserved?



Should the “actual” quantum 
evolution be reversible?

Is the “actual” quantum state pure?

Should information be conserved?

UNFALSIFIABLE STATEMENTS 



Quantum falsification tests



CONVENTIONS & NOTATIONS

Convenient rule of taking the trace Tr ρ of the density matrix ρ ∈ St(A) of system A as the 
preparation probability p(ρ) = Tr ρ of the state ρ (unit-trace ρ deterministic states).

In such a way, for example, the trace Tr[   ρ] will denote the joint probability of ρ-preparation 
followed by the quantum operation . T

<latexit sha1_base64="QKheeMN7vnc9xmyss9G4pi8Nm04=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4rtLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHtzP/4Ylpw5Vs2knCgpgMJY84JdZJ7R4lAjf75YpX9ebAq8TPSQVyNPrlr95A0TRm0lJBjOn6XmKDjGjLqWDTUi81LCF0TIas66gkMTNBNr92is+cMsCR0q6kxXP190RGYmMmceg6Y2JHZtmbif953dRG10HGZZJaJuliUZQKbBWevY4HXDNqxcQRQjV3t2I6IppQ6wIquRD85ZdXSbtW9S+qtfvLSv0mj6MIJ3AK5+DDFdThDhrQAgqP8Ayv8IYUekHv6GPRWkD5zDH8Afr8AffPjro=</latexit>

T
<latexit sha1_base64="QKheeMN7vnc9xmyss9G4pi8Nm04=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4rtLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHtzP/4Ylpw5Vs2knCgpgMJY84JdZJ7R4lAjf75YpX9ebAq8TPSQVyNPrlr95A0TRm0lJBjOn6XmKDjGjLqWDTUi81LCF0TIas66gkMTNBNr92is+cMsCR0q6kxXP190RGYmMmceg6Y2JHZtmbif953dRG10HGZZJaJuliUZQKbBWevY4HXDNqxcQRQjV3t2I6IppQ6wIquRD85ZdXSbtW9S+qtfvLSv0mj6MIJ3AK5+DDFdThDhrQAgqP8Ayv8IYUekHv6GPRWkD5zDH8Afr8AffPjro=</latexit>

This convention makes possible to regard states and effects just as special cases of 
transformations, from and to the trivial system I, respectively, with Hilbert space 
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1. Introduction
... in the seminal paper by Popper [3], which inspired the It is almost universally believed that in
quantum theory (QT) the two following statements hold: 1) all transformations are achieved by a
unitary interaction followed by a von-Neumann measurement; 2) all mixed states are marginals of
pure entangled states. In the following, I will name this doctrine the ontology of purification dogma
(OPD). The source of the OPD is the original von Neumann axiomatisation of QT [1], which
largely relies on the Schrődinger equation as a postulate, that holds in a nonrelativistic context,
and whose operator version no longer holds in interacting quantum field theory (QFT).

In the present paper I prove that both unitarity and state-purity ontologies are not falsifiable,
and therefore propose an alternative three-postulate axiomatisation of QT : 1) associate a Hilbert
space HA to each system A; 2) compose two systems by the tensor product rule HAB =HA ⌦HB; 3)
associate a transformation from system A to B to a quantum operation, i. e. to a completely positive
trace-non-increasing map from T(HA) to T(HB).

I then conclude that quantum paradoxes–such as the Schroedinger-cat’s, and, more relevantly,
the information paradox) [2]–are originated only by OPD, hence, strictly speaking, they are
not paradoxes of the theory, but of the old redundant axiomatisation. For the same reason,
interpretations of the theory as the many-world, relational, Darwinism, transactional, von
Neumann-Wigner, time-symmetric, and similia are interpretations of the OPD, not of QT.

[4]
The diffusion of OPD is witnessed by the usual nomenclature “quantum theory of open

systems” associated to non-unitary processes and mixed states–the naming emphasising the
alleged incompleteness of the theoretical description.

2. The minimal and the von Neumann axiomatisations of QT
We assume the reader to be familiar with the natural circuit language in quantum information
[5], which mathematically is formalised in terms of the operational probabilistic theory (OPT)
framework (see e.g. Ref. [6]). In the following we will use the convenient rule of taking the trace
Tr ⇢ of the density matrix ⇢2 St(A) of system A as the preparation probability p(⇢) =Tr ⇢ of the
state ⇢, whereas unit-trace density matrices specifically describe deterministic states. In such a
way, for example, the trace Tr[T ⇢] will denote the joint probability of ⇢-preparation followed by
the quantum operation T . This convention makes possible to regard states and effects just as
special cases of transformations, from and to the trivial system I, respectively, with Hilbert space
HI =C. We will also assume the usual operational probabilistic theory (OPT) framework (see
e.g. Ref. [6]), which formalises the natural language of quantum circuits in quantum information
science [5].1 Finally, we will make use of the common notation summarised in Table 2 in the
Appendix.

The two axiomatisations in comparison and their main theorems
In Table 1 we report both the customary mathematical axiomatisation of QT, and the minimal one
proposed here. In both axiomatisations a system A of the theory is mathematically associated to
Hilbert space HA and the composition of systems is provided by the Hilbert-space tensor product
HAB =HA ⌦HB. It follows that the trivial system, defined by the composition rule AI= IA=A

has Hilbert space HI =C, which is the first theorem of both axiomatisations. The usage of the
trivial system is crucial for considering both states and effects as special cases of transformations.

1The same framework emerged within computer science in terms of Category Theory [7–12].
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Notation

H Hilbert space over C
Bnd

+
(H) bounded positive operators over H

U(H) unitary group over H
T(H) trace-class operators over H
T
+
(H) trace-class positive operators over H

T
+

1
(H) positive sub-unit-trace operators over H

T
+

=1
(H) positive unit-trace operators over H

CP trace-non increasing completely positive map
CP= trace-preserving completely positive map
Conv(S) convex hull of S
Cone(S) conic hull of S
Cone1(S) convex hull of {S [ 0}

St(A) set of states of system A

St1(A) set of deterministic states of system A

E↵(A) set of effects of system A

E↵1(A) set of deterministic effects of system A

Trn(A!B) set of transformations from system A to system B

Trn1(A!B) set of deterministic transformations from system A to system B

Special cases
T(C) =C, T

+
(C) =R+, T

+

1
(C) = [0, 1], T

+

=1
(C) = {1}

CP(T(H)!T(C)) = P(T(H)!T(C)) = {Tr[·E], E 2Bnd
+
(H)}

CP(T(C)!T(H)) = P(T(C)!T(H)) =T
+
(H)

CP(T(C)!T(H))⌘T
+

1
(H)

CP(T(H)!T(C))⌘ {✏(·) =Tr[·E], 0E  I}

Table 2: Notation and corollary special cases.

Data Accessibility. For a recent review on the causality postulate, see Chapt. 5 of the book [6].
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In the following we will use the convenient rule of taking the trace Tr ⇢ of the density matrix
⇢2 St(A) of system A as the preparation probability p(⇢) =Tr ⇢ of the state ⇢. In such a way,
for example, the trace Tr[T ⇢] will denote the joint probability of ⇢-preparation followed by the
quantum operation T , whereas unit-trace density matrices specifically describe deterministic
states. We will also assume the usual operational probabilistic theory (OPT) framework (see e.g.
Ref. [6]), which formalises the natural language of quantum circuits in quantum information
science [5].1

We will restrict to finite dimensional systems.
We will make use of the common notation summarised in Table ??.
In Table ?? we report the customary mathematical axiomatisation of QT.
To each system A we associate an Hilbert space HA. The composition of systems

The falsification test
Definition 1 (Falsifier). The event F is a falsifier of hypothesis Hyp if F cannot happen for Hyp=

TRUE.

Accordingly we will call the binary test {F, F?} a falsification test for hypothesis Hyp, F?

denoting the inconclusive event.2 Practically one is interested in effective falsification tests {F, F?}

which are not singleton–the two singleton tests corresponding to F = 0 and F? = 0 being the
inconclusive falsification test and the logical falsification, respectively.

Suppose now that one wants to falsify a proposition about the state ⇢2 St(A) of system A. In
such case any effective falsification test can be achieved as a binary observation test of the form

{F, F?}⇢E↵(A), F? := IA � F, F > 0, F? � 0, (0.1)

where with the symbol F (F?) we denote both the event and its corresponding positive operator.
Notice the strict positivity of F for effectiveness of the test, F = 0 corresponding to the inconclusive

test. namely a test that outputs only the inconclusive outcome. On the other hand, the case F? = 0

corresponds to logical falsification. 3

Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A) (0.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (0.3)

would have zero expectation for a state ⇢ satisfying Hyp (0.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (0.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (0.3) provides the
most general falsification test of Hyp (0.2), and the choice SuppF =K

? provides the most efficient
test in maximising the falsification chance.
1The OPT framework is also used in computer science [7,8].
2We want to remark that the occurrence of F? generally does not mean that Hyp= TRUE, but only that the falsification test
failed.
3We observe that if we would have defined a verification test for hypothesis Hyp in terms of a verifier that occurs with
probability 1 for Hyp= TRUE, such test would heve coincided with the falsification test with verifier F? and inconclusive
event F .
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would have zero expectation for a state ⇢ satisfying Hyp (0.2), which means that occurrence of F
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Minimal mathematical axiomatization of Quantum Theory
system A HA

system composition AB HAB =HA ⌦HB

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

Theorems
trivial system I HI =C

reversible transf. U =U · U† U 2U(HA)

determ. transformation T 2Trn1(A!B) T 2CP1(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

states ⇢2 St(A)⌘Trn(I!A) ⇢2T
+

1
(HA)

⇢2 St1(A)⌘Trn1(I!A) ⇢2T
+

=1
(HA)

⇢2 St(I)⌘Trn(I! I) ⇢2 [0, 1]

⇢2 St1(I)⌘Trn(I! I) ⇢= 1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Transformations as
unitary interaction

+
von Neumann-Luders A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

Table 3: Minimal axiomatisation for Quantum Theory

Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A) (3.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (3.3)

would have zero expectation for a state ⇢ satisfying Hyp (3.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (3.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (3.3) provides the
most general falsification test of Hyp (3.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

4. Unfalsifyability of purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.
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Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A), dimHA � 2 (4.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (4.3)

would have zero expectation for a state ⇢ satisfying Hyp (4.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (4.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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system composition AB HAB =HA ⌦HB

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))
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determ. transformation T 2Trn1(A!B) T 2CP1(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2
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Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A) (3.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (3.3)

would have zero expectation for a state ⇢ satisfying Hyp (3.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (3.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (3.3) provides the
most general falsification test of Hyp (3.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

4. Unfalsifyability of purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.
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Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A), dimHA � 2 (4.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (4.3)

would have zero expectation for a state ⇢ satisfying Hyp (4.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (4.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A), dimHA � 2 (4.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (4.3)

would have zero expectation for a state ⇢ satisfying Hyp (4.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (4.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains falsifiers and inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

Impossibility of falsifying the purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (0.5)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (0.6)

which means that
8 2HA : h |F | i= 0, (0.7)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

(a) Unfalsifiability of atomicity of a transformation of a quantum system
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity

of an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
C

. (0.8)

Take for the state R= |�ih�| a faithful pure state.5 Then, one has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (0.9)

but purity of state has no falsifier.⌅

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).

3

rsta.royalsocietypublishing.org
P

hil.Trans.R
.S

oc.A
0000000

..................................................................

most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.
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being the one which coarse-grains falsifiers and inconclusive events separately.
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falsifies Hyp1.

Impossibility of falsifying the purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (0.5)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (0.6)

which means that
8 2HA : h |F | i= 0, (0.7)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available.

(a) Unfalsifiability of atomicity of a transformation of a quantum system
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity

of an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following
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B
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C

. (0.8)

Take for the state R= |�ih�| a faithful pure state.5 Then, one has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (0.9)

but purity of state has no falsifier.⌅

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).
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Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (4.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (4.2)

which means that

8 2HA : h |F | i= 0, (4.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

(a) Unfalsifiability of atomicity of a quantum transformation
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (4.4)

We can use the a maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (4.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

(b) Unfalsifiability of max-entanglement of a pure bipartite state
Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

Proof. Falsification of max-entanglement of state |�ih�| needs a falsifier F 2E↵(AB) satisfying

Tr[F |�ih�|] = 0, 8|�ih�| maximally entangled. (4.6)

In particular, since unitarity preserve max-entanglement, one has

Tr[F (U ⌦ IB)|�ih�|] = 0, 8U 2Trn(A) unitary. (4.7)

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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Unfalsifiability of purity of quantum states
Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (4.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (4.2)

which means that

8 2HA : h |F | i= 0, (4.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

Unfalsifiability of atomicity of a quantum transformation
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (4.4)

We can use the a maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (4.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

Unfalsifiability of max-entanglement of a pure bipartite state
Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains falsifiers and inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

1. Impossibility of falsifying and verifying the purity of a quantum
state

We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (1.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (1.2)

which means that
8 2HA : h |F | i= 0, (1.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

Unfalsifiability of atomicity of a transformation of a quantum system
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity

of an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
C

. (1.4)

Take for the state R= |�ih�| a faithful pure state.5 Then, one has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (1.5)

but purity of state has no falsifier.⌅

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).
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most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains falsifiers and inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

1. Impossibility of falsifying and verifying the purity of a quantum
state

We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (1.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (1.2)

which means that
8 2HA : h |F | i= 0, (1.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

Unfalsifiability of atomicity of a transformation of a quantum system
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity

of an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
C

. (1.4)

Take for the state R= |�ih�| a faithful pure state.5 Then, one has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (1.5)

but purity of state has no falsifier.⌅

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).
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Unfalsifiability of atomicity of a quantum transformation

The impossibility of falsifying purity of a state has as immediate consequence the impossibility of
falsifying the atomicity of a transformation.3

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (5.4)

We can use the maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (5.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

Unfalsifiability of max-entanglement of a pure bipartite state

Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

Proof. Falsification of max-entanglement of state |�ih�| needs a falsifier F 2E↵(AB) satisfying

Tr[F |�ih�|] = 0, 8|�ih�| maximally entangled. (5.6)

In particular, since unitarity preserve max-entanglement, one has

Tr[F (U ⌦ IB)|�ih�|] = 0, 8U 2Trn(A) unitary. (5.7)

Notice that the trace in Eq. 5.7 cannot be negative for any F and U . It follows that its average over
the unitary group GA = SU(dA) must be zero, corresponding to4

0 =

Z

GA

dU Tr[F (U ⌦ IA)|�ih�|] = Tr[F (IA ⌦ TrA[|�ih�|])] = d�1

A
Tr[F (IA ⌦ IA)] = d�1

A
Tr[F ]

(5.8)
which implies that F = 0, which contradicts the test effectiveness condition F > 0.⌅

Unfalsifiability of unitarity of a quantum transformation

Theorem 4 (Unfalsifiability of unitarity of a transformation). There exists no test falsifying unitarity

of a transformation T 2Trn(A).

Proof. The application of the operator to a fixed maximally-entangled state puts unitary
transformations in one-to-one correspondence with maximally entangled states. Thus, being able
to falsify unitarity, would allow to falsify maximal entanglement.⌅

3A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
4In Eq. (5.8) dU is denotes the invariant Haar measure of GA = SU(dA), with normalisation IA.
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of a transformation T 2Trn(A).

Proof. The application of the operator to a fixed maximally-entangled state puts unitary
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Unfalsifiability of purity of quantum states
Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (4.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (4.2)

which means that

8 2HA : h |F | i= 0, (4.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

Unfalsifiability of atomicity of a quantum transformation
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (4.4)

We can use the a maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (4.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

Unfalsifiability of max-entanglement of a pure bipartite state
Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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Proof. Falsification of max-entanglement of state |�ih�| needs a falsifier F 2E↵(AB) satisfying

Tr[F |�ih�|] = 0, 8|�ih�| maximally entangled. (4.6)

In particular, since unitarity preserve max-entanglement, one has

Tr[F (U ⌦ IB)|�ih�|] = 0, 8U 2Trn(A) unitary. (4.7)

Notice that the trace in Eq. 4.7 cannot be negative for any F and U . It follows that its average over
the unitary group GA = SU(dA) must be zero, corresponding to5

0 =

Z

GA

dU Tr[F (U ⌦ IA)|�ih�|] = Tr[F (IA ⌦ TrA[|�ih�|])] = d�1

A
Tr[F (IA ⌦ IA)] = d�1

A
Tr[F ]

(4.8)
which implies that F = 0, which contradicts the test effectiveness condition F > 0.⌅

Unfalsifiability of unitarity of a quantum transformation
Theorem 4 (Unfalsifiability of unitarity of a transformation). There exists no test falsifying unitarity

of a transformation T 2Trn(A).

Proof. The application of the operator to a fixed maximally-entangled state puts unitary
transformations in one-to-one correspondence with maximally entangled states. Thus, being able
to falsify unitarity, would allow to falsify maximal entanglement.⌅

Unfalsifiability of a mixed state being the marginal of a pure state.
The impossibility of establishing the purity of the state of a quantum system A under our control
(Theorem 1) excludes the possibility of falsifying that a knowngly mixed state a quantum system
A actually is the marginal of a pure entangled state with an environment system E, namely

⇢ A
=  

A

E e
, (4.9)

e denoting the deterministic effect, corresponding to perform no-measurement on the system E.
Not only the system E is unknown (⇢2 St(A) is purified by any environment system E with
dimension dE � dA), but also the state  is unknown, since the purification is not unique, hence
the testing resorts to falsifying the purity of the state  2 St(AB), which is impossible, according
to Theorem

Unfalsifiability of unitary realization of a transformation.
The impossibility of establishing the unitariety of transformation (Theorem 4) with input and
output systems under our control excludes the possibility of falsifying that a transformation is
actually achieved unitarily, according to the scheme

A
Ti

B
=

A

U

B

� F E Zi

, (4.10)

with {Zi} von Neuman measurement over the output environment E, and the input environment
F is prepared in a state �. Systems E,F, state �, measurement Zi, and unitary U are all not unique
and unknown, hence the testing resorts to falsifying unitarity of U , which is impossible, not even
with control of inputs systems AF.

5In Eq. (4.8) dU is denotes the invariant Haar measure of GA = SU(dA), with normalisation IA.
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Unfalsifiability of atomicity of a quantum transformation

The impossibility of falsifying purity of a state has as immediate consequence the impossibility of
falsifying the atomicity of a transformation.3

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (5.4)

We can use the maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (5.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

Unfalsifiability of max-entanglement of a pure bipartite state

Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

Proof. Falsification of max-entanglement of state |�ih�| needs a falsifier F 2E↵(AB) satisfying

Tr[F |�ih�|] = 0, 8|�ih�| maximally entangled. (5.6)

In particular, since unitarity preserve max-entanglement, one has

Tr[F (U ⌦ IB)|�ih�|] = 0, 8U 2Trn(A) unitary. (5.7)

Notice that the trace in Eq. 5.7 cannot be negative for any F and U . It follows that its average over
the unitary group GA = SU(dA) must be zero, corresponding to4

0 =

Z

GA

dU Tr[F (U ⌦ IA)|�ih�|] = Tr[F (IA ⌦ TrA[|�ih�|])] = d�1

A
Tr[F (IA ⌦ IA)] = d�1

A
Tr[F ]

(5.8)
which implies that F = 0, which contradicts the test effectiveness condition F > 0.⌅

Unfalsifiability of unitarity of a quantum transformation

Theorem 4 (Unfalsifiability of unitarity of a transformation). There exists no test falsifying unitarity

of a transformation T 2Trn(A).

Proof. The application of the operator to a fixed maximally-entangled state puts unitary
transformations in one-to-one correspondence with maximally entangled states. Thus, being able
to falsify maximal entanglement allows to falsify unitarity.⌅

3A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
4In Eq. (5.8) dU is denotes the invariant Haar measure of GA = SU(dA), with normalisation IA.
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Unfalsifiability of a mixed state being the marginalization of a pure one

The impossibility of establishing the purity of the state of a quantum system A under our control
(Theorem 1) excludes the possibility of falsifying that a knowngly mixed state of a quantum
system A actually is the marginal of a pure entangled state with an environment system E, namely

⇢ A
=  

A

E e
, (5.9)

e denoting the deterministic effect, corresponding to perform no-measurement on the system E.
Not only the system E is unknown (⇢2 St(A) is purified by any environment system E with
dimension dE � dA), but also the state  is unknown, since the purification is not unique, hence
the testing resorts to falsifying the purity of the state  2 St(AB), which is impossible, according
to Theorem 1.

Unfalsifiability of unitary realization of a transformation

The impossibility of establishing the unitariety of transformation (Theorem 4) with input and
output systems under our control excludes the possibility of falsifying that a transformation is
actually achieved unitarily, according to the scheme

A
Ti

B
=

A

U

B

� F E Zi

, (5.10)

with {Zi} von Neuman measurement over the output environment E, and the input environment
F is prepared in a state �. Systems E,F, state �, measurement Zi, and unitary U are all not unique
and unknown, hence the testing resorts to falsifying unitarity of U , which is impossible, not even
with control of input-output systems AF and BE.

6. Conclusions
Some authors argue that unobservable physics (e. g. cosmological models invoking a multiverse)
is legitimate scientific theory, based on abduction and empirical success [14]. However, I think
that we should consider the case of cosmology a quite exceptional case. Quantum Theory should
be taken at a completely different level of consideration. It is a mature theory, it is under the lab
control, and, by its own nature, it categorises the same rules for experiments. For such a theory
falsifiability [3,4], at least in principle, should be takes as a crucial requirement. The case of unitarity
and the information paradox is paradigmatic in this respect, and one may legitimately ask what
is the point in keeping in the theory an inessential metaphysical statement, without which the
theory stands on its own legs. Somebody may argue that unitarity is dictated by a more refined
theory, e. g. quantum field theory. However, although this is the case for the free theory, it no
longer survives the interacting one.5

If is not falsifiable, and inessential, why then unitarity is so relevant to the theory? Why
vectors in Hilbert spaces are ubiquitous? The answer is that unitarity and purity are a powerful
symmetries of the theory, and, as such, they play a crucial role in theoretical evaluations. We have
said that most interpretations of the theory (many-world, relational, Darwinism, transactional,
von Neumann-Wigner, time-symmetric, ...) are indeed interpretations of the unitarity-purity
dogma–not genuine interpretations of the theory strictly speaking. Interpretations, however,
definitely play a relevant role as models, helping our conceptual understanding and intuition.
However, they should not be taken too seriously: and this is, I think, the main lesson of
Copenhagen.

5The unitary operator would correspond to the Feynman path integral, which is mathematically not well defined, and
moreover often needs ghost fields to fix the gauge.
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Unfalsifiability of a mixed state being the marginalization of a pure one

Any purification pf the mixed state ⇢2 St(A) can be written in the following diagrammatic form

⇢ A
= ⇢1/2

A

A
V

E e
, (5.9)

e denoting the deterministic effect, corresponding to perform no-measurement on the system E,
and V being an isometry on the support of ⇢. By writing V as V = UV0, with U unitary on E,
the proof follows in a way similar to Eq. 5.8. This excludes the possibility of falsifying that a
knowngly mixed state of a quantum system A actually is the marginal of a pure entangled state
with an environment system E. Moreover, the system E is unknown (we just know that it must
have dimension dE � dA).
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actually achieved unitarily, according to the scheme
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with {Zi} von Neuman measurement over the output environment E, and the input environment
F is prepared in a state �. Systems E,F, state �, measurement Zi, and unitary U are all not unique
and unknown, hence the testing resorts to falsifying unitarity of U , which is impossible, not even
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falsifiability [3,4], at least in principle, should be takes as a crucial requirement. The case of unitarity
and the information paradox is paradigmatic in this respect, and one may legitimately ask what
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theory stands on its own legs. Somebody may argue that unitarity is dictated by a more refined
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Customary mathematical axiomatisation of Quantum Theory

system A HA

system composition AB HAB =HA ⌦HB

deterministic pure state � 2PurSt1(A) �= | ih |,  2HA, || ||= 1

reversible transf. U 2RevTrn(A) U�=U | ih |U†, U 2U(A)

von Neumann-Lüders
transformation �!Zi� :=Zi�Zi {Zi}i2X ⇢Bnd(HA) PVM

Born rule p(i| ) = h |Zi| i

Theorems
trivial system I HI =C

deterministic states ⇢2 St1(A)⌘ Conv(PurSt1(A)) ⇢2T
+

=1
(HA)

states ⇢2 St(A)⌘ Cone1(PurSt1(A)) ⇢2T
+

1
(HA)

Transformation as
unitary interaction

+ von Neumann
observable on “meter” A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Minimal mathematical axiomatisation of Quantum Theory
system A HA

system composition AB HAB =HA ⌦HB

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

Born rule p(T ) =Tr T T 2Trn(I!A)

Theorems
trivial system I HI =C

reversible transf. U =U · U† U 2U(HA)

determ. transformation T 2Trn1(A!B) T 2CP1(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

states ⇢2 St(A)⌘Trn(I!A) ⇢2T
+

1
(HA)

⇢2 St1(A)⌘Trn1(I!A) ⇢2T
+

=1
(HA)

⇢2 St(I)⌘Trn(I! I) ⇢2 [0, 1]

⇢2 St1(I)⌘Trn(I! I) ⇢= 1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Transformations as
unitary interaction

+
von Neumann-Lüders A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

Table 1: Customary and minimal mathematical axiomatisations of Quantum Theory
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no purification ontology  

89 The Purification Principle

This means that even a randomized algorithm or a Monte Carlo simulation can
be run without an external random number generator, starting o↵ only with pure
states.

The three points above provide good reasons to require the pure and reversible sim-
ulatability as a fundamental property of physical processes. Since Purification gives
this as a bonus, there are at least three good reasons to be happy about it. But do
we need Purification in order to have a pure and reversible simulation? The answer
is “Yes”, because the preparation of a state is a special case of physical process—a
process with no input. Hence, if you want the pure and reversible simulatability to
hold for every process, then you also need Purification as a special case.

In the following, we will delve deeper into the consequences of purification, giving
a first illustration of how the high level reasoning from first principles can reconstruct
crucial quantum features.

6.2 The Purification Principle

Here is the precise statement of the Purification Principle:

Purification Axiom. For every system A and for every state ⇢ 2 St(A), there exists
a system B and a pure state  2 PurSt(AB) such that

⇢ A =  

A

B e
. (6.1)

If two pure states  and  0 satisfy

 0
A

B e
=  

A

B e
,

then there exists a reversible transformation U , acting only on system B, such that

 0
A

B
=  

A

B
U

B
. (6.2)

Here we say that  is a purification of ⇢ and that B is the purifying system. In-
formally, Eq. (6.1) guarantees that you can always find a pure state of AB that is
compatible with your limited knowledge of A alone. On top of this, Eq. (6.2) spec-
ifies that all the states of AB that are compatible with your knowledge of A are
essentially the same, up to a reversible transformation on B. We will call this prop-
erty the uniqueness of purification. Note that the two purifications in Eq. (6.2) have
the same purifying system. It is easy to generalize the statement to the case where
the purifying systems are di↵erent:

Unitary purification of quantum channels

98 The purification principle

where � is the marginal of � on system B. Now, note that, by definition

�

A

B e

�

A e
B

=
� A

� B
,

that is, �⌦� is a purification of �⌦ �. Using Eq. (6.14) and the steering property of
proposition 6.5, we have that there exists a measurement {Bx} such that

�

A

B

Bx

�

A

B

= px  

A
Ux

A

B
8x 2 X .

Since the correspondence A 7! (A ⌦IB)� is injective (see Sect. 6.6), we conclude
that

�

A

B

BxA

= px
A

Ux
A

8x 2 X .

We are done: the above equation says that, if a sender performs the measurement
{Bx} on the input system and on half of the entangled state �, then the state the
input system will be transferred on the receiver’s side and will undergo a reversible
transformation depending on the outcome. Using the classical transmission line, the
sender can communicate the outcome to the receiver, who can undo the reversible
transformation by applying its inverse U

�1
x . As a result of this procedure, the state

of system A has been transferred from the sender’s to the receiver’s end.

6.9 A reversible picture of an irreversible world

In a world satisfying Purification, irreversible processes can be simulated by re-
versible ones, pretty much in the same way in which the preparation of mixed states
can be simulated by the preparation of pure states. Suppose that you observe a deter-
ministic process C acting on system A. We will see now that, thanks to Purification,
the process can be simulated as

A
C

A =
⌘ E

U

E e
A A

, (6.15)

101 The state-transformation isomorphism

the display. What is interesting, however, if that we can take a pure and reversible
simulation of the process C , and regard our test as the result of a reversible interac-
tion between the tested system A, the display B, and, possibly, an environment E. In
formula,

A
Ax

A =

A

U

A

⌘
B B bx

E E e

8x 2 X , (6.18)

where E is a suitable system, ⌘ is a pure state, and U is a reversible transformation.
The proof of this fact is left to you as an exercise:

Exercise 6.10.1 Prove Eq. (6.18) and generalize it to tests with di↵erent input
and output systems. [Hint: use the result of exercise 6.9]

The cut between between the physical systems included in the description and
those that are omitted is known as von Neumann’s cut. In general, the cut can be
done in di↵erent ways: we can imagine that there are photons going from the display
to the eye of the experimenter, and, again, we can include them in the description,
adding one more system in the interaction U that gives rise to the test. Of course,
this game can go on forever: we can include into the description the experimenter
herself, and we can even include an infinite chain of experimenters, each of them
making tests on the previous one. Thanks to Eq. (6.18), we can always displace the
cut between the systems that evolve reversibly and the system that undergoes the final
measurement. Due to Purification, each experimenter can claim that she is doing a
measurement, while all the other systems evolve deterministically according to some
fundamentally reversible dynamics 5.

6.11 The state-transformation isomorphism

In a theory satisfying Purification there is a special correspondence between states
and transformations, essentially based on the idea of process tomography. The steps
to set up the correspondence are the following: for a given system A

1. take a set of pure states {↵x} that spans the whole state space
2. take a mixed state ⇢ =

P
x px ↵x , where all probabilities {px} are positive

3. take a purification of ⇢, say  2 PurSt(AB) for some purifying system B.

5 Here we carefully avoid to make any statement on how things “really” are, which would lead to the
so-called measurement problem.

Unitary purification of quantum instruments

Purification of quantum states

Unfalsifiable ontologies

Commonplaces:

theory of “open systems”… 

since “closed systems” (isolated 
systems) are supposedly in a pure 
state and undergo unitary 
transformations



Contrarily to the common belief 

Quantum Theory is closed and logically consistent 
without the purification ontology



Consequences: 

Popular interpretations (many world’s, Rovelli’s, … 
 are actually interpretations of a spurious postulate  

They are still helpful tools for reasoning 

The interpretation of the strict-theory is Copenhagen’s



Conclusion: 

we cannot say: “information is conserved” 
we can say: “things work as if information is conserved”



Purification  
is a powerful and elegant symmetry of the theory

It simplifies the theoretical evaluations, but … 



Quantum Theory   

is intrinsically probabilistic and irreversible

We are stubbornly determinists 
and believe that probability and irreversibility are due to 

lack of knowledge  



Thank you for your attention

“This is more or less what I wanted to say” 


