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» Successive measurements of a d-dim quantum system.
> There are k possible measurement outcomes.
> Unitary evolution U applied between two subsequent measurements.

= We observe strings of random measurement outcomes.
= We want to quantify the irreducible randomness of these outcomes.

= This is done by quantum dynamical entropy.
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For an input state p, a unitary U, and a POVM I = {My,..., M}:

> the probability of obtaining the result i
pi(p)

o the post-measurement state (if the outcome i has been obtained):
Fi(p)

Partial Iterated Function System (PIFS) generated by U and 1.
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For an input state p, a unitary U, and a POVM I = {My,..., M}:
> the probability of obtaining the result i
pi(p) =tr(M;Up U)

o the post-measurement state (if the outcome i has been obtained):

Fi(p) = M

e GRIPIT) (generalized Liiders instrument)

Partial Iterated Function System (PIFS) generated by U and .

————————————— > F, S . F3(F
P 2(p) (R 3(F1(p))



For an input state p, a unitary U, and a POVM M= {My,... M}:
> the probability of obtaining the result i
pi(p) =tr(MiUp U%)
the post-measurement state (if the outcome i has been obtained):

Fi(p) = % (generalized Liiders instrument)

Partial Iterated Function System (PIFS) generated by U and I1.

= Fy,n induces an aggregated Markov chain with outcomes {1,..., k}
and hidden state space

= Probability of outputting the string of outcomes (i1, .

eydn):
Pir,....in (P) = Pir (P)Pi (Fir (p)) - Pin(Fipy - - Fir (0)).

= Evolution of Dirac delta measures on quantum states:

Vi g, — 30 pilp) O, (-
i=1,....k

pi(p)>0




n-th partial entropy:
k

Ho= 3, 1(Pi,..in (p+)) where n(X):z{

i1yein=1

—xIlnx x>0
0 x=0

Quantum dynamical entropy of U with respect to I1:

HU,MY = tim 2% = tim (Hpeq = Hy)

n—-oco n

Blackwell integral formula (1957):
H(U,M) = f Hy dpss
(u,nm s e

where p, is the weak-* limit of (W"(d,,) : n€N).

Shannon (1948), Kolmogorov (1958);

Srinivas (1978), Pechukas (1982), Beck & Graudenz (1992) - for projective
measurements; Stomczynski & Zyczkowski (1994) - for generalized measurements;
Crutchfield & Wiesner (2008) - entropy rate



rank-1 POVMs

Let I consist of k one-dim (rescaled) projections: M; = < |y;) (|
o Probabilities in the first step: pi(ps) = +
o Post-measurement state: F;(p) =|¢;) (v;i| for every p and i

o Probabilities in the subsequent steps: p;(Fi(p)) = %|<80j|U|<Pi>|2

k
= . isuniform, H(U,N) :% 3 n(%|<¢j|u|%>|2)
ij=1

W. Stomczynski, AS, ‘‘Quantum Dynamical Entropy, Chaotic Unitaries and

Complex Hadamard Matrices’’, IEEE Trans. Inform. Theory 63 (2017)



non-rank-1 measurements: simplest case

o rank-1 POVMs: Fy,...,Fy are constant, one symbol ~ one state.

o In general: one symbol ~ many states.

Ueld(C?®), N={|z)(z|,1-|z)(z|} Fo: S(C3%) — point
symbol 0 symbol 1 Fi: S((C3) — Bloch ball
P

pz®




non-rank-1 measurements: simplest case

o rank-1 POVMs: Fy,...,Fy are constant, one symbol ~ one state.

o In general: one symbol ~ many states.

Uel(C?), N={|z)(z], I-|z)(z|} Fo: S(C%) — point
symbol 0 symbol 1 Fi: S((C3) — Bloch ball
P T
A Initial distribution:
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Dynamical entropy
H(U,Ny="7




Ball dynamics

From now on we put P:=1-|z)(z| and © := Im(P) = span{z}*,
i.e., P projects on ©, P(©) ~ CP' is the Bloch sphere, S(©) is the Bloch ball.

Ball dynamics: S(©)3p+— % €S(©)
Sphere dynamics:  P(O) > |w) (w| —» LU UTP 0 )

[PUW||?



Ball dynamics

From now on we put P:=1-|z)(z| and © := Im(P) = span{z}*,
i.e., P projects on ©, P(©) ~ CP' is the Bloch sphere, S(©) is the Bloch ball.

Ball dynamics: S(©)3p+— % €S(©)
: PU|w) (w|U*P
Sphere dynamics: P(O) 3 |w) (w| — |||P)U<W|||2 e P(O)
For state vectors: ©>w +—> PUw €©, where [|w| =1
[PUW|

For rays: PO > [w]+— [PUw] e PO

This is a Mobius map, i.e., an orientation-preserving and angle-preserving
automorphism of the Riemann sphere.



non-rank-1 measurements: simplest case

UeU(C®), N={l|z)(z], [-|z){2] } Initial distribution:
symbol 0 symbol 1 37Pz 7 3%Pm

State space:
Transition matrix:
pz® Limiting distribution:

Dynamical entropy:

Assume that z is an eigenvector of U. Then:
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Assume that z is an eigenvector of U. Then:

° po(pz) = {z|Uz) * = 1.

Initial distribution:
1 2

3902 + 300m

State space:
Transition matrix:

Limiting distribution:

Dynamical entropy:




non-rank-1 measurements: simplest case

Uel(C?), N={l|z)(z], 1-|z){z|} Initial distribution:
symbol 0 symbol 1 37Pz 7 3%Pm
State space:
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Transition matrix:
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Dynamical entropy:

Assume that z is an eigenvector of U. Then:
> po(pe) = {z|Uz) P = 1.
o Ball dynamics is rotation (it is generated by a unitary operator),
= pm is a fixed point,
= pi1(pm)=1.
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Assume that z is an eigenvector of U. Then:
o po(pz) = |(2|Uz) [ = 1.
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{pz, pm}

Transition matrix:
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Limiting distribution:

Dynamical entropy:

o Ball dynamics is rotation (it is generated by a unitary operator),

= pm is a fixed point,

= pi1(pm)=1.
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Initial distribution:
300 + 300n

State space:

{pz, pm}

Transition matrix:
[51]

Limiting distribution:
fix = 305, + 50,

Dynamical entropy:

o Ball dynamics is rotation (it is generated by a unitary operator),

= pm is a fixed point,

= pi1(pm)=1.



non-rank-1 measurements: simplest case

UeU(C®), N={l|z)(z], [-|z){2] }
—_— Y
symbol 0 symbol 1
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Assume that z is an eigenvector of U. Then:
o po(pz) = |(2|Uz) [ = 1.

Initial distribution:
3002 + 305

State space:

{pz, pm}

Transition matrix:
[51]

Limiting distribution:
fix = 305, + 50,

Dynamical entropy:
H(U,M) =0

o Ball dynamics is rotation (it is generated by a unitary operator),

= pm is a fixed point,
= pi1(pm)=1.



Generic ball dynamics

PUpU* P

Ball dynamics: S(©)3pr— tr(PUpU*P)
r(PUp

€S(©)

For rays: PO > [w]+— [PUw] e PO

Two fixed points: attractive p,: & repulsive prep

Pictures’ source: Hyrodium's Graphical MathLand http://hyrodium.tumblr.com/
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One of non-generic chains

Pictures’ source:
Hyrodium’s Graphical MathLand
http://hyrodium. tumblr.com/

fefor




Another non-generic chain

Pictures’ source:
Hyrodium’s Graphical MathLand
http://hyrodium.tumblr.com/
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Limiting measure ., of the generic chain

Recall that W"(4,,) 2 s
Evolution of Dirac delta measures on quantum states:
V. (Sp —> Z p,(p) 5Fi(P)'

i=1,...k
pi(p)>0

n— oo




Limiting measure ., of the generic chain
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Recall that W"(4,,) LN L -
Trajectory of pm:

0 V(dpm) = P1(Pm)OF, (pm) *+ P0(Pm)p,
o Wn((;pm) _ %tr((PU)n(PU)*n)éFf(pm) + the part on the trajectory of P2




Limiting measure ., of the generic chain
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Recall that W"(4,,) LN L -
Trajectory of pm:

0 V(0pm) = P1(Pm)OF, (pm) + Po(Pm)dp,
o Wn((;pm) _ %tr((PU)n(PU)*n)éFf(pm) + the part on the trajectory of P2
o Generically: lim tr((PU)"(PU)*") = 0.

o So p. is supported on the trajectory of p,.



Limiting measure ., of the generic chain

g

n—oo

Recall that W"(4,,) LN L -
Trajectory of p,: the success-run chain (or reliability chain).
o it can be positive recurrent or null recurrent or transient, depending on
the transition probabilities.
o in our case it's positive recurrent, so . does not reach pa,.
o we have:

pe = £ 2 N(PUY2Pbpp o,y where ci= 3" [[(PU)"2|?
n=0 n=0



Theorem

Let U be a unitary operator on C? and let z be a unit vector in CY.
We put © for the orthogonal complement of z in C? and P for the
orthogonal projection on ©. Then we have

SIPU) 2P =d = 3 dim(© nKer(U - Al))
n=0 Aeo(U)

=d — #{lin. indep. eigenvectors of U orthogonal to z}

Corollary
For a generic choice of U and z:

> II(PU)"z|? = d
n=0

W. Stomczynski, AS, ‘Orthogonal Projections on Hyperplanes Intertwined
with Unitaries’, J Phys A 54 (2021)




Dynamical entropy of the generic chain

******* ‘ “7 ) Patr
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c= Y II(PU)2? =3
n=0

e %r;)H(PU)nZHz(SFQ(Pz) = %nz:;)pm 1 (P)0En(py)
||(PU)”+12||2)

(UM = 2h(IPUZP) + 1 5 [(PUY2h (
3 P> (PO

where h(x) := Ha(x,1 - x) =n(x) +n(1 - x)
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8 different chain types can be generated:

o Invertible ball dynamics (M&bius maps): 5 chain types,
o Non-invertible ball dynamics: 3 chain types.
o Max. 6 chain types possible for a given unitary.

For each chain type we know the formula for ., and H(U, ).
Chain types are characterized by the eigenvalues of PU.

Chain types are also characterized by the position of (z|U|z) in the
numerical range of U.
AS, ‘“Classification of Markov chains generated by the ’ball & point’

quantum system’’, soon on arXiv
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8 different chain types can be generated:

o Invertible ball dynamics (M&bius maps): 5 chain types,
o Non-invertible ball dynamics: 3 chain types.
o Max. 6 chain types possible for a given unitary.

o For each chain type we know the formula for u. and H(U, ).

o Chain types are characterized by the eigenvalues of PU.

> Chain types are also characterized by the position of (z|U|z) in the
numerical range of U.

AS, ‘““Classification of Markov chains generated by the ’ball & point’

quantum system’’, soon on arXiv
o0

Generically, we have Y ||(PU)"z|[? = d
n=0

W. Stomczynski, AS, ‘‘Orthogonal Projections on Hyperplanes
Intertwined with Unitaries’, J Phys A 54 (2021)

“A new dimension witness, or the Adventures of Alice, an Addicted Traveller”
Talk by Wojciech Stomczyriski - tomorrow at 17:30 JPN, 10:30 CET
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