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2-party cryptographic protocol (between Alice and Bob) 

Alice has a bit. 

2-phase protocol (commit phase and reveal phase) 

commit phase 

Alice puts her secret bit to be sent in a box and locks it. 

Alice sends the box to Bob via the communication. 

After the communication, Bob finally gets the box. (Since Bob does not have the key, 
he cannot unlock the box yet. 

reveal phase 

Alice sends the key to Bob. Then Bob can get her secret bit from the box.

Bit Commitments
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Hiding 

Bob cannot know the contents in the box before he gets the key. 

Binding 

Alice cannot replace the contents after she sends the box. 

In real applications, unconditionally hiding bit commitments are 
more desirable. Since the commit phase is over in a limited time, it 
is sufficient to guarantee the binding in a computational sense.

Requirements for Bit Commitments
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Fair (Secure) Coin Flipping via Network 

Building Block for Zero-Knowledge Protocol 

Bitwise commitment of NP-witness 

Partial reveal so as to keep Zero-Knowledge

Applications of Bit Commitments
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Round complexity 

Reducing Round Complexity of Bit Commitment 

Reducing Round Complexity of Zero-Knowledge

Efficiency of Bit Commitments
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Evaluation is efficiently computable 

Inversion is computationally intractable 

The existence is unproven, but the most standard assumption in Cryptology 

APS (approximable-preimage-size) OWF 

For a given image, there exists an algorithm to approximate its preimage-size. 

Regular OWF 

Every preimage-size is constant. 

OWP (one-way permutation) 

Length-preserving 1-to-1 function

One-Way Functions and SubClasses
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Naor (J. Cryptol. ’91) 

unconditional Binding 

Interacitve, Round Complexity  

computational Hiding based on PRG (i.e., OWF) 

Naor, Ostrovsky, Venkatesan & Yung (J. Cryptol. ’98) 

unconditional Hiding 

Interactive, Round Complexity  

Matching UpperBound: Koshiba & Seri (ECCC ’06), Haitner & Reingold (CCC ’07) 

computational Binding based on OWP

O(1)

O(n /log n)

Classical Bit Commitments
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Haitner, Horvitz, Katz, Koo, Morselli & Shaltiel (EUROCRYPT ’05, J. 
Cryptol. ’09) 

unconditional Hiding 

computational binding based on APSOWF 

Haitner & Reingold (STOC ’07) 

unconditional Hiding 

computational Binding based on OWF

Classical Bit Commitments (cont’d)
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Impossibility of QBC with unconditional Hiding & Binding 

Mayers (PRL ’97), Lo & Chau (PRL ’97) 

Many variants have been developed. 

Computational 

Dumais, Mayers & Salvail (EUROCRYPT ’00) 

unconditional Hiding 

Non-interactive (Impossible in the classical case) 

computational Binding based on QOWP 

Koshiba & Odaira (TQC ’09) 

QOWP to Quantum APSOWF

Quantum Bit Commitments
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Classical & Quantum Bit Commitments
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Classical

Quantum

OWP APSOWP OWF

Similar Protocol (Base Protocol)
}



Non-interactive 

Computational Binding based on QOWF 

Inverting QOWF is reducible to violating Binding 

Unconditional Hiding depends on a special property of QOWF: 

QOWP [DMS00] 

APSQOWF [KO09] 

For general QOWF, we need a new technique.

Base Protocol : Outline
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Quantum States 

 : basis vectors in the computational basis 

 : basis vectors in the diagonal basis 

, 

|0⟩+, |1⟩+

|0⟩×, |1⟩×

|0⟩× =
|0⟩+ + |1⟩+

2
|1⟩× =

|0⟩+ − |1⟩+

2

Tools (1)
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Distances 

Variation distance between probability distributions  and  

 

Trace distance between density matrices  and  

 

If we consider density matrices to represent probability distributions, 
the trace distance coincides with the variation distance.

X Y

δ(X, Y ) =
1
2

Pr[X = a] − Pr[Y = a]

ρ σ

δ(ρ, σ) = tr (ρ − σ)†(ρ − σ)

Tools (2)
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Universal Hashing 

 : a uniform distribution over a class of hash functions  

 s.t.   

Leftover Hash Lemma : 

Assume that . If the image length of hash functions is 
, then  

  

where  is the uniform distribution over .

ℌ h : A → B

∀y1, y2 ∈ B ∀x1, x2 ∈ A x1 ≠ x2 Pr
h←ℌ

[h(x1) = y1 ∧ h(x2) = y2] =
1

|B |2

H∞(X) = λ
c = λ − 2 log(1/ε)

δ((ℌ, ℌ(X)), (ℌ, Uc)) ≤ ε/2

Uc {0,1}c

Tools (3)
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Commit Phase (when Alice has a bit ) 

Let . 

Alice randomly chooses  and sends  to Bob. 

Reveal Phase 

Alice sends  to Bob. 

Bob measures  w.r.t. -basis and accepts if the 
observed value equals to .

b

𝔅(0) = + , 𝔅(1) = ×

x |ψ⟩ = | f(x)⟩𝔅(b)

(b, x)

|ψ⟩ 𝔅(b)
x

Base Protocol : Description
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 , where  is a uniform distribution. 

If  , then from the triangle inequality we have 

  . 

If    is APSQOWF,  

 one-wayness-preserving conversion    s.t. 
.  

Thus, 

|Uc⟩+ = |Uc⟩× Uc

δ(X, Uc) ≤ ε

δ( |X⟩+, |X⟩×) ≤ 2ε

f′ 

∃ f′ ⇒ f
δ( f(Un), Uℓ(n)) ≤ ε

δ( | f(Un)⟩+, | f(Un)⟩×) ≤ 2ε

Base Protocol : Unconditional Hiding
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If there exists a p-size quantum circuit  to violate Binding, then 
we can construct a p-size quantum circuit  to invert QOWF . 

[DMS00] shows the case of QOWP. 

[KO09] observes that the permutation is not essential.  

For general QOWF, we develop a new technique “Non-
interactive Quantum Hashing Theorem” . 

In some sense, this is a quantum variant of “New Interactive 
Hashing Theorem” by Haitner & Reingold [CCC ’07].

𝒜
ℬ f

Base Protocol : Computational Binding
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Adversary’s Space 

Private space for cheating 

 Spaces for Commit Phase and Reveal Phase 

Assume that a -commitment state is stored in Commit Space. 

Adversary is a pair of p-size quantum circuits . 

 produces a quantum state for Reveal Phase which makes Bob accept 
the commitment  with probability  

If  then the adversary wins.

b

(𝒞0, 𝒞1)

𝒞i
b ⊕ i pi

p0 + p1 − 1 ≥ 1/poly(n)

Adversary Model for Computational Binding
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Construction from QOWF
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We do not know  for any regular QOWF with unknown preimage size. 

Let   and  . 

For any , consider the following hashing functions: 

 

 

Then,  

either  or  is almost uniform, and  

for , both are almost uniform.

H∞( f(Un))

y = f(x) f : {0,1}n → {0,1}n

a

h1 : {0,1}n → {0,1}a

h2 : {0,1}n → {0,1}n−a

(h1, h1(y)) (h2, h2(x))∥y

a = H∞( f(Un))

1st Obstacle
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Alice has two bits  

Commit Phase 

Alice sends  and  to Bob. 

Reveal Phase 

Alice sends  and  to Bob. 

Bob measures the 1st quantum state w.r.t. -basis and the 2nd quantum 

state w.r.t. -basis and accepts if  and the observed values are 
equal to  and . 

The protocol looks like two parallel executions of Base Protocol.

b1, b2

|h1, h1( f(x))⟩𝔅(b1) |h2, h2(x)⟩𝔅(b2)

(b1, h1, y) (b2, h2, x)

𝔅(b1)
𝔅(b2) y = f(x)

(h1, h1(y)) (h2, h2(x))

1-out-of-2 Binding Commitment
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The notion appeared in [Nguyen, Ong & Vadhan (FOCS ’06)]. 

Either Base Protocol is computationally binding. 

From the adversary’s point of view, the other half can be 
regarded as a part of his private space 

Weakly Hiding 

With probability , both Base protocols are Hiding. 

This happens if the guess for  coincides with .

1/n

a H∞( f(Un))

1-out-of-2 Binding Commitment (cont’d)
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The preimage size is not constant for general QOWF . 

Fortunately, the same protocol works. 

Analyze the expected behavior by the technique in [Haitner, 
Nguyen, Ong, Reingold & Vadhan (SICOMP ’09)] about a relation 
between Hiding and the collision probability.

f

2nd Obstacle
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Parallel repetition (with some adjustment) works. 

 repetitions of 1-out-of-2 Binding commitment. 

Each subprotocol runs on public input  and randomly 
chosen private bits .

m

xi
wi1, wi2

Hiding Amplification
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For the 1st half, 

Alice sends  for each  and  

 in Commit Phase. 

Alice sends  for each  and  in Reveal Phase. 

For the 2nd half, 

Alice sends  for each  and   

in Commit Phase. 

Alice sends  for each  and  in Reveal Phase.

|h1i, h1i( f(xi))⟩𝔅(w1i) i
|h1, h1( f(x1), …, f(xm))⟩𝔅(b1)

(w1i, h1i, f(xi)) i (h1, b1)

|h2i, h2i(xi)⟩𝔅(w2i) i |h2, h2(x1, …, xm)⟩𝔅(b2)

(w2i, h2i, xi) i (h2, b2)

Hiding Amplification (cont’d)
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How many repetitions are necessary? 

A common technique : 

Chernoff Bounds to bound the tail probability of the 
derivation from the expectation. 

But, a direct application does not work !

3rd Obstacle
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Preserving 1-out-of-2 Binding 

2-step Hiding Amplification 

1st step : -Hiding  -Hiding  

by  repetitions 

2nd step : -Hiding  -Hiding 

by  repetitions

(1/n) ⇒ O(1)

O(log n)

O(1) ⇒ (1 − 2−Ω(n))

O(n)

Hiding Amplification (cont’d)
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Alice sets  and runs 1-out-of-2 Binding Commitment 
with  

Bob receives  in Reveal Phase and additionally checks if 
. Bob accepts if all the tests are passed.

b1 = b2 = b
b1, b2

b1, b2
b1 = b2

to Standard Bit Commitment
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Let    be an -secure QOWF. 

Let  and . 

If a p-size circuit against Base Protocol can output distinct  s.t. another p-size 
circuit 

on input , produces a quantum state which makes Bob accept the commitment 0 with 
probability , 

on input , produces a quantum state which makes Bob accept the commitment 1 with 
probability , 

 

Then there exists yet another p-size circuit, on input  proportionally selected from , 
outputs  s.t.  with probability .

f s(n)

Wn ⊆ {0,1}n Rn = {( f(x), x) ∣ x ∈ Wn}

(y, x), (y′ , x′ ) ∈ Rn

(y, x)
p0

(y′ , x′ )
p1

p0 + p1 − 1 ≥ s(n)

y′ ′ f(Wn)
x′ ′ (y′ ′ , x′ ′ ) ∈ Rn Ω(s(n))

Non-Interactive Quantum Hashing Theorem
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Non-Interactive QBC from any QOWF. 

QOWF is one of the weakest assumption in Cryptology. 

Non-Interactive QBC could be an important ingredient. 

Simple construction for a larger system. 

Security analysis would be simple. 

Another Proof for “Secure Computation from QOWF”  [Bartusek, 
Coladangelo, Khurana & Ma, CRYPTO ’21] ?

Concluding Remarks
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