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INTRODUCTION:


QUANTUM PROGRAMMING



PROGRAMMING QUANTUM GATES

In quantum mechanics, unitary operators describe reversible evolutions. 
In quantum computing, a computation is a sequence of unitary evolutions, 

also called unitary gates. 

A universal quantum computer is device that can be programmed to approximate 
any desired unitary gate.
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Problem:  
how to program an arbitrary unitary gate?

That is, 

how to specify a unitary gate

in a set of instructions that 

a quantum device can reliably follow?                  



CLASSICAL VS QUANTUM PROGRAMMING

Classical approach

• Fix a finite set of gates that can

   be implemented by the computer.

• Find approximate decomposition

   of the desired gate .U

image from Wikipedia

e.g. decompose  
an element  
of 
into rotations  
about  
Cartesian 
axes.

𝖲𝖮(3)

Quantum approach

• Encode the gate  into a state   
   of a control system

• Let the target and the control

    interact through a fixed unitary 

    gate .

U |ϕU⟩

W

W

|ψ⟩

|ϕU⟩

≈ U |ψ⟩

more practical,  
used in quantum computing

more fundamental, contains 
classical programming as special case.



EXAMPLE OF QUANTUM PROGRAMMING

Problem: flip a spin about an axis  n =
nx
ny
nz W

|ψ⟩

|ϕn⟩

≈ Un |ψ⟩

Possible solution:   
• set up a Heisenberg interaction 
   between the target spin and a control spin 
• put the control spin in the spin coherent state  corresponding to  

    the maximum eigenvalue of the operator 

With this scheme, the overlap with the desired state is 
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1 − O (jtarget)2
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Mo and Chiribella, New Journal of Physics, 21, 113003 (2019)

Marvian and Mann, Phys. Rev. A 78 022304 (2008)



ACCURACY-DIMENSION TRADEOFF

No Programming Theorem (Nielsen and Chuang, Phys. Rev. Lett. 79 321, 1997):  
exact programming of an infinite set of unitary gates require an infinite-
dimensional control system. 

Question: what is the minimum dimension of the control system  
                   required to achieve a given level of accuracy?
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Open problem  
for more than 2 decades.

Important for quantifying resources in quantum information processing.



THIS TALK

Asymptotic solution of the open problem:

 
the minimum dimension of the control system for programming an 

arbitrary unitary gate in the special unitary group   satisfies


                                           


                                                   

at the leading order in .

𝖲𝖴(dtarget)

log2 dcontrol =
d2

target − 1
2

log2
1
ϵ

1/ϵ

Yang, Renner, and Chiribella, PRL 125, 210501 (2020)



COMPARISON WITH PREVIOUS RESULTS

slide credit to Yuxiang Yang

( d2 − 1
2

− δ) log2(1/ϵ) ∀δ > 0



METHODS

FOR


LOWER BOUND



ALTERNATIVE PROOF OF  
THE NO-PROGRAMMING THEOREM

Fact 1: If a gate  can be programmed without error,  
then the state of the control system can be used to implement 

arbitrarily many repetitions of the gate .


Chiribella, D’Ariano, and Perinotti, Phys. Rev. A 81, 062348 (2010)

U

U ⊗ U†

W

|ψ1⟩

|ϕU⟩

U |ψ1⟩

W†

|ψ2⟩ U† |ψ2⟩

W

|ψ3⟩ U |ψ3⟩

Consequence: the program states can be distinguished with arbitrary precision.



CONTINUITY OF STINESPRING’S DILATION

Fact 2

If two quantum evolutions (completely positive trace-preserving maps) 
are -close (with respect to the completely bounded trace-distance),

then every Stinespring dilation of one evolution is -close to some

Stinespring dilation of the other. 


Kretschmann, Schlingemann, and Werner, Journal of Functional Analysis 255, 1889 (2008)
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In the special case where one of the two evolution is the unitary gate U

W

|ψ⟩

|ϕU⟩

ϵ≈ U |ψ⟩

implies W
|ϕU⟩

U

|ϕ′￼U⟩

2 ϵ
≈

and

W†

|ϕ′￼U⟩

U†

|ϕU⟩

2 ϵ
≈

cf. Kretschmann, Kribbs, and Spekkens, Phys. Rev. A 78, 032330 (2008) 
 
Similar technique used in many other works;  recently, Tajima, Shiraishi, and Saito, Phys. Rev. Lett. 121, 110403 (2018).



APPROXIMATE RECYCLING

W

|ψ1⟩

|ϕU⟩

≈ U |ψ1⟩

W†

|ψ2⟩ ≈ U† |ψ2⟩

W

|ψ3⟩ ≈ U |ψ3⟩

Consequence: the information contained in the state  should be approximately

                           equal to the information one can extract from the gate 

|ϕU⟩
(U ⊗ U†)⊗m

If a gate  can be programmed with error ,  
then the state of the control system can be used to 
implement  repetitions of the gate with error .

U ϵ

m U ⊗ U† 4m ϵ



THE HOLEVO BOUND

Consequence: up to approximation errors, the log-dimension   
                           should be larger than the maximum entropy of any set of states

                           generated by the gate 

log2 dcontrol

(U ⊗ U†)⊗m

Fact 3

For every set of states  in a Hilbert space of dimension , 

and for every probability distribution 

one has the bound     with 

A. S. Holevo, Problemy Peredachi Informatsii 9, 3 (1973).                            

{ |ϕU⟩} d
p(dU)

log2 d ≥ − 𝖳𝗋[ρ log2 ρ] ρ := ∫ p(dU) |ϕU⟩⟨ϕU |



SCHUR-WEYL DUALITY

The maximum von Neumann entropy   generated by   
can be computed using the Schur-Weyl decomposition


where  labels the Young diagrams with  boxes and at most  rows.


The maximum entropy is 

−𝖳𝗋[ρ log2 ρ] (U ⊗ U†)⊗m

(ℂd)⊗m = ⨁
λ

(ℛλ ⊗ ℳλ)
λ m d

log2 (∑
λ

d2
ℛλ)

Chiribella, D’Ariano, Perinotti, Sacchi, Int. J. Quantum Inf. 4, 453 (2006) 

The sum of squared dimensions is given by Schur’s formula   ∑
λ

d2
ℛλ

= (m + d2 − 1
d2 − 1 )



PUTTING EVERYTHING TOGETHER

Taking into account the approximation errors,  
we obtain the asymptotic lower bound

log2 dcontrol ≥ (1 − δ−4 2ϵ)
d2 − 1

2 (log2
1
ϵ

+log2
δ2

32(d2 − 1)2 ) − 1

valid for every fixed δ > 0

At leading order,     log2 dcontrol ≥ (1 − δ)( d2 − 1
2 ) log2

1
ϵ



METHODS

FOR


UPPER BOUND



PROGRAM STATES FROM GROUP ACTIONS

Let  be a group of unitary gates  
and let    be a unitary representation of 
on some Hilbert space   


A possible program state for the gate    is   

𝖦
R : U ↦ RU 𝖦

ℋR

U |ϕU⟩ := RU |ϕ⟩

W|ϕU⟩ RU= |ϕ⟩

A priori, there is no guarantee that this choice will give the optimal dependence of 
on .  Still, this is a reasonable ansatz one can make. 

|ϕU⟩
U



MEASURE-AND-OPERATE STRATEGIES

A possible way to extract the gate   from the program state  is to 

• perform a measurement, and  
• perform a conditional operation based on the measurement outcome.

U |ϕU⟩

W
|ψ⟩

|ϕU⟩

≃
|ϕU⟩  measurement

Ui
|ψ⟩

outcome i

We call this scheme a measure-and-operate (MO) strategy.

Again, there is no a priori guarantee that MO strategies are optimal,  
but one can use them as an ansatz. 



BACK TO SCHUR-WEYL

In our work,  

and we pick the truncated regular representation  


where  runs over a subset of Young diagrams with  boxes in at most  rows. 


For the input state, we use a state of the form   


where  is a probability distribution and each   is a maximally entangled state. 
 
States of this form are known to be optimal for the estimation of the gate 

𝖦 = 𝖲𝖴(dtarget)
R = ⨁

λ
(Rλ ⊗ Iλ)

λ n dtarget

|ϕ⟩ = ⨁
λ

qλ |Eλ⟩

(qλ) |Eλ⟩

U

Chiribella, D’Ariano, Perinotti, Phys. Rev. A 72 042338 (2005)



THE UPPER BOUND

We find that the estimation error is upper bounded as  

ϵ ≤ 2 (
π(dtarget − 1)(3dtarget − 2)

dtarget n )
2

and the dimension of the representation is upper bounded as dR ≤ ( 9n
3dtarget − 2 )

d2−1

Expressing  in terms of , we obtain the bounddR ϵ

log2 dR ≤
d2

target − 1
2 (log2

1
ϵ

+log2
162π2(d2

target − 1)4

d2
target )

The above error bound  improves over the state of the art of  estimation 
cf. Kahn, Physical Review A 75, 022326 (2007).

𝖲𝖴(d)



CONCLUSIONS



OUTLOOK

Asymptotic solution of the quantum programming problem:

                                          


                       at leading order in . 

Yang, Renner, and Chiribella, PRL 125, 210501 (2020)

log2 dcontrol =
d2

target − 1
2

log2
1
ϵ

1/ϵ

Conjecture: for an -dimensional manifold of unitary gates
                  


                             at leading order in .

f

log2 dcontrol =
f
2

log2
1
ϵ

1/ϵ

• From unitary gates programming to quantum error correction:  
   see talk by Mischa Wood later in this session. 


