Minimally-committal quantum measurements

Michele Dall'Arno a, b Francesco Buscemi c

^aYukawa Institute for Theoretical Physics, Kyoto University

^bSchool of Education, Waseda University

 $^{c} Graduate \ School \ of \ Informatics, \ Nagoya \ University$

Third Kyoto Workshop on Quantum Information, Computation, and Foundations, October 2022

Range of quantum measurements

States:

$$\rho \ge 0 \text{ s.t. } \text{Tr} [\rho] = 1$$

Measurements:

$$\pi: \mathbb{S} \to \mathbb{P}$$
 s. t. $\pi_j \geq 0 \ \forall j \ \text{and} \ \sum_j \pi_j = \mathbb{1}$
$$\rho \mapsto (\mathsf{Tr} \left[\rho \pi_j\right])_i$$

Measurement range:

$$\operatorname{rng}\left(\boldsymbol{\pi}\right) := \left\{ \mathbf{p} \;\middle|\; \exists\; \rho \text{ s.t. } \boldsymbol{p}_{j} = \operatorname{Tr}\left[\rho \pi_{j}\right], \; \forall j \;\right\}.$$

Properties of the inference of quantum measurements

Data-driven: the only input is a set \mathcal{P} of probability distributions

Consistent:

$$\mathcal{P} \subseteq \mathsf{rng}\left(oldsymbol{\pi}
ight)$$

Minimally committal: the (partial) order induced by the committal degree:

is invariant under linear transformations:

$$F\left(\pi_{0}\right) \leq F\left(\pi_{1}\right) \leftrightarrow F\left(\mathcal{L}\left(\pi_{0}\right)\right) \leq F\left(\mathcal{L}\left(\pi_{1}\right)\right)$$

preserves the (partial) order induced by range inclusion

$$\operatorname{rng}\left(\pi_{0}\right)\subseteq\operatorname{rng}\left(\pi_{1}\right) \iff F\left(\pi_{0}\right)\leq F\left(\pi_{1}\right)$$

Data-driven inference of quantum measurements

Definition (Data-driven inference)

For any spanning set ${\mathcal P}$ of d^2 -outcome probability distributions

$$ext{ddi}_{\mathbb{S}}\left(\mathcal{P}
ight) := \mathop{\mathsf{argmin}}_{\substack{m{\pi} \ \sum_{j} \pi_{j} = 1 \ \mathcal{P} \subseteq \mathsf{rng}(m{\pi})}} \mathsf{m}$$

Caveat: as for linear inversion, the positivity constraint is relaxed

Qubit case solved in M. D., F. Buscemi, A. Bisio, A. Tosini, PRA 102 (2020)

A geometrical reformulation

	Hilbert formalism	Geometrical formalism
Linear space	Hermitian $d \times d$	$\mathbb{R}^{\ell=d^2}$
Inner prod.	Hilbert-Schmidt	Dot product
Born rule	$p_j = Tr[ho \pi_j]$	p=Ms
Unit effect	1	$\mathbf{u} := (1,\ldots,1)^{\mathcal{T}}$
States	Tr[ho]=1	$\mathbf{u}\cdot\mathbf{s}=1$
Measurements	$\sum_j \pi_j = 1$	$M^T \mathbf{u} = \mathbf{u} \ (\text{see}^{\ 1})$
Purity	$Tr[ho^2]$	$ \mathbf{s} ^2$

 $^{^1}$ Follows from the fact that for any state s one has $\mathbf{u}^T M \mathbf{s} = \mathbf{1}$

A pictorial representation

Data-driven inference of quantum measurements

Definition (Data-driven inference)

For any spanning set ${\mathcal P}$ of $\ell\text{-outcome}$ probability distributions

$$ddi_{\mathbb{S}}(\mathcal{P}) := \underset{\substack{M \in \mathbb{R}^{\ell \times \ell} \\ M^T \mathbf{u} = \mathbf{u} \\ \mathcal{P} \subseteq M \mathbb{S}}}{\mathsf{argmin}} \det M^T M.$$

Spherical 2-designs

Pure states:

$$|\mathbf{s}|^2 = 1$$

"Purity" cone (not to be confused with the "positivity" cone):

$$f(\mathbf{s}) := |\mathbf{s}|^2 - (\mathbf{u} \cdot \mathbf{s})^2 = \mathsf{Tr}[\mathbf{s} \otimes \mathbf{s}] - \mathbf{u}^T(\mathbf{s} \otimes \mathbf{s})\mathbf{u} \le 0$$

"Purity" ball B:

$$\mathbf{u} \cdot \mathbf{s} = 1 \quad \cap \quad f(\mathbf{s}) \leq 0$$

Spherical 2-design (not to be confused with the quantum 2-design):

$$\sum_{\mathbf{s}\in\mathcal{S}} p\left(\mathbf{s}\right)\mathbf{s}\otimes\mathbf{s} = \int \left(O\oplus\hat{\mathbf{u}}\otimes\hat{\mathbf{u}}\right)\left(\mathbf{s}\otimes\mathbf{s}\right)\left(O\oplus\hat{\mathbf{u}}\otimes\hat{\mathbf{u}}\right)^{\mathsf{T}}\mathsf{d}O = \lambda\,\mathbb{1} + \mu\hat{\mathbf{u}}\otimes\hat{\mathbf{u}}$$

Main result

Theorem 1

For any spanning set ${\mathcal P}$ of ℓ -outcome quasi-probability distributions

 \mathcal{S} supports a spherical 2-design $\Rightarrow M \in \mathtt{ddi}_{\mathbb{S}}(\mathcal{P})$,

where M is uniquely given by P = MS.

SICs as standard measurements

SIC measurements (regular simplices): proportional to 1

Lemma

For any spanning set ${\mathcal P}$ of ℓ -outcome probability distributions

$$M \in \mathtt{ddi}_{\mathbb{S}}\left(\mathcal{P}\right) \Leftrightarrow \mathbb{1} \in \mathtt{ddi}_{\mathbb{S}}\left(M^{-1}\mathcal{P}\right).$$

Proof given in M. D., F. Buscemi, A. Bisio, A. Tosini, PRA 102 (2020)

$$egin{array}{cccc} \mathcal{P} & \xrightarrow{M^{-1}} & M^{-1}\mathcal{P} \ & & & & & & & \\ \mathtt{ddi}_{\mathbb{S}} & & & & & & & \\ \mathtt{ddi}_{\mathbb{S}} & & & & & & \\ \mathtt{ddi}_{\mathbb{S}} & & & & & & \\ \mathtt{ddi}_{\mathbb{S}} & & & & & & \\ \end{array}$$

Outer approximation of the state space

Lemma

For any spanning set ${\mathcal S}$ of $\ell\text{-dimensional}$ states

$$\mathbb{1} \in \mathtt{ddi}_{\mathbb{B}}\left(\mathcal{S}\right) \Rightarrow \mathbb{1} \in \mathtt{ddi}_{\mathbb{S}}\left(\mathcal{S}\right).$$

The role of spherical 2-designs

Lemma

For any set ${\mathcal S}$ of $\ell\text{-dimensional}$ states that supports a spherical 2-design

 \mathcal{S} supports a sph. 2-design $\Rightarrow \mathbb{1} \in ddi_{\mathbb{B}}(\mathcal{S})$.

Sketch of the proof

A variation of a proof technique by F. John (1948)

$$\begin{split} &\sum_{\mathbf{s} \in \mathcal{S}} p\left(\mathbf{s}\right) f\left(M^{-1}\mathbf{s}\right) \\ &= \operatorname{Tr}\left[M^{-1}\left(\lambda \, \mathbb{1} + \mu \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}\right) M^{-T}\right] - \mathbf{u}^T M^{-1}\left(\lambda \, \mathbb{1} + \mu \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}\right) M^{-T}\mathbf{u} \\ &= \lambda \operatorname{Tr}\left[M^{-1} M^{-T}\right] + \mu \left|M^{-1} \hat{\mathbf{u}}\right|^2 - \lambda \left|M^{-T} \mathbf{u}\right|^2 - \mu \left(\hat{\mathbf{u}} M^{-T} \mathbf{u}\right)^2 \\ &= \lambda \operatorname{Tr}\left[M^{-1} M^{-T}\right] + \mu \left|M^{-1} \hat{\mathbf{u}}\right|^2 - |\mathbf{u}|^2 \left(\lambda + \mu\right) \\ &\geq \lambda \operatorname{Tr}\left[M^{-1} M^{-T}\right] + \mu - |\mathbf{u}|^2 \left(\lambda + \mu\right) \\ &= \operatorname{Tr}\left[M^{-1} M^{-T}\right] - \ell \\ &= \operatorname{Tr}\left[M^{-1} M^{-T} - \mathbb{1}\right] \\ &> \operatorname{In} \det M^{-1} M^{-T} \end{split}$$

Conclusion

Data-driven: the only input is a set \mathcal{P} of probability distributions

Consistent:

$$\mathcal{P}\subseteq M\mathbb{S}$$

Minimally committal: committal degree:

$$F(M) := \det M^T M$$

Characterization of a subset of $\mathtt{ddi}_{\mathbb{S}}(\mathcal{P})$ for arbitrary quantum dimension