Causal and compositional structure of higher order quantum maps

Alessandro Bisio

Third Kyoto Workshop on Quantum Information, Computation, and Foundations

YITP, Kyoto 18th October 2022

AB, L. Apadula, P. Perinotti arXiv:2202.10214

Quantum states as carriers of information

The "best" state transformations allowed by quantum theory?

Quantum states as carriers of information

The "best" state transformations allowed by quantum theory?

Admissibility conditions

Admissibility conditions

The most general (deterministic) transformation

$$0 \quad \mathcal{R}^{-1}$$

Choi representation

$$R \in \mathcal{L}(\mathcal{H}_0 \otimes \mathcal{H}_0), \quad R \geqslant 0, \quad \operatorname{Tr}_1[R] = I_0$$

Realisation theorem

$$-\mathcal{R}-=-\mathcal{U}-$$
Stines

Stinespring dilation

Quantum transformations as carriers of information

Channel estimation

Cloning

Programmable channel

Quantum transformations as carriers of information

Channel estimation

Cloning

Programmable channel

Admissibility conditions

Admissibility conditions

The most general supermap

Choi representation

$$S \in \mathcal{L}\Big(\bigotimes_{i=0}^{3} \mathcal{H}_i\Big), \ S \geqslant 0, \ \operatorname{Tr}_3 S = I_2 \otimes S', \ \operatorname{Tr}_1 S' = I_0$$

Realisation theorem

Quantum circuit with a open slot

Type system

$$x = y \rightarrow z$$
input output

Type system

$$x = y \rightarrow z$$
input output

$$((A \to B) \to (C \to D)) \to (E \to F)$$

Type system

$$x = y \rightarrow z$$
input output

$$((A \to B) \to (C \to D)) \to (E \to F)$$

Type extension:

$$(y \to z) \parallel E = y \to z \parallel E$$

Type system

$$x = y \rightarrow z$$
input output

Type extension:

$$(y \to z) \parallel E = y \to z \parallel E$$

$$\begin{array}{|c|c|}
\hline
E \\
A & A \parallel E = AE
\end{array}$$

$$\begin{array}{ccc} & E & (A \to B) \parallel E \\ & = A \to B \parallel E \end{array}$$

Admissibility conditions

(Linearity)

(Generalised complete positivity) $x \parallel E \rightarrow y \parallel E$ admissible to admissible for any extension

(Normalisation)

The most general higher order map of type x

- T(x) <u>probabilistic</u> maps of type x
- $\mathsf{T}_1(x)$ <u>deterministic</u> maps of type x
- $\Delta(x)$ linear constraint

Quantum circuits with open slots (quantum network)

Indefinite causal structure

Quantum circuits with open slots (quantum network)

Indefinite causal structure

Quantum switch

$$= \begin{cases} -A + B - |\psi\rangle = |0\rangle \\ -B + A - |\psi\rangle = |1\rangle \end{cases}$$

• Higher order maps are a convenient framework for Quantum Information Processing when the carriers of information are quantum objects more general than states (transformations, quantum network...)

• Higher order maps are a convenient framework for Quantum Information Processing when the carriers of information are quantum objects more general than states (transformations, quantum network...)

The framework of higher order maps encompasses quantum networks and quantum processes with <u>indefinite causal order</u>.

• Higher order maps are a convenient framework for Quantum Information Processing when the carriers of information are quantum objects more general than states (transformations, quantum network...)

The framework of higher order maps encompasses quantum networks and quantum processes with <u>indefinite causal order</u>.

Quantum processes
 with indefinite causal
 order may <u>outperform</u>
 <u>circuital strategies</u>:

M. Araújo, F Costa, C. Brukner Phys. Rev. Lett. 113 250402 (2014)

D. Ebler, S. Salek, G. Chiribella Phys. Rev. Lett. 120, 120502 (2018)

J.Bavaresco, M. Murao, M. T. Quintino Phys. Rev. Lett. 127, 200504 (2021)

computational speedup

enhance channel capacity

channel discrimination

Higher order maps are a convenient framework for

Quantum Information Processing when the carriers

What are the rules

for composing

higher order maps?

um order.

edup

WIULI IIIACIIIIIUC COUDOII

order may <u>outperform</u> <u>circuital strategies</u>:

D. Ebler, S. Salek, G. Chiribella Phys. Rev. Lett. 120, 120502 (2018)

J.Bavaresco, M. Murao, M. T. Quintino Phys. Rev. Lett. 127, 200504 (2021)

enhance channel capacity

channel discrimination

Type inclusion

Input and output

All elementary systems are <u>not</u> created equal

Input and output

Everything is a channel

Everything is a channel

$$x \subseteq \text{in} \to \text{out}$$

Type inclusion

$$\frac{1}{((A}$$

Every a sum of the second of t

$$x \subseteq \text{in} \to \text{out}$$

Type inclusion

$$- \left((A - A - A)^{-1} \right)$$

$$\rightarrow F))$$

$$x \subseteq \text{in} \to \text{out}$$

Connecting wires

$$C(\rho) = C * \rho = \text{Tr}[C(I \otimes \rho^T)]$$

Connecting wires

link product

$$R * S = \operatorname{Tr}_{AB}[R \, S^{T_{AB}}]$$

Admissible type composition

R * S is a higher order map for any $R \in x$ and $S \in y$

Connecting wires

link product

$$R * S = \operatorname{Tr}_{AB}[R \, S^{T_{AB}}]$$

Admissible type composition

R * S is a higher order map for any $R \in x$ and $S \in y$

$$(A \rightarrow B) * (B \rightarrow C) * (C \rightarrow A)$$

Connecting wires — contractions

$$C_{AA}(R) = A$$

$$R * S = \mathcal{C}_{AA}(\mathcal{C}_{BB}(R \otimes S))$$

Admissible contractions

Compositional structure

Admissible contractions

Compositional structure

Admissible contractions

No-signalling condition

What are the most general Higher Order
Maps that are allowed by Quantum Theory?

What are the most general Higher Order
Maps that are allowed by Quantum Theory?

The ones whose Choi operators $\Delta(x)$ live here:

What are the most general Higher Order
Maps that are allowed by Quantum Theory?

quantum networks?

The ones whose Choi operators live here:

 $\Delta(x)$

T(x)

Are all of them nothing else but

What are the most general Higher Order Maps that are allowed by Quantum Theory?

The ones whose
Choi operators
live here:

tors $\Delta(x)$ $T_1(x)$

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order are not networks.

What are the most general Higher Order Maps that are allowed by Quantum Theory?

The ones whose Choi operators live here:

Those $\Delta(x)$ $T_1(x)$

Are all of them nothing else but quantum networks?

Can I connect higher order maps together, like I would do with channels?

No. Maps with indefinite causal order <u>are not</u> networks.

What are the most general Higher Order Maps that are allowed by Quantum Theory?

The ones whose Choi operators live **here**:

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order <u>are not</u> networks.

Can I connect higher order maps together, like I would do with channels?

Yes, as long as you do not connect signalling systems in loop.

•

Higher order quantum computation

• Higher order maps are a convenient framework for Quantum Information Processing when the carriers of information are quantum objects more general than states (transformations, quantum network...)

The framework of higher order maps encompasses quantum networks and quantum processes with <u>indefinite causal order</u>.

• Quantum processes
with indefinite causal
order may <u>outperform</u>
<u>circuital strategies</u>:

M. Araújo, F Costa, C. Brukner Phys. Rev. Lett. 113 250402 (2014)

D. Ebler, S. Salek, G. Chiribella Phys. Rev. Lett. 120, 120502 (2018)

J.Bavaresco, M. Murao, M. T. Quintino Phys. Rev. Lett. 127, 200504 (2021)

computational speedup

enhance channel capacity

channel discrimination

Higher order quantum computation

• Higher order maps are a convenient framework for Quantum Information Processing when the carriers of information are quantum objects more general than states (transformations, quantum network...)

The framework of higher order maps encompasses quantum networks and quantum processes with <u>indefinite causal order</u>.

Quantum processes
 with indefinite causal
 order may <u>outperform</u>
 <u>circuital strategies</u>:

M. Araújo, F Costa, C. Brukner Phys. Rev. Lett. 113 250402 (2014)

D. Ebler, S. Salek, G. Chiribella Phys. Rev. Lett. 120, 120502 (2018)

J.Bavaresco, M. Murao, M. T. Quintino Phys. Rev. Lett. 127, 200504 (2021)

computational speedup

enhance channel capacity

channel discrimination

What are the most general Higher Order Maps that are allowed by Quantum Theory?

The ones whose Choi operators live here:

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order <u>are not</u> networks.

Can I connect higher order maps together, like I would do with channels?

Yes, as long as you do not connect signalling systems in loop.

What are the most general Higher Order Maps that are allowed Quantum Theory?

The ones whose Choi operators live here:

hose ors $\Delta(x)$

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order <u>are not</u> networks.

Are all of them nothing else but quantum networks?

What are the most general Higher Order Maps that are allowed Quantum Theory?

The ones whose Choi operators live here:

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order <u>are not</u> networks.

Can I connect higher order maps together, like I would do with channels?

Yes as long as you do not connect signalling systems in loop

What are the most general Higher Order Maps that are allowed Quantum Theory? The ones whose Choi operators live $\Delta(x)$ here:

Are all of them nothing else but quantum networks?

No. Maps with indefinite causal order <u>are not</u> networks.

T(x)

Are all of them nothing else but quantum networks?

