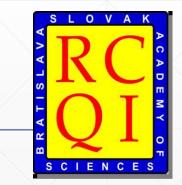
Post-processing of quantum instruments

Leevi Leppäjärvi¹, and Michal Sedlák²

¹ Department of Physics and Astronomy, University of Turku, Finland ² RCQI, Institute of Physics, Slovak Academy of Sciences, Slovakia



Sequences of measurements

Usefull for:

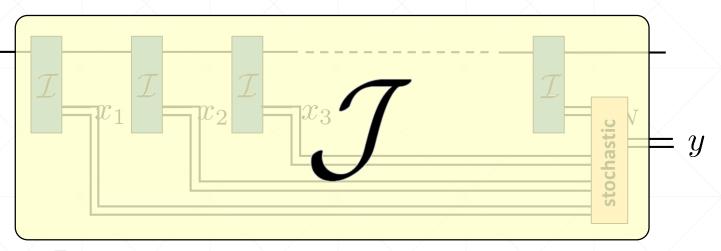
- Tomography, estimation, property testing, computation
- Q. sequential decoding, joint measurability, sequential state discrimination,
- simulation of complex measurements on NISQ devices

POVM = Positive operator valued measure

- describes only outcome probabilities

Instrument = collection of CPTD maps, which sum up to a channel - describes also post measurement state

Concatenation of instruments



If \mathcal{I} is Lüders instrument of a nondegenerate projective measurement

i.e. $\mathcal{I}_x(
ho)=P_x
ho P_x$ $P_x=|\psi_x
angle\langle\psi_x|$

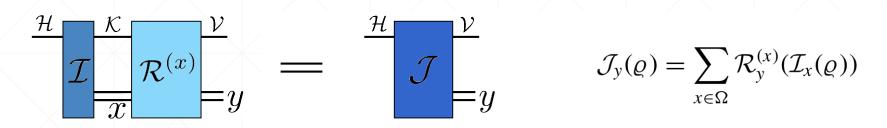
then repetitive use of the same measurement apparatus does not help

but

If \mathcal{I} is a noisy version of Lüders instrument of a nondegenerate projective measurement then repetitive use can suppress the noise level

Haapasalo, Heinosaari and Kuramochi, Saturation of repeated quantum measurements, J. Phys. A: Math. Theor. 49, 33LT01 (2016)

Postprocessing of instruments



Suppose that for \mathcal{I}, \mathcal{J} instruments $\mathcal{R}^{(x)}$ exist so that the above Eq. hold, then we denote it

If also the opposite relation $\mathcal{J} \to \mathcal{I}$ holds, we say \mathcal{I} and \mathcal{J} are postprocessing equivalent $\mathcal{I} \leftrightarrow \mathcal{J}$

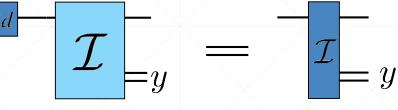
Our main aim:

Characterization of partial order induced on the equivalence classes

Greatest element = [identity]

For any instrument \mathcal{I} we clearly have:

$$id \to \mathcal{I}$$



Equivalence class of the greatest element

$$\mathcal{I} \rightarrow id \Rightarrow \qquad \qquad \mathcal{I}_{x}(\varrho) = \sum_{i=1}^{n_x} p_{xi} V_{xi} \varrho V_{xi}^* \\ \mathcal{I}_{xi}(\varrho) = \sum_{i=1}^{n_x} p_{xi} V_{xi} \varrho V_{xi}^* \\ V_{xi} = 0 \text{ for } i \neq j \end{cases}$$

Interpretation: randomly choosing outcome and a Kraus operator mapping into OG subspaces is reversible.

Nontrivial is necessity of above form, **proof = adaptation of method by** A. Nayak, and P. Sen

$$\mathcal{M} = \mathcal{N} + \bar{\mathcal{N}'} \Rightarrow \mathcal{N} = \mu \mathcal{M}$$
 , $\mathcal{N}' = \mu' \mathcal{M}$

= build from indecomposable q. operations, i.e. all the operations are Kraus rank one

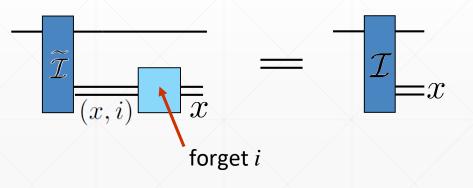
Kraus representation of the instrument $\mathcal{I} \in Ins(\Omega, \mathcal{H}, \mathcal{K})$

$$\mathcal{I}_x(\rho) = \sum_{i=1}^{n_x} K_{ix} \rho K_{ix}^{\dagger} \qquad \forall x \in \Omega$$

Let's define detailed instrument $\widetilde{\mathcal{I}} \in \operatorname{Ins}(\Delta, \mathcal{H}, \mathcal{K})$ $\Delta = \{(x, i) : x \in \Omega, i = 1, \dots, n_x\}$

$$\widetilde{\mathcal{I}}_{(x,i)}(\rho) = K_{ix}\rho K_{ix}^{\dagger}$$

Every instrument is a postprocessing of some **detailed instrument**



(= operations are Kraus rank one)

Sufficient condition for equivalence with indecomposable instrument

$$\mathcal{I}_x(\varrho) = \sum_{i=1}^{n_x} K_{ix} \varrho K_{ix}^*$$
$$K_{ix}^* K_{jx} = 0 \quad \text{all } i \neq j \text{ and } x$$

then
$$\ \mathcal{I}
ightarrow \mathcal{J}$$
 for some indecomposable $\ \mathcal{J}$

Interpretation: If for each outcome we have Kraus representation in which the output ranges are OG then the instrument can be refined by further measurements

Open question

if

Is this form also a necessary condition?

(= operations are Kraus rank one)

$$\mathcal{I}_{x}^{\mathcal{R}^{(x)}} = \mathcal{J}_{y}$$

$$A^{\mathcal{I}} \leftarrow A^{\mathcal{J}} \text{ is refinement}$$

Proposition:

Suppose $\mathcal{I} \to \mathcal{J}$ and \mathcal{J} is indecomposable instrument $\Rightarrow A^{\mathcal{J}} \to A^{\mathcal{I}}$ for Induced POVMs Proof: $\mathcal{J}_{v} = \sum_{x \in \Omega} \mathcal{R}_{v}^{(x)} \circ \mathcal{I}_{x} \qquad \{A_{ix}\}_{i}, B_{y} \ \{R_{kv}^{(x)}\}_{k} \text{ Kraus operators of } \mathcal{I}_{x}, \mathcal{J}_{y}, \text{ and } \mathcal{R}_{v}^{(x)}$ $B_{y}\varrho B_{y}^{*} = \sum R_{ky}^{(x)} A_{ix} \varrho A_{ix}^{*} \left(R_{ky}^{(x)} \right)^{*} \qquad R_{ky}^{(x)} A_{ix} = u_{ikxy} B_{y} \text{ for all } i, k, x, y \qquad \sum_{i,k,x} |u_{ikxy}|^{2} = 1$ i.k.x $\mathsf{A}^{\mathcal{I}}(x) = \sum_{i} A_{ix}^* A_{ix}$ $\sum_{i} A_{ix}^* A_{ix} = \sum_{i,k,y} A_{ix}^* (R_{ky}^{(x)})^* R_{ky}^{(x)} A_{ix} = \sum_{i,k,y} |u_{ikxy}|^2 B_y^* B_y$ $\mathsf{A}^{\mathcal{J}}(\mathbf{y}) = B^*_{\mathbf{y}} B_{\mathbf{y}}$ $v_{yx} = \sum_{i,k} |u_{ikxy}|^2 \ge 0$ $\sum_{x \in \Omega} v_{yx} = 1$ $\mathsf{A}^{\mathcal{I}}(x) = \sum_{v \in \Lambda} \nu_{yx} \mathsf{A}^{\mathcal{J}}(y)$ $A^{\mathcal{J}} \to A^{\mathcal{I}}$

How we check if two indecomposable instruments are equivalent?

Previous proposition implies **necessary condition**

$$\mathcal{I} \leftrightarrow \mathcal{J} \qquad \begin{array}{c} \mathcal{I} \rightarrow \mathcal{J} \quad \Rightarrow \quad \mathsf{A}^{\mathcal{J}} \rightarrow \mathsf{A}^{\mathcal{I}} \\ \mathcal{J} \rightarrow \mathcal{I} \quad \Rightarrow \quad \mathsf{A}^{\mathcal{I}} \rightarrow \mathsf{A}^{\mathcal{J}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{J}} \\ \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{J}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{I}} \end{array} \qquad \begin{array}{c} \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{$$

Proposition:

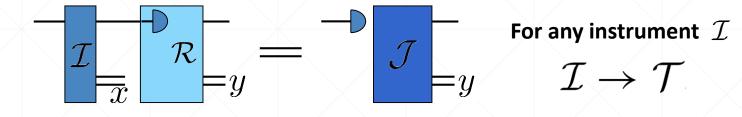
Suppose $\, \mathcal{I} \,$ and $\, \mathcal{J} \,$ are indecomposable instruments

 $\Rightarrow \quad \mathcal{I} \leftrightarrow \mathcal{J} \text{ if and only if } \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{J}}$

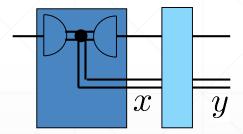
Least element = [trash&prepare]

Trash and prepare instrument

$$\mathcal{T}_{y}(\varrho) = \mathrm{tr}[\varrho] p_{y} \xi_{y}$$



measure & prepare:



Proposition:

Suppose $\mathcal I$ and $\mathcal J$ are measure & prepare instruments

$$\Rightarrow \quad \mathcal{I} \leftrightarrow \mathcal{J} \text{ if and only if } \mathsf{A}^{\mathcal{I}} \leftrightarrow \mathsf{A}^{\mathcal{J}}$$

$$\mathcal{J}_{y}(\varrho) = \sum_{x \in \Omega} \operatorname{tr} \left[\nu_{xy} \mathsf{A}(x) \varrho \right] \xi_{xy}$$

 $\mathcal{I} \to \mathcal{J} \; \Rightarrow \mathsf{A}^{\mathcal{I}} \to \mathsf{A}^{\mathcal{J}}$

Simulation of instruments

= random mixing of different instruments + their postprocessing

(we keep track of the choices)

- analogical to simulation of POVMs

L. Guerini, J. Bavaresco, M. Terra Cunha, and A. Acín, J. Math. Phys. 58, 092102 (2017) S. N. Filippov, T. Heinosaari, and L. Leppäjärvi, Phys. Rev. A 97, 062102 (2018)

$$\mathcal{I}_{y}(\varrho) = \sum_{i=1}^{n} p_{i} \sum_{x \in \Omega} \mathcal{R}_{y}^{(i,x)} \big(\mathcal{J}_{x}^{(i)}(\varrho) \big)$$

Simulation irreducible instruments = equivalence class of identity instrument

Relation of postprocessing to other works and concepts

	special case when	Selected references	
Postprocessing of POVMs 1-dimensional output space		 H. Martens, W. M. de Muynck, Nonideal quantum measurements, Found. Phys. 20, 255 (1990). F. Buscemi, G. M. D'Ariano, M. Keyl, P. Perinotti, and R. Werner, Clean POVMs, J. Math. Phys. 46, 082109 (2005). 	
Postprocessing of channels	Single outcome instruments	T. Heinosaari and T. Miyadera, Phys. Rev. A 88 , 042117 A. Jenčová , arXiv:2002.04240 (2020). C. Bény and O. Oreshkov , Phys. Rev. A 84 , 022333 (2011).	

• In these special cases our results are in accordance with the known results

Postprocessing & simulation of devices

	POVMs	Channels	Instruments
Maximal elements Greatest element	Rank-1 POVMs None	Random orthogonal isometric channels	Random orthogonal isometric instruments
Least element	Trivial POVMs	Trash-and-prepare channels	Trash-and-prepare instruments
Indecomposable elements	Rank-1 POVMs	Kraus rank-1 channels	Kraus rank-1 instruments
Extreme simulation irreducible elements	Extreme rank-1 POVMs	Isometric channels	Isometric channels

Summary & Outlook

- Presented results = Physical Review A 103, 022615 (2021)
- postprocessing of instruments was introduced
- Greatest and least elements and their equivalence classes found
- if and only if conditions for equivalence of indecomposable and measure&prepare instruments
- Sufficient condition for equivalence with indecomposable instrument
- Simulation irreducible instruments found

Open questions & future work:

When is an instrument (postprocessing) equivalent with

- an indecomposable instrument?
- one of its detailed instruments?

Thanks for your attention.