# Correlation in Catalysts Enables Arbitrary Manipulation of Quantum Coherence

Ryuji Takagi

NTU Singapore

Joint work with Naoto Shiraishi (U. Tokyo)

Phys. Rev. Lett. 128, 240501 (2022)

#### Quantum Resource Theories

Framework to deal with quantification and manipulation of physical quantities that are considered "precious" under a given setting.



[Chitambar, Gour, RMP '19]

- Quantum entanglement [Horodecki et al. '09]
- Fault-tolerant quantum computation [Veitch et al., '14] [Howard, Campbell, '17]
- Quantum non-Gaussianity [Genoni et al., '08] [Takagi, Zhuang, '18]

### Resource Theory of Asymmetry

Symmetry group G with representation  $U_g$  for  $g \in G$ .

A state  $\rho$  is symmetric if  $U_g \rho U_g^\dagger = \rho$ ,  $\forall g \in G$ . Otherwise,  $\rho$  is asymmetric.

Operational resource for metrology



- Quantify the amount of symmetry violation
- Characterize the possible state transformation with operations that respect symmetry

Covariant operations: 
$$U_g\mathscr{E}(\rho)U_g^\dagger=\mathscr{E}(U_g\rho U_g^\dagger), \forall g\in G, \forall \rho$$

Resource theory of asymmetry ::

F: symmetric states and O: Covariant operations

### Quantum Coherence as Asymmetry

Consider a specific group  $G = \mathrm{U}(1)$  with representation  $U_t = e^{iHt}$ .  $H = \sum E_i |i\rangle\langle i|$ Asymmetric state has energetic coherence. e.g.,  $|+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ 

Resource for quantum clock

"Quantum part" of quantum thermodynamics

#### **Thermal Operations**

$$\mathcal{E}(\rho) = \operatorname{Tr}_{E}\left(U_{SE}(\rho \otimes \gamma) U_{SE}^{\dagger}\right) \left[U_{SE}, H_{S} + H_{E}\right] = 0 \quad \gamma = e^{-\beta H_{E}}/\operatorname{Tr}(e^{-\beta H}) \qquad \rho \qquad \mathcal{E}(\rho)$$



- Thermal Operations are subclass of Covariant Operations with energy constraint
- Free energy can be decomposed into classical and quantum parts.

$$\beta[F(\rho) - F(\gamma)] = S(\rho||\gamma) = S(\Pi(\rho)||\gamma) + C(\rho)$$
 
$$\overline{\text{classical quantum}}$$
 
$$\Gamma(\rho): \text{ rephasing with energy eigenabsis}$$
 
$$C(\rho): \text{ relative entropy of coherence}$$

### Resource Manipulation with Catalysts

Ultimate transformation capability: One should consider using the help of catalysts.

#### **Product catalysts**

For a resource theory with free operations  $\mathbb{O}$ ,  $\rho \otimes \tau_C \to \rho' \otimes \tau_C$   $\tau_C$ : catalyst

e.g.) Entanglement

There exists states  $\rho$  and  $\rho'$  such that  $\rho \xrightarrow[LOCC]{} \rho'$  but  $\rho \otimes \tau_C \xrightarrow[LOCC]{} \rho' \otimes \tau_C$  [Jonathan, Plenio, PRL '99]

e.g.) Quantum thermodynamics  $(\rho, \rho')$ : block-diagonal)

$$\rho \longrightarrow \rho'$$
: thermo-majorization [Horodecki, Oppeheim, Nat. Comm. '13]

$$\rho \otimes \tau_C \xrightarrow{} \rho' \otimes \tau_C \text{ "second laws". } F_\alpha(\rho) \geq F_\alpha(\rho'), \forall \alpha \qquad \text{[Brandao et al., PNAS, '15]}$$

## **Correlated Catalysts**

$$\rho \otimes \tau_C \to \rho_{SC}'$$
 such that  ${\rm Tr}_C \, \rho_{SC}' = \rho'$  and  ${\rm Tr}_S \, \rho_{SC}' = \tau_C$ 

Correlation between system and catalyst

e.g.) Quantum thermodynamics with correlated catalysts

$$F(\rho) \ge F(\rho')$$
 with (1) thermal operations for block-diagonal  $\rho, \rho'$  [Müller, PRX, '18] (2) Gibbs-preserving operations [Shiraishi, Sagawa, PRL, '21]

e.g.) Entanglement

Pure-to-pure transformation  $\psi \xrightarrow[LOCC]{} \phi$  with correlated catalysts.

$$S_E(\psi) \geq S_E(\phi)$$

$$S_E(\psi) := -\operatorname{Tr}(\rho_A \log \rho_A), \, \rho_A := \operatorname{Tr}_B \psi$$

[Kondra et al., PRL, '21] [Lipka-Bartosik, Skrzypczyk, PRL, '21]

## Coherence Manipulation with Catalysts

Covariant operations:  $U_g\mathscr{E}(\rho)U_g^\dagger=\mathscr{E}(U_g\rho U_g^\dagger), \forall g\in G, \forall \rho$ 

#### **Product catalysts**

Pure catalysts do not help coherence transformation

If 
$$\rho \otimes \psi_C \xrightarrow{} \rho' \otimes \psi_C$$
, then  $\rho \xrightarrow{} \rho'$  [Marvian, Spekkens, NJP '13] [Ding, Hu, Fan, PRA '21]

#### **Correlated catalysts**

Coherence no-broadcasting: If  $\rho$  is incoherent,  $\rho'$  is also incoherent.

[Marvian, Spekkens, PRL '19] [Lostaglio, Muller, PRL '19]

#### Other catalytic setting?

## Marginal Catalysts

$$\rho \otimes \tau_{C^{(0)}} \cdots \otimes \tau_{C^{(K-1)}} \to \rho' \otimes \tau_{C^{(0)} \dots C^{(K-1)}}$$

$$\operatorname{Tr}_{\overline{C^{(j)}}} \left( \tau_{C^{(0)} \dots C^{(K-1)}} \right) = \tau_{C^{(j)}}, \forall j$$



Correlation between multiple catalysts

#### Previously considered in quantum thermodynamics

For states  $\rho, \rho'$  that are block diagonal,  $\rho$  can be transformed to  $\sigma$  with a marginal-catalytic thermal operations with an arbitrary small error iff  $F(\rho) \geq F(\rho')$  [Lostaglio et al., PRL '15]

#### Coherence

No general characterization except for qubit case. [Ding, Fu, Fan, PRA, '21]

### **Arbitrary Manipulation is Possible**

$$\rho \otimes \tau_{C^{(0)}} \cdots \otimes \tau_{C^{(K-1)}} \to \rho' \otimes \tau_{C^{(0)} \dots C^{(K-1)}}$$

$$\operatorname{Tr}_{\overline{C^{(j)}}} \left( \tau_{C^{(0)} \dots C^{(K-1)}} \right) = \tau_{C^{(j)}}, \forall j$$



#### Main result

For arbitrary states  $\rho$  and  $\rho'$ ,  $\rho$  can be transformed to  $\rho'$  by a marginal-catalytic covariant transformation with arbitrarily small error.

- $\rho$  can even be an incoherent state.
- Valid for arbitrary dimension and arbitrary Hamiltonian.
- Unlike the case of thermodynamics, coherence transformation has no restriction.
- Can be regarded as a new type of embezzlement, but with a very different mechanism.

# Partial Reusability of Marginal Catalysts

Given multiple copies of marginal catalysts, we can partially reuse them.

$$au_{C^{(0)}} - au_{C^{(1)}} - au_{C^{(2)}}$$
 $au_{C^{(0)}} - au_{C^{(1)}} - au_{C^{(2)}}$ 
 $au_{C^{(0)}} - au_{C^{(1)}} - au_{C^{(2)}}$ 

e.g., given three copies, we can run the same transformation six times.

### Partial Reusability of Marginal Catalysts



 $K^n$  copies of marginal catalysts  $\tau_{C^{(0)}} \otimes \ldots \otimes \tau_{C^{(K-1)}}$  allow  $(n+1)K^n$  transformations.

### **Proof Sketch: Two-Level Amplification Protocol**

Amplify coherence in two-level system with marginal catalysts. [Ding, Fu, Fan, PRA, '21]

Coherent states 
$$\Sigma(\eta) := \frac{\mathbb{I} + \eta X}{2}$$

Catalysts 
$$\Gamma(\eta) := \frac{1}{2} \left( \mathbb{I} + \frac{\sqrt{3}\eta}{2} X + \frac{4 - \eta^2}{6} Z \right)$$

$$\operatorname{Tr}_{C} \mathscr{E}(\Sigma(\eta_{j}) \otimes \Gamma(\eta_{j})) = \Sigma(\eta_{j+1})$$

$$\operatorname{Tr}_{S} \mathscr{E}(\Sigma(\eta_{j}) \otimes \Gamma(\eta_{j})) = \Gamma(\eta_{j})$$

$$\eta_{j+1} := \frac{\eta_{j}(25 - \eta_{j}^{2})}{24}$$

Covariant operation 
$$\mathscr E$$
 with Kraus operators 
$$K_0 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/4 & \sqrt{3}/4 & 0 \\ 0 & \sqrt{3}/4 & 3/4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad K_1 := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\text{Tr}_{\mathcal C} \mathscr E(\Sigma(\eta_i) \otimes \Gamma(\eta_i)) = \Sigma(\eta_{i+1})$$

$$\eta_{j+1} := \frac{\eta_j (25 - \eta_j^2)}{24}$$





### **Proof Sketch: Preparing Coherent Resource**

For the system Hamiltonian  $H=\sum_i E_i |i\rangle\langle i|$ , fix an arbitrary reference energy level  $E_{j^\star}$ . For another energy level  $E_i$ ,



Do this many times for every i

### **Proof Sketch: Creating Desired State**



We can approximate an action of an arbitrary unitary V on  $|j^*\rangle$  by  $\mathrm{Tr}_R\left[U\left(|j^*\rangle\langle j^*|\otimes\eta_R\right)U^\dagger\right]$  with a covariant unitary U and a resource state  $\eta_R$ .

#### How Could This Be Possible?

Is coherence generated for free? ——— "Negative" coherence is hidden in correlation!

Resource measure  $\Re$  is superadditive if  $\Re(\rho_{12}) \geq \Re(\rho_1) + \Re(\rho_2), \forall \rho_{12}$ 

#### Examples:

- Quantum thermodynamics: Free energy
- Speakable coherence: Relative entropy of (speakable) coherence
- Entanglement: Entanglement entropy

Every coherence measure violates superadditivity. [Marvian, Spekkens, PRL '19]

Even if  $\Re(\rho) \leq \Re(\rho')$ , it can be that  $\Re\left(\rho \otimes \tau_{C^{(0)}} \cdots \otimes \tau_{C^{(K-1)}}\right) \geq \Re\left(\rho' \otimes \tau_{C^{(0)} \ldots C^{(K-1)}}\right)$ 

Correlation reduces the total coherence

# Restriction of Marginal Catalysts

We can put a universal restriction on the catalytic resource transformation at the level of *general resource theories*.



• 
$$\Re(\rho_1\otimes\rho_2)=\Re(\rho_1)+\Re(\rho_2),\ \forall\rho_1,\rho_2$$
 product additivity



If  $\rho$  can be transformed to  $\rho'$  by a marginal-catalytic or correlated-catalytic free transformation, then every super additive, product-additive resource measure satisfies  $\Re(\rho) \geq \Re(\rho')$ 

If there exists even a single superadditive, product-additive, and faithful resource measure, arbitrary resource transformation is impossible.

e.g., quantum thermo, speakable coherence, entanglement

### **Achievable Catalytic Transformation**

We discussed necessary conditions for catalytic transformation. What about sufficiency?

Asymptotic transformation from  $\rho$  to  $\rho'$  with  $\mathbb O$ 

$$\exists \Lambda^{(n)} \in \mathbb{F} \text{ s.t. } \lim_{n \to \infty} \|\Lambda^{(n)}(\rho^{\otimes n}) - \rho'^{\otimes n}\|_1 = 0$$

Asymptotic transformation can be converted to single-shot catalytic transformation.

c.f. [Shiraishi, Sagawa, PRL, '21]

If  $\rho$  can be transformed to  $\rho'$  by an asymptotic free transformation, then  $\rho$  can be transformed to  $\rho'$  by a free transformation with correlated and marginal catalysts.

Completely characterize the catalytic transformation of

- Quantum thermodynamics with Gibbs-preserving operations [Shiraishi, Sagawa, PRL '21]
- LOCC pure state transformation [Kondra et al., PRL '21] [Kipka-Bartosik, Skrzypczyk, PRL '21]
- Speakable coherence

Operational meaning of relative entropy measures in terms of single-shot transformation.

#### Coherence Manipulation with Correlated Catalysts

$$ho \otimes au_C o 
ho_{SC}'$$
 such that  ${
m Tr}_C 
ho_{SC}' = 
ho'$  and  ${
m Tr}_S 
ho_{SC}' = au_C$ 

#### Can we also realize an arbitrary coherence transformation with correlated catalysts?

We at least need some initial coherence due to the coherence no-broadcasting theorem.

#### Conjecture

If all energy differences for nonzero off-diagonals of  $\rho'$  can be expressed as a linear combination of those of  $\rho$ , then  $\rho$  can be transformed to  $\rho'$  by a correlated-catalytic covariant operation with an arbitrarily small error.

Could be a key toward the complete characterization of the capability of thermal operations with correlated catalysts.

We can show a weaker version of this statement with a broader class of operations.

### Summary

- Marginal-catalytic covariant operation can realize arbitrary state transformation.
- This is possible by a peculiar property of coherence measure. We derived a general restriction on such an anomalous transformation valid for general resource theories.

• Presented achievable condition in relation to asymptotic transformation and precise characterization for some theories in combination with the above restriction.

 Put forward a conjecture that covariant operations with a correlated catalyst can realize a state transformation as long as the sufficient initial coherence is present.

#### Outlook

- Prove or disprove the conjecture on correlated-catalytic covariant transformation.
- Characterization of correlated-catalytic and marginal-catalytic thermal transformations.
  - Can we show that if there is nonzero coherence in the initial state, then transformation rule is governed by the free energy?
  - Can we extend the result for semiclassical transformation with marginal catalysts to a quantum setting?
- Extension to general groups.

Thank you!