2nd Kyoto Workshop on Quantum Information, Computation, and Foundation

organized by Quantum Information Unit and Yukawa Institute for Theoretical Physics, Kyoto Univ. September 15, 2021

Non-Interactive Statistically-Hiding Quantum Bit Commitment from Any Quantum One-way Function

Takeshi Koshiba (Waseda Univ.)

This talk is based on a revised version of arXiv:1102.3441. The revision will be uploaded.

Bit Commitments

- 2-party cryptographic protocol (between Alice and Bob)
 - * Alice has a bit.
- * 2-phase protocol (commit phase and reveal phase)

- * commit phase
 - * Alice puts her secret bit to be sent in a box and locks it.
 - * Alice sends the box to Bob via the communication.
 - After the communication, Bob finally gets the box. (Since Bob does not have the key, he cannot unlock the box yet.

reveal phase

* Alice sends the key to Bob. Then Bob can get her secret bit from the box.

Requirements for Bit Commitments

* Hiding

Bob cannot know the contents in the box before he gets the key.

* Binding

* Alice cannot replace the contents after she sends the box.

 In real applications, unconditionally hiding bit commitments are more desirable. Since the commit phase is over in a limited time, it is sufficient to guarantee the binding in a computational sense.

Applications of Bit Commitments

- Fair (Secure) Coin Flipping via Network
- Building Block for Zero-Knowledge Protocol
 - Bitwise commitment of NP-witness
 - Partial reveal so as to keep Zero-Knowledge

Efficiency of Bit Commitments

- Round complexity
 - Reducing Round Complexity of Bit Commitment

Reducing Round Complexity of Zero-Knowledge

One-Way Functions and SubClasses

- * Evaluation is efficiently computable
- * Inversion is computationally intractable
- * The existence is unproven, but the most standard assumption in Cryptology

- * APS (approximable-preimage-size) OWF
 - * For a given image, there exists an algorithm to approximate its preimage-size.
- * Regular OWF
 - * Every preimage-size is constant.
- OWP (one-way permutation)
 - Length-preserving 1-to-1 function

Classical Bit Commitments

- * Naor (J. Cryptol. '91)
 - * unconditional Binding
 - * Interacitve, Round Complexity O(1)
 - computational Hiding based on PRG (i.e., OWF)
- Naor, Ostrovsky, Venkatesan & Yung (J. Cryptol. '98)
 - unconditional Hiding
 - * Interactive, Round Complexity $O(n/\log n)$
 - * Matching UpperBound: Koshiba & Seri (ECCC '06), Haitner & Reingold (CCC '07)
 - computational Binding based on OWP

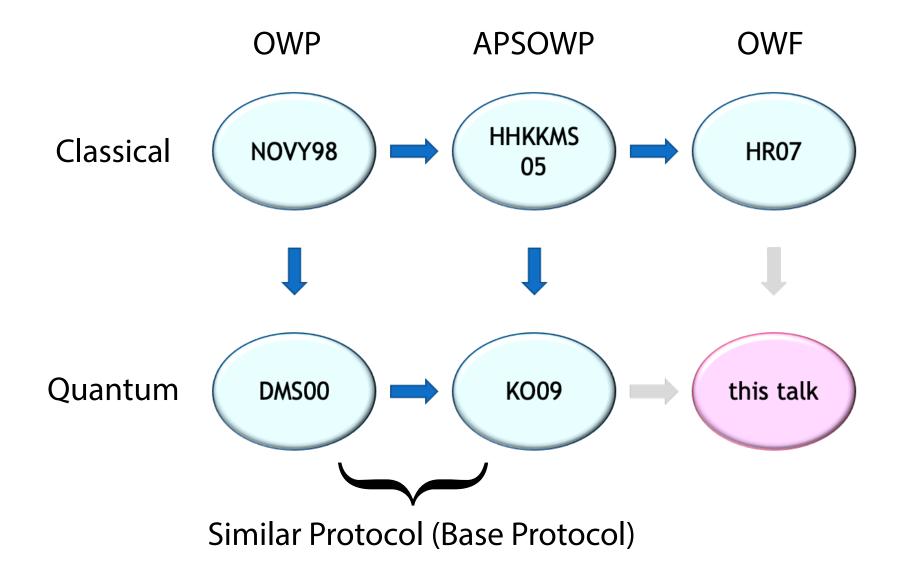
Classical Bit Commitments (cont'd)

- Haitner, Horvitz, Katz, Koo, Morselli & Shaltiel (EUROCRYPT '05, J. Cryptol. '09)
 - unconditional Hiding
 - computational binding based on APSOWF
- Haitner & Reingold (STOC '07)
 - * unconditional Hiding
 - computational Binding based on OWF

Quantum Bit Commitments

- * Impossibility of QBC with unconditional Hiding & Binding
 - * Mayers (PRL '97), Lo & Chau (PRL '97)
 - Many variants have been developed.
- * Computational
 - Dumais, Mayers & Salvail (EUROCRYPT '00)
 - unconditional Hiding
 - Non-interactive (Impossible in the classical case)
 - * computational Binding based on QOWP
 - Koshiba & Odaira (TQC '09)
 - * QOWP to Quantum APSOWF

Classical & Quantum Bit Commitments



Base Protocol : Outline

- Non-interactive
- Computational Binding based on QOWF
 - Inverting QOWF is reducible to violating Binding
- Unconditional Hiding depends on a special property of QOWF:
 - QOWP [DMS00]
 - * APSQOWF [KO09]
 - ***** For general QOWF, we need a new technique.

Tools (1)

* Quantum States

- * $|0\rangle_{+}$, $|1\rangle_{+}$: basis vectors in the computational basis
- * $|0\rangle_{\times}$, $|1\rangle_{\times}$: basis vectors in the diagonal basis

*
$$|0\rangle_{\times} = \frac{|0\rangle_{+} + |1\rangle_{+}}{\sqrt{2}}, |1\rangle_{\times} = \frac{|0\rangle_{+} - |1\rangle_{+}}{\sqrt{2}}$$

Tools (2)

Distances

* Variation distance between probability distributions X and Y

*
$$\delta(X, Y) = \frac{1}{2} \left| \Pr[X = a] - \Pr[Y = a] \right|$$

* Trace distance between density matrices ρ and σ

*
$$\delta(\rho, \sigma) = \operatorname{tr} \sqrt{(\rho - \sigma)^{\dagger}(\rho - \sigma)}$$

 If we consider density matrices to represent probability distributions, the trace distance coincides with the variation distance.

Tools (3)

- Universal Hashing
 - * \mathfrak{H} : a uniform distribution over a class of hash functions $h : A \to B$

*
$$\forall y_1, y_2 \in B \forall x_1, x_2 \in A \text{ s.t. } x_1 \neq x_2 \text{ } \Pr_{h \leftarrow \mathfrak{H}} [h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{|B|^2}$$

* Leftover Hash Lemma :

* Assume that $H_{\infty}(X) = \lambda$. If the image length of hash functions is $c = \lambda - 2\log(1/\varepsilon)$, then

 $\delta((\mathfrak{H},\mathfrak{H}(X)),(\mathfrak{H},U_c)) \leq \varepsilon/2$

where U_c is the uniform distribution over $\{0,1\}^c$.

Base Protocol : Description

Commit Phase (when Alice has a bit *b*)

* Let
$$\mathfrak{B}(0) = +, \ \mathfrak{B}(1) = \times.$$

* Alice randomly chooses x and sends $|\psi\rangle = |f(x)\rangle_{\mathfrak{B}(b)}$ to Bob.

Reveal Phase

- * Alice sends (b, x) to Bob.
- * Bob measures $|\psi\rangle$ w.r.t. $\mathfrak{B}(b)$ -basis and accepts if the observed value equals to x.

Base Protocol : Unconditional Hiding

*
$$|U_c\rangle_+ = |U_c\rangle_{\times}$$
, where U_c is a uniform distribution.

- * If $\delta(X, U_c) \leq \varepsilon$, then from the triangle inequality we have
 - * $\delta(|X\rangle_+, |X\rangle_\times) \le 2\varepsilon$.
- * If f' is APSQOWF,
 - * \exists one-wayness-preserving conversion $f' \Rightarrow f$ s.t. $\delta(f(U_n), U_{\ell(n)}) \leq \varepsilon.$
 - * Thus, $\delta(|f(U_n)\rangle_+, |f(U_n)\rangle_{\times}) \le 2\varepsilon$

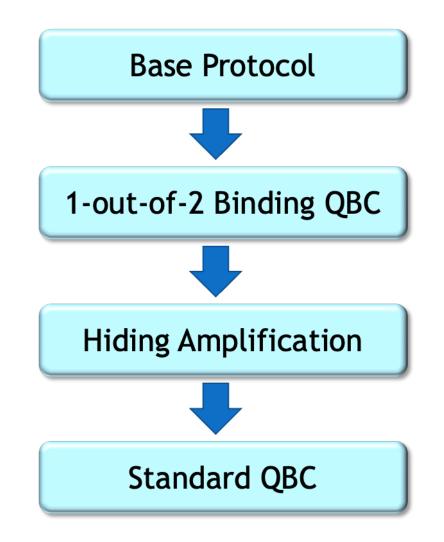
Base Protocol : Computational Binding

- If there exists a p-size quantum circuit A to violate Binding, then we can construct a p-size quantum circuit B to invert QOWF f.
 - [DMS00] shows the case of QOWP.
 - [KO09] observes that the permutation is not essential.
 - For general QOWF, we develop a new technique "Noninteractive Quantum Hashing Theorem".
 - In some sense, this is a quantum variant of "New Interactive Hashing Theorem" by Haitner & Reingold [CCC '07].

Adversary Model for Computational Binding

- Adversary's Space
 - Private space for cheating
 - Spaces for Commit Phase and Reveal Phase
- * Assume that a *b*-commitment state is stored in Commit Space.
- * Adversary is a pair of p-size quantum circuits $(\mathscr{C}_0, \mathscr{C}_1)$.
 - * \mathscr{C}_i produces a quantum state for Reveal Phase which makes Bob accept the commitment $b \oplus i$ with probability p_i
 - * If $p_0 + p_1 1 \ge 1/\text{poly}(n)$ then the adversary wins.

Construction from QOWF



1st Obstacle

* We do not know $H_{\infty}(f(U_n))$ for any regular QOWF with unknown preimage size.

- * Let y = f(x) and $f: \{0,1\}^n \to \{0,1\}^n$.
- * For any *a*, consider the following hashing functions:
 - * $h_1: \{0,1\}^n \to \{0,1\}^a$
 - * $h_2: \{0,1\}^n \to \{0,1\}^{n-a}$
- Then,
 - * either $(h_1, h_1(y))$ or $(h_2, h_2(x)) || y$ is almost uniform, and
 - * for $a = H_{\infty}(f(U_n))$, both are almost uniform.

1-out-of-2 Binding Commitment

* Alice has two bits b_1, b_2

* Commit Phase

* Alice sends $|h_1, h_1(f(x))\rangle_{\mathfrak{B}(b_1)}$ and $|h_2, h_2(x)\rangle_{\mathfrak{B}(b_2)}$ to Bob.

* Reveal Phase

- * Alice sends (b_1, h_1, y) and (b_2, h_2, x) to Bob.
- * Bob measures the 1st quantum state w.r.t. $\mathfrak{B}(b_1)$ -basis and the 2nd quantum state w.r.t. $\mathfrak{B}(b_2)$ -basis and accepts if y = f(x) and the observed values are equal to $(h_1, h_1(y))$ and $(h_2, h_2(x))$.
- * The protocol looks like two parallel executions of Base Protocol.

1-out-of-2 Binding Commitment (cont'd)

- * The notion appeared in [Nguyen, Ong & Vadhan (FOCS '06)].
- * Either Base Protocol is computationally binding.
 - From the adversary's point of view, the other half can be regarded as a part of his private space
- * Weakly Hiding
 - * With probability 1/n, both Base protocols are Hiding.
 - * This happens if the guess for a coincides with $H_{\infty}(f(U_n))$.

2nd Obstacle

* The preimage size is not constant for general QOWF *f*.

- Fortunately, the same protocol works.
- Analyze the expected behavior by the technique in [Haitner, Nguyen, Ong, Reingold & Vadhan (SICOMP '09)] about a relation between Hiding and the collision probability.

Hiding Amplification

- Parallel repetition (with some adjustment) works.
- * *m* repetitions of 1-out-of-2 Binding commitment.
 - * Each subprotocol runs on public input x_i and randomly chosen private bits w_{i1} , w_{i2} .

Hiding Amplification (cont'd)

For the 1st half,

* Alice sends $|h_{1i}, h_{1i}(f(x_i))\rangle_{\mathfrak{B}(w_{1i})}$ for each i and $|h_1, h_1(f(x_1), \dots, f(x_m))\rangle_{\mathfrak{B}(b_1)}$ in Commit Phase.

* Alice sends $(w_{1i}, h_{1i}, f(x_i))$ for each *i* and (h_1, b_1) in Reveal Phase.

- For the 2nd half,
 - * Alice sends $|h_{2i}, h_{2i}(x_i)\rangle_{\mathfrak{B}(w_{2i})}$ for each i and $|h_2, h_2(x_1, \dots, x_m)\rangle_{\mathfrak{B}(b_2)}$ in Commit Phase.
 - * Alice sends (w_{2i}, h_{2i}, x_i) for each *i* and (h_2, b_2) in Reveal Phase.

3rd Obstacle

* How many repetitions are necessary?

- ***** A common technique :
 - Chernoff Bounds to bound the tail probability of the derivation from the expectation.
- But, a direct application does not work !

Hiding Amplification (cont'd)

- Preserving 1-out-of-2 Binding
- 2-step Hiding Amplification
 - * 1st step : (1/n)-Hiding $\Rightarrow O(1)$ -Hiding
 - * by O(log n) repetitions
 - * 2nd step : O(1)-Hiding $\Rightarrow (1 2^{-\Omega(n)})$ -Hiding
 - * by O(n) repetitions

to Standard Bit Commitment

- * Alice sets $b_1 = b_2 = b$ and runs 1-out-of-2 Binding Commitment with b_1, b_2
- * Bob receives b_1, b_2 in Reveal Phase and additionally checks if $b_1 = b_2$. Bob accepts if all the tests are passed.

Non-Interactive Quantum Hashing Theorem

- * Let f be an s(n)-secure QOWF.
- * Let $W_n \subseteq \{0,1\}^n$ and $R_n = \{(f(x), x) \mid x \in W_n\}.$
- * If a p-size circuit against Base Protocol can output distinct $(y, x), (y', x') \in R_n$ s.t. another p-size circuit
 - * on input (y, x), produces a quantum state which makes Bob accept the commitment 0 with probability p_{0} ,
 - * on input (y', x'), produces a quantum state which makes Bob accept the commitment 1 with probability p_1 ,
 - * $p_0 + p_1 1 \ge \sqrt{s(n)}$
- * Then there exists yet another p-size circuit, on input y'' proportionally selected from $f(W_n)$, outputs x'' s.t. $(y'', x'') \in R_n$ with probability $\Omega(s(n))$.

Concluding Remarks

- Non-Interactive QBC from any QOWF.
 - **QOWF** is one of the weakest assumption in Cryptology.
- * Non-Interactive QBC could be an important ingredient.
 - Simple construction for a larger system.
 - Security analysis would be simple.
- Another Proof for "Secure Computation from QOWF" [Bartusek, Coladangelo, Khurana & Ma, CRYPTO '21] ?