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Bit Commitments

* 2-party cryptographic protocol (between Alice and Bob)

* has a bit.

* 2-phase protocol (commit phase and reveal phase) & e e %

* commit phase

* puts her secret bit to be sent in a box and locks it.
* sends the box to via the communication.
* After the communication, finally gets the box. (Since does not have the key,

he cannot unlock the box yet.
* reveal phase

* sends the key to .Then can get her secret bit from the box.



Requirements for Bit Commitments

* Hiding
* cannot know the contents in the box before he gets the key.
* Binding

* cannot replace the contents after she sends the box.

* Inreal applications, unconditionally hiding bit commitments are
more desirable. Since the commit phase is over in a limited time, it
is sufficient to guarantee the binding in a computational sense.



Applications of Bit Commitments

* Fair (Secure) Coin Flipping via Network
* Building Block for Zero-Knowledge Protocol
* Bitwise commitment of NP-witness

* Partial reveal so as to keep Zero-Knowledge



Efficiency of Bit Commitments

* Round complexity

* Reducing Round Complexity of Bit Commitment

:

* Reducing Round Complexity of Zero-Knowledge
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One-Way Functions and SubClasses

Evaluation is efficiently computable
Inversion is computationally intractable

The existence is unproven, but the most standard assumption in Cryptology

APS (approximable-preimage-size) OWF

* For a given image, there exists an algorithm to approximate its preimage-size.
Regular OWF

#* Every preimage-size is constant.
OWP (one-way permutation)

* Length-preserving 1-to-1 function



Classical Bit Commitments

* Naor (J. Cryptol. '91)
* unconditional Binding
* Interacitve, Round Complexity O(1)
#* computational Hiding based on PRG (i.e.,, OWF)
* Naor, Ostrovsky, Venkatesan & Yung (J. Cryptol. '98)
* unconditional Hiding
* Interactive, Round Complexity O(n/log n)
* Matching UpperBound: Koshiba & Seri (ECCC '06), Haitner & Reingold (CCC'07)

* computational Binding based on OWP



Classical Bit Commitments (cont’d)

* Haitner, Horvitz, Katz, Koo, Morselli & Shaltiel (EUROCRYPT ‘05, J.
Cryptol. '09)

* unconditional Hiding

* computational binding based on APSOWF
* Haitner & Reingold (STOC '07)

* unconditional Hiding

* computational Binding based on OWF



Quantum Bit Commitments

* Impossibility of QBC with unconditional Hiding & Binding
* Mayers (PRL '97), Lo & Chau (PRL '97)

* Many variants have been developed.

* Dumais, Mayers & Salvail (EUROCRYPT '00)
#* unconditional Hiding
#* Non-interactive (Impossible in the classical case)
* computational Binding based on QOWP

* Koshiba & Odaira (TQC '09)

* QOWP to Quantum APSOWF



Classical & Quantum Bit Commitments

Classical

Quantum

Similar Protocol (Base Protocol)
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Base Protocol : Outline

* Non-interactive

* Computational Binding based on QOWF
* Inverting QOWEF is reducible to violating Binding

* Unconditional Hiding depends on a special property of QOWF:
* QOWP [DMS00]
* APSQOWF [KOQ9]

* For general QOWF, we need a new technique.



Tools (1)

* Quantum States

* |0),, | 1), :basis vectors in the computational basis

* |0)y, | 1), :basis vectors in the diagonal basis

0 1 0), —|1
0 +1D. 10 =11

V2 V2
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Tools (2)

* Distances

* Variation distance between probability distributions X and Y
1
* 6(X.Y) = ‘ Pr(X = a] — Pr[Y = a]

* Trace distance between density matrices p and ¢

* 8(p,0) =try/(p—0)'(p — 0)

* If we consider density matrices to represent probability distributions,
the trace distance coincides with the variation distance.
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Tools (3)

* Universal Hashing

* %) :a uniform distribution over a class of hash functions 2 : A — B

T VYL € BYx, X, € Astx # X h(lirb [7(xp) = y1 A(xy) = y,] = B

* Leftover Hash Lemma:

* Assume that H_ (X) = A. If the image length of hash functions is
c = A—2log(l/¢e), then

o((9, HX)), (9, U,) < e/2

where U, is the uniform distribution over {0,1 }“.




Base Protocol : Description
Commit Phase (when has a bit )
* LetBO) =4+, B(l) = X.
* randomly chooses x and sends |y) = | f(x)) g to
Reveal Phase
% sends (b, x) to

% measures | y) w.r.t. B(b)-basis and accepts if the
observed value equals to x.



Base Protocol : Unconditional Hiding
* |U.), =|U,)y,where U.is a uniform distribution.
* If 0(X, U,) < g, then from the triangle inequality we have
* 0(|X),, 1 X)) < 2e.
* If f is APSQOWF,

* 1 one-wayness-preserving conversion ' = f s.t.

S(f(U,), Upy) < €.

* Thus, 5(| f(U,)) 4, | fU)y) < 2e



Base Protocol : Computational Binding

* |f there exists a p-size quantum circuit & to violate Binding, then
we can construct a p-size quantum circuit 9 to invert QOWF f.

* [DMSO00] shows the case of QOWP.
* [KOQ9] observes that the permutation is not essential.

* For general QOWF, we develop a new technique “Non-
interactive Quantum Hashing Theorem”.

* In some sense, this is a quantum variant of “New Interactive
Hashing Theorem” by Haitner & Reingold [CCC '07].



Adversary Model for Computational Binding

* Adversary’s Space
* Private space for cheating

* Spaces for Commit Phase and Reveal Phase
* Assume that a b-commitment state is stored in Commit Space.
* Adversary is a pair of p-size quantum circuits (6, € ).

* € ; produces a quantum state for Reveal Phase which makes Bob accept
the commitment b @ i with probability p,

* If py + p; — 1 > 1/poly(n) then the adversary wins.



Construction from QOWF

| Base Protocol ]

)\ 4

| 1-out-of-2 Binding QBC ]

)\ 4

| Hiding Amplification J

\ 4

| Standard QBC J
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1st Obstacle

* We do not know H_(f(U,)) for any regular QOWF with
* Let y=f(x)and f: {0,1}" - {0,1}".
* For any a, consider the following hashing functions:
* h;:{0,1}" - {0,1}¢
* hy,:{0,1}" = {0,1}"
* Then,
* either (hy, h(y)) or (hy, h,(x))||y is almost uniform, and

* fora = H_(f(U,)), both are almost uniform.

preimage size.



1-out-of-2 Binding Commitment

*k has two bits bl’ b2

* Commit Phase

* sends | iy, 1y (f())) 35, @and | By, 1p(X) )55 ) tO
* Reveal Phase
2 sends (b, hy,y) and (b,, h,, x) to

%k measures the 1st quantum state w.r.t. B(b,)-basis and the 2nd quantum

state w.r.t. B(b,)-basis and accepts if y = f(x) and the observed values are
equal to (h1y, h{(y)) and (h,, hy(x)).

* The protocol looks like two parallel executions of Base Protocol.



1-out-of-2 Binding Commitment (cont’'d)
* The notion appeared in [Nguyen, Ong & Vadhan (FOCS '06)].
* Either Base Protocol is computationally binding.

* From the adversary’s point of view, the other half can be
regarded as a part of his private space

* Weakly Hiding
* With probability 1/n, both Base protocols are Hiding.

* This happens if the guess for a coincides with H__(f(U,)).



2nd Obstacle

* The preimage size is not constant for general QOQWF f.

* Fortunately, the same protocol works.

* Analyze the expected behavior by the technique in [Haitner,
Nguyen, Ong, Reingold & Vadhan (SICOMP ‘09)] about a relation
between Hiding and the collision probability.



Hiding Amplification
* Parallel repetition (with some adjustment) works.
* m repetitions of 1-out-of-2 Binding commitment.

* Each subprotocol runs on public input x; and randomly
chosen private bits w;;, w;,.



Hiding Amplification (cont'd)
* For the 1st half,

* sends | iy, by (f(x)) )5, ) for each i and
| By, iy (f(xy),s - s f(3,))) 85,y in Commiit Phase.

* sends (wy;, hy;, f(x;)) for each i and (i, b,) in Reveal Phase.
* For the 2nd half,

* sends | 1y, Ry i(x;) )58, foreach iand | iy, hy(xy, ..o, %)) (s,
in Commit Phase.

* sends (W,;, 1,;, x;) for each i and (%1,, b,) in Reveal Phase.



3rd Obstacle

* How many repetitions are necessary?

* A common technique:

* Chernoff Bounds to bound the tail probability of the
derivation from the expectation.

* But, a direct application does not work !
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Hiding Amplification (cont'd)
* Preserving 1-out-of-2 Binding
* 2-step Hiding Amplification
* 1ststep: (1/n)-Hiding = O(1)-Hiding
* by O(log n) repetitions
* 2nd step : O(1)-Hiding = (1 — 27*™)-Hiding

* by O(n) repetitions



to Standard Bit Commitment

* sets b = b, = b and runs 1-out-of-2 Binding Commitment
with by, b,
s receives by, b, in Reveal Phase and additionally checks if

b, = b,. accepts if all the tests are passed.



Non-Interactive Quantum Hashing Theorem

* Let f be an s(n)-secure QOWF.
* LetW, C {0,1}"and R, = {(f(x),x) | x € W_}.

* If a p-size circuit against Base Protocol can output distinct(y, x), (¥, x") € R, s.t. another p-size
circuit

* oninput (y, x), produces a quantum state which makes Bob accept the commitment 0 with
probability p,,

* oninput (y’, x), produces a quantum state which makes Bob accept the commitment 1 with
probability py,

*potp—124/s(n)

* Then there exists yet another p-size circuit, on input y” proportionally selected from f(W,),
outputs x”s.t. (y”,x"”) € R, with probability Q(s(n)).



Concluding Remarks

* Non-Interactive QBC from any QOWF.

* QOWE is one of the weakest assumption in Cryptology.
* Non-Interactive QBC could be an important ingredient.

* Simple construction for a larger system.

* Security analysis would be simple.

* Another Proof for“Secure Computation from QOWF” [Bartusek,
Coladangelo, Khurana & Ma, CRYPTO "21] ?



