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What is quantum about a quantum harmonic oscillator?

Discrete Energy Levels Bell Inequalities
E, .—FE, =hw With multipartite systems
Zero-point Motion Leggett—Garg, Noncontextual Inequalities
by = %ﬁw With sequential/compatible measurements
Heisenberg Uncertainty Negative “Probabilities”
h
ATAp > 35 From state tomography
 ——— —  —————————————————————— ——
Classical systems can exhibit System must be quantum

the same behaviour to exhibit these behaviours



What is not quantum about a quantum harmonic oscillator?

Classical Time Evolution Quantum Time Evolution
p(0) . P(0)
t) = x(0 t) t X(t) =X(0 t) t
x(t) = x(0) cos(wt) — sin(wt) (t) (0) cos(wt) — sin(wt)
p p
< » U < // » U

Time evolution of the quantum harmonic oscillator is as classical as it gets!



What is not quantum about a quantum harmonic oscillator?

Classical Time Evolution Quantum Time Evolution
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From Tsirelson’s dusty arXivs, we ask the question:

How often is the coordinate of a harmonic oscillator positive?

Boris Tsirelson

Cite as: arXiv:quant-ph/0611147



“How often is the coordinate of a harmonic oscillator positive?”

Assumptions: We have one (1) harmonic oscillator with period T

For each round, Zf
. _ T B
1. Prepare the system in some state L= 3 s
2. Wait for a duration t € {0, %, %}
< ' | > T

(chosen randomly) |

3. Measure the position of the system:
Is z(t) > 0?

After many rounds: P3 = “how likely 1s x > 02"

Comment: Each round has system reset, or performed on ensemble of
identical oscillators — no sequential measurements!
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“How often is the coordinate of a harmonic oscillator positive?”
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After many rounds: how likely is « > 0?




“How often is the coordinate of a harmonic oscillator positive?”

After many rounds: how likely is « > 0?

P; = % pos(z(0)) + 1 pos(z(£)) + & pos(z(2L))




Classical bound of P,

T
t=0 p=1Z t =
; ; ;
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Py = 3 pos(z(0)) + 3 pos(z(5)) + 3 pos(z(5-))
. 1 2

For any classical state p(z, p), 3 < P; < 2 = P¢



Classical bound of P,
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For any classical state p(x, p), define 74 = / do / rdr p(x,p)
0cO L




The quantum case

Wigner function W (x, p) takes the place of the joint probability density

Pr(z > 0) = /OOO dz /_O:O dp W (z, p)

Time evolution is precession in phase space

Following the same arguments as before,

Iiz/ do [ rdr W(x,p)
Z

cOL <
2 1 4
P3 :g _|_—|—§Z_

Then, what's the difference between the two?

>




Violating the classical bound

Position and momentum are incompatible observables [ X, P| # O:
W (x,p)is a quasiprobability distribution

Negative values are allowed, if marginals are probabilities

What if we concentrate the negativity into © _? A

2 1
P° = - T ~
3 3t+ + 5 a |
<
I— < O —> I_|_ > 1 >
(from normalisation) b
o o 2 c
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Violating the classical bound

Position and momentum are incompatible observables [ X, P| # O:
W (x,p)is a quasiprobability distribution

Negative values are allowed, if marginals are probabilities

What if we concentrate the negativity into © _? Zz
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Largest quantum violation for £ < 2101 Aw

P > 0.709 > P§

Quantum harmontic oscillators can beat the
classical bound!




Certifying quantumness with precessions in harmonic systems

Assumptions: 1. Dynamics of the system is a uniform precession

2. Period of the system is known

Protocol: For each round, 1. Prepare the system

T 2T}

2. Randomly wait a duration ¢ € {0, 3, 5-

3. Measure the position xz(t)

After many rounds: P3 = “how likely 1s x > 02"

If P3 > PSS = %, the harmonic oscillator is quantum

Quantum-—classical gap allows us to certify nonclassicality

No need for sequential or simultaneous measurements!



Generalisation of protocol

Protocol with K times

ZPr (z(EL) > 0)

* Quantum-classical gap exists for all K odd

* Non-trivial (but loose) upper bound for P%
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Precession in Real Space (Spins)

H—=—wJ,

Jx(t) = cos(wt)J,(0) + sin(wt).J, (0)

* Gap exists for all j, excluding j = 0,1/2,1,2

e P = 3/4: conjectured to be the largest
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Generalisation of protocol

Uniform Precessions of Effective Oscillators

e Sum of variables precessing with the same frequency are uniformly precessing
| K-l
H = (1 4 J2) Pre= gz 2 Pr(20(0) + J2 (1) >0)

 Protocol with total angular momentum: maximally-violating state is always entangled

5 K—1
P 1 2 92

2 2
_ P | 1 2 2 _ _ 1

e Protocol with two harmonic oscillators: does a violation in the normal mode tell us
anything about the entanglement?



Witnessing entanglement with uniform precessions

Assumptions: . System consists of two harmonic oscillators

| 2 2 - pa 1 5 5
H = Z (2m9 | m]wjx]> — gri1x2 — < }Q,LL—i_ 2,LLwGCU

2. Period of the normal modes are 7,

Protocol: For each round, 1. Prepare the system

2. Randomly wait a duration ¢ € {(), 7;0 , 2§0 }

3. Measure the positions 1 (t), z5(1)

After many rounds: P3 = “how likely i1s x, > 0 ¢”

We already know that P{ < P§ = £ for classical states

What about the values of P; for separable states?



Quantum violation of separable states

Consider a separable state and its corresponding Wigner function
p= Zp oV @ py”

W,(z1,p1;22,p2) = ;pkwpgm (w1,p1)Wp;k> (22, Dp2)

1

1
: : my |4 mp ) 4
Consider the special case = (mz) r1 + (m ) To

Then, the above state has the reduced Wigner function

Wir_(p) (24, p4) = Zpktr( )U (T+,p+)p ()UT($+7P+))

for some unitary U(z,,ps).



Quantum violation of separable states
p= Zp o @ py”

Wie_ (o) (@ 4,D4) = Zpktr( U@, pi)ps )UT(fIf+,p+))

Since W,(x+,p+) > 0 permits a classical description, it cannot violate the classical bound

2
p is separable — P53 < P35 = 3

or conversely

2
Ps > P5 = 3 = F is not separable

If P3 > PS5 = %, the harmonic oscillators are entangled




Other aspects of our entanglement witness

The criterion works for any K odd; entangled if Px > P9,

More generally, normal modes of the form P;

1 1 0.685
my \ ° mo \ * .
ry =|— ] cosf xq - sin 6 x-
ma mi

In other cases, larger violation required

0.680

0.675

0 ixed by system parameters

0.670

If uncoupled, 6 can take on any value 2/3

0 /16 /8 3mw/16 /4



Motivation for an alternative entanglement witness

Commonly used criteria for entanglement based on quantum uncertainty relations

For example, Duan et al. [arXiv:quant-ph/9908056]: for some real number c, define

by = ——2
T Vmyhw;

~ 1 _ 1 _ - m;;
u = |c|T1 + -T2 v = |c|p1 — —D2 Lj = &y 5
C C

1
The state is entangled if <(AU)2> + <(AU)2> <+ 2

For any sufficiently pure classical states, <(Au)2> + <(Av)2> — 0
Requires measurement precision set by 5, open to false positives by classical states

These issues become important as entanglement of mesoscopic/macroscopic objects
become possible



Comparison with other entanglement witnesses

Generally, our criterion is useful in some cases, while other criteria might be useful in others

Duan et. al. Hillery & Zubiary Zhang et. al. Ours
Phys. Rev. Lett. 84, 2722 Phys. Rev. Lett. 96, 050503 Phys. Rev. A 82, 032323

False positives by
classical states

Detects Gaussian
entangled states

Detects some bound
entangled states

Detects family of
states |U,,)

) =30 30 [ (") cos) T ing) [n ~ jy 1) ol < 1



Certifying quantumness with precessions in... anharmonic systems?

I%F}

No fixed period T": Replace T' with some choice of 7; measure at times ¢ € {0, =,

Classical bound can be 1: When period of oscillation is too large or too small

27 /3 < Atg_o(F) 27 /3 > T(F) Non-oscillating
D p p
A A A
< ‘} > T < —> T < > T
v v v
All measurements occur before Particle completes its cycle Particle does not oscillate, same
particle leave positive plane between each measurement as Atg_,o(E) = occor T(E) = o

Limit energy range F..in < F < E...x where these “bad cases” do not happen



Certifying quantumness with precessions in anharmonic systems

Assumptions: 1. Dynamics of the system is given by a Hamiltonian H(z, p)
2. Parameters (wp, «, ... ) of the system are known
3. Energy of the system i1s bounded F,;;, < F < Ejax

Protocol: For each round, 1. Prepare the system

I%F}

2. Randomly wait a duration ¢ € {0, &,

3. Measure the position xz(t)

After many rounds: P3 = “how likely 1s x > 02"

If P3 > PS5 = %, the anharmonic system is quantum

If a “good” choice of T, E\,in, Fmax can be made!



Anharmonic example: Kerr-like Hamiltonian

Q 2 1
H(z,p) = Ho(z,p) " Hi(x,p)  where Hy(z,p) = é@m | imwSxQ

Describes systems with Kerr nonlinearities, transmon systems in the dispersive regime

p
Classical solution given by 1
p(0) . + 7 17~
t) = x(0 E)t) b))t & N
o (t) = 2(0) cos(w(E)) + 2 sin(w(E)) o ;
J \
With energy-dependent frequency — T

20k VS P
w(E):\/l hwzwo S~ -7
0




Anharmonic example: Kerr-like Hamiltonian

Performing the protocol with 7T = 275 and E.x =

a/wy = 0.005
p
-
« : > T 0
'™
P2 — (.703

2z 522(2) , classical bound unchanged
a/wo = 0.05 afwo = 0.1
. p
N -+

P3° = 0.685 P = 0.674

No quantum gap when a/wg > 1/9



Conclusion

» To detect quantumness: Ask “How often is the coordinate of a uniformly-precessing variable positive?”

* To witness entanglement: Weighted sum of coordinates of two harmonic oscillators

P = % E_: Pr(Mwl(tk) —+ M$2(tk) > O)

e For anharmonic systems: Include assumption of energy bounds




Thank you for your attention!
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