QICF22 — 18 October 2022

Detecting quantumness and entanglement with precessions

PHYSICAL REVIEW A 106, 032222 (2022)

Detecting quantumness in uniform precessions

Lin Htoo Zaw,¹ Clive Cenxin Aw,¹ Zakarya Lasmar,¹ and Valerio Scarani,^{1,2} ¹Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 ²Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542

Centre for Quantum Technologies

QICF22 — 18 October 2022

Detecting quantumness and entanglement with precessions {Upcoming extension}

Pooja Jayachandran, ...

Cite as: arXiv:?????? [quant-ph]

Centre for Quantum Technologies

What is quantum about a quantum harmonic oscillator?

Discrete Energy Levels	Bell
$E_{n+1}-E_n=\hbar\omega$	With mu
Zero-point Motion $E_0 = \frac{1}{2} \hbar \omega$	Leggett–Garg, No With sequential/co
Heisenberg Uncertainty	Negative
$\Delta x \Delta p \ge \frac{\hbar}{2}$	From sta

Classical systems can exhibit the same behaviour

Inequalities

ultipartite systems

oncontextual Inequalities

compatible measurements

ve "Probabilities"

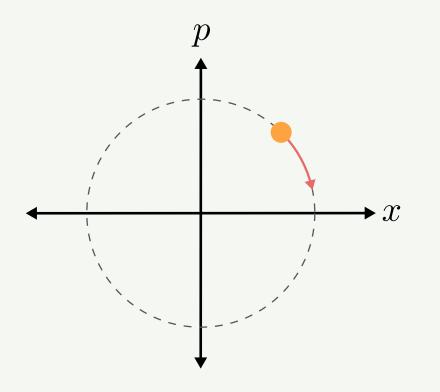
tate tomography

System must be quantum to exhibit these behaviours

What is <u>not</u> quantum about a quantum harmonic oscillator?

Classical Time Evolution

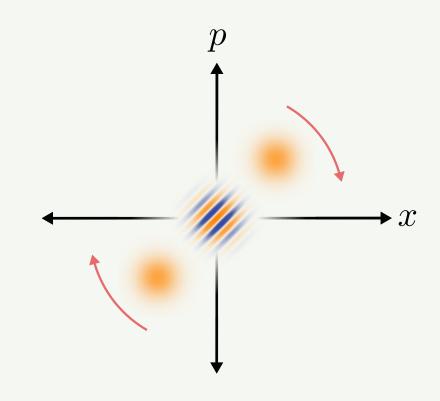
$$x(t) = x(0)\cos(\omega t) + \frac{p(0)}{m\omega}\sin(\omega t)$$



Time evolution of the quantum harmonic oscillator is as classical as it gets!

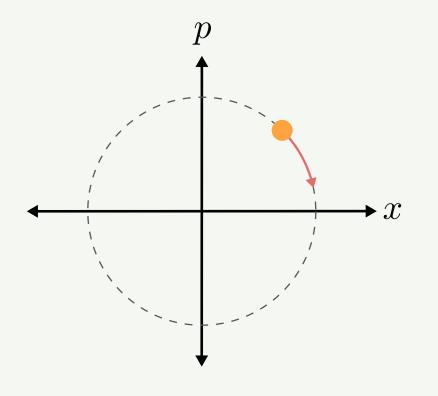
Quantum Time Evolution

 $X(t) = X(0)\cos(\omega t) + \frac{P(0)}{m\omega}\sin(\omega t)$



What is <u>not</u> quantum about a quantum harmonic oscillator?

Classical Time Evolution



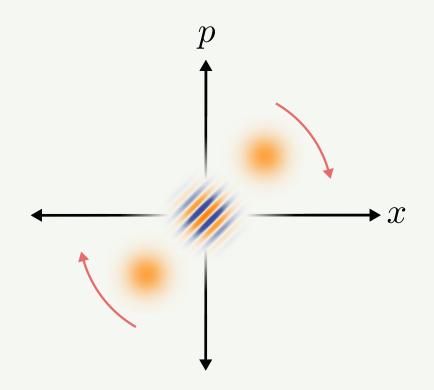
From Tsirelson's dusty arXivs, we ask the question:

How often is the coordinate of a harmonic oscillator positive?

Boris Tsirelson

Cite as: arXiv:quant-ph/0611147

Quantum Time Evolution



"How often is the coordinate of a harmonic oscillator positive?"

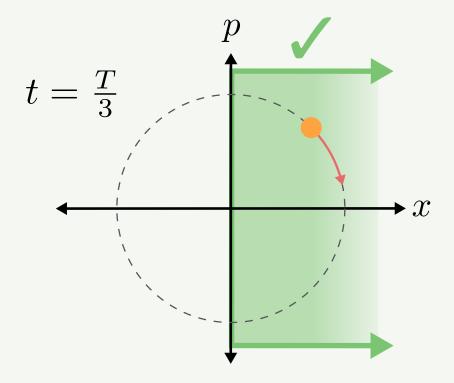
Assumptions: We have one (1) harmonic oscillator with period T

For each round,

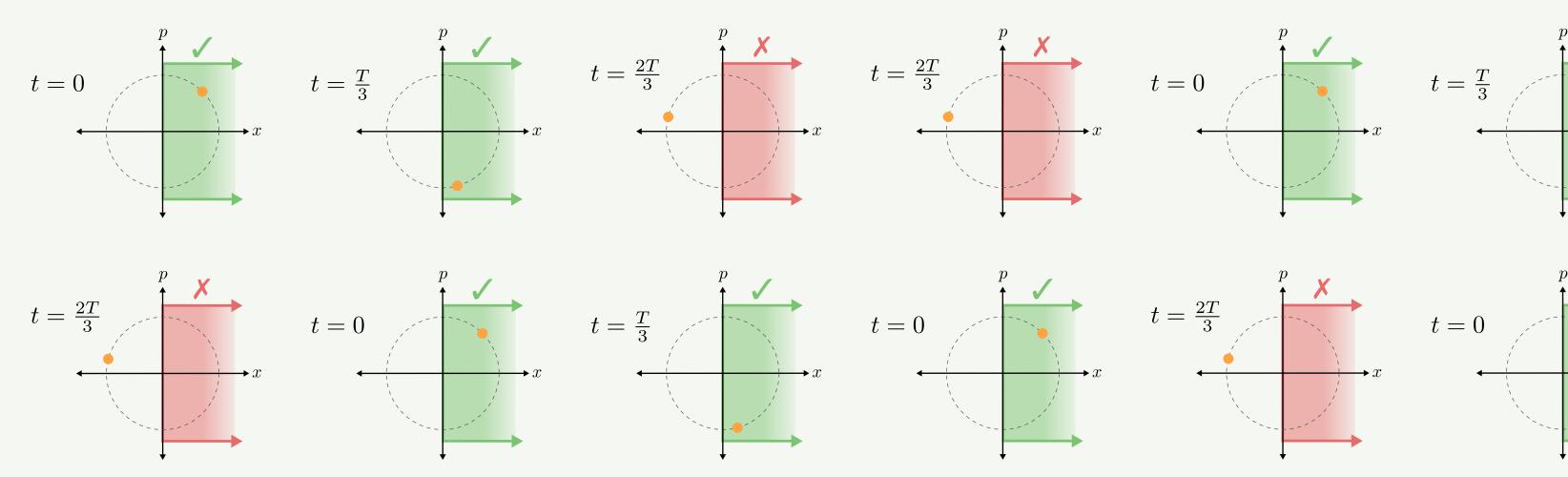
- 1. Prepare the system in some state
- 2. Wait for a duration $t \in \{0, \frac{T}{3}, \frac{2T}{3}\}$ (chosen randomly)
- 3. Measure the position of the system: Is x(t) > 0?

After many rounds: $P_3 =$ "how likely is x > 0?"

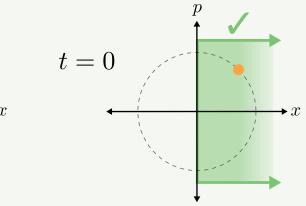
Comment: Each round has system reset, or performed on ensemble of identical oscillators — no sequential measurements!

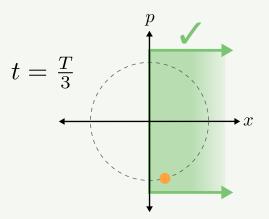


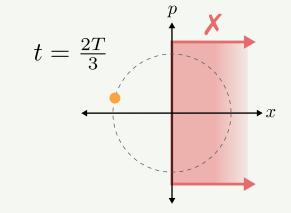
"How often is the coordinate of a harmonic oscillator positive?"

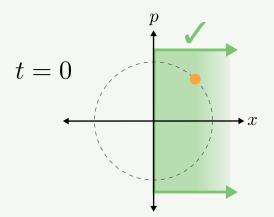


After many rounds: how likely is x > 0?

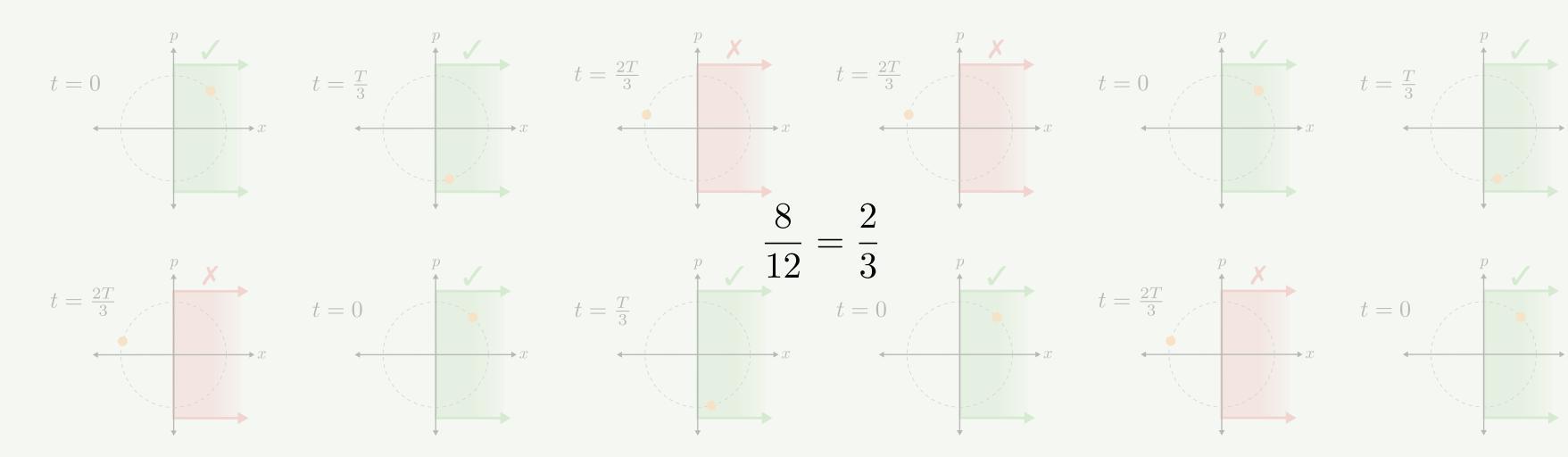






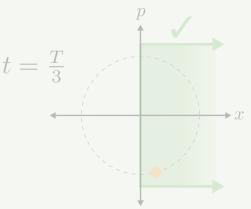


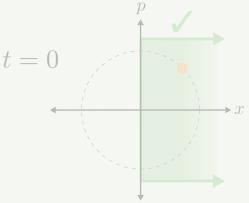
"How often is the coordinate of a harmonic oscillator positive?"



After many rounds: how likely is x > 0?

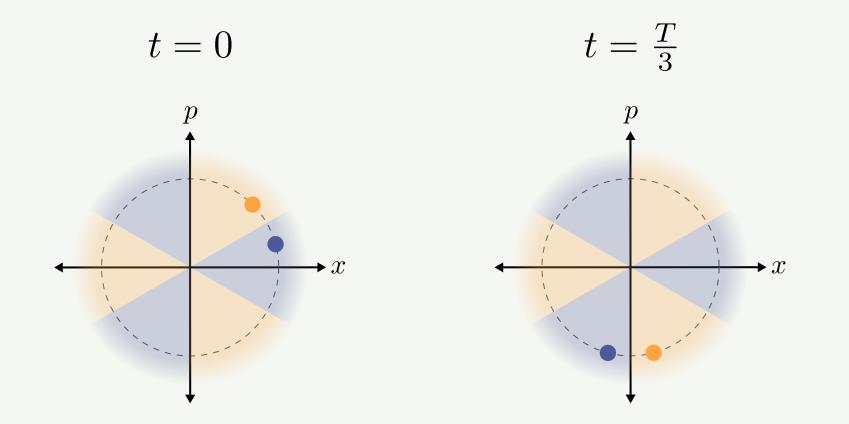
 $P_3 = \frac{1}{3} \operatorname{pos}(x(0)) + \frac{1}{3} \operatorname{pos}(x(\frac{T}{3})) + \frac{1}{3} \operatorname{pos}$





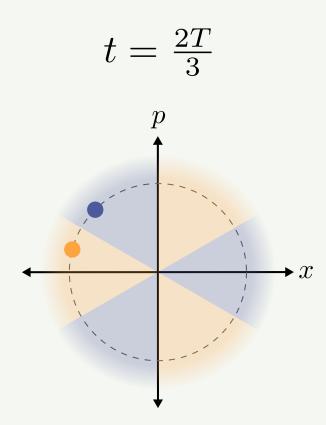
$$\cos\left(x(\frac{2T}{3})\right)$$

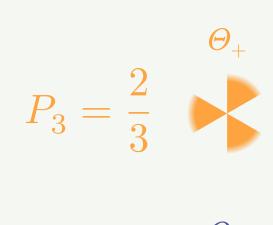
Classical bound of P_3



$$P_3 = \frac{1}{3} \operatorname{pos}(x(0)) + \frac{1}{3} \operatorname{pos}\left(x(\frac{T}{3})\right) + \frac{1}{3}$$

For any classical state $\rho(x, p)$, $\frac{1}{3} \le P_3 \le \frac{2}{3} \equiv \mathbf{P}_3^c$

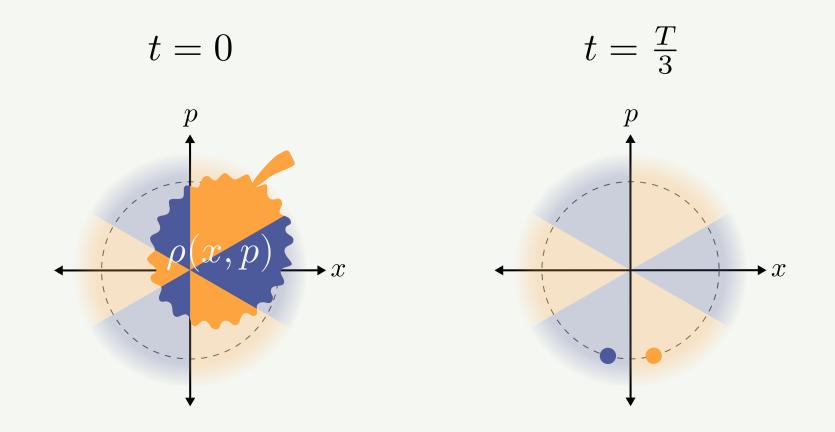




 $P_3 = \frac{1}{3} \quad \checkmark$

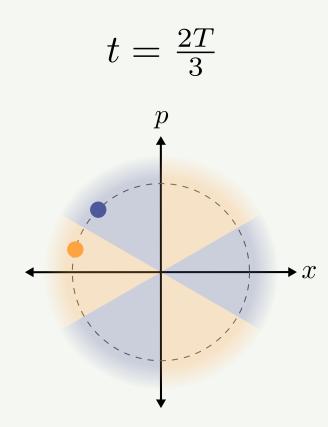
 $\operatorname{pos}(x(\frac{2T}{3}))$

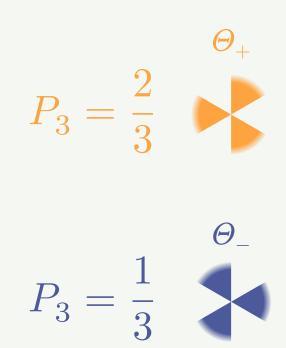
Classical bound of P_3



For any classical state $\rho(x, p)$, define $\mathcal{I}_{\pm} \equiv \int_{\theta \in \Theta_{\pm}} d\theta \int r \, dr \, \rho(x, p)$

$$P_3^c = \frac{2}{3}\mathcal{I}_+ + \frac{1}{3}\mathcal{I}_-$$





The quantum case

Wigner function W(x, p) takes the place of the joint probability density

$$\Pr(x > 0) = \int_0^\infty \mathrm{d}x \int_{-\infty}^\infty \mathrm{d}p \, W$$

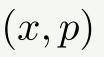
Time evolution is precession in phase space

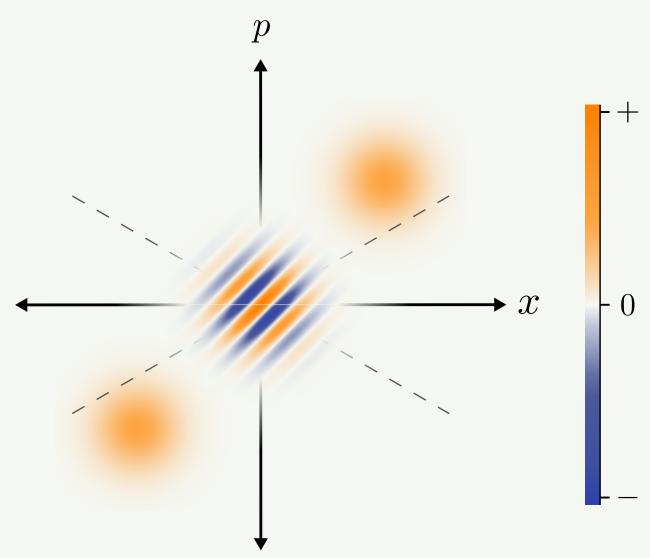
Following the same arguments as before,

$$\mathcal{I}_{\pm} \equiv \int_{\theta \in \Theta_{\pm}} \mathrm{d}\theta \int r \,\mathrm{d}r \,W(x,p)$$

$$P_3^{\infty} = \frac{2}{3}\mathcal{I}_+ + \frac{1}{3}\mathcal{I}_-$$

Then, what's the difference between the two?





Violating the classical bound

Position and momentum are incompatible observables $[X, P] \neq 0$: W(x, p) is a *quasi*probability distribution

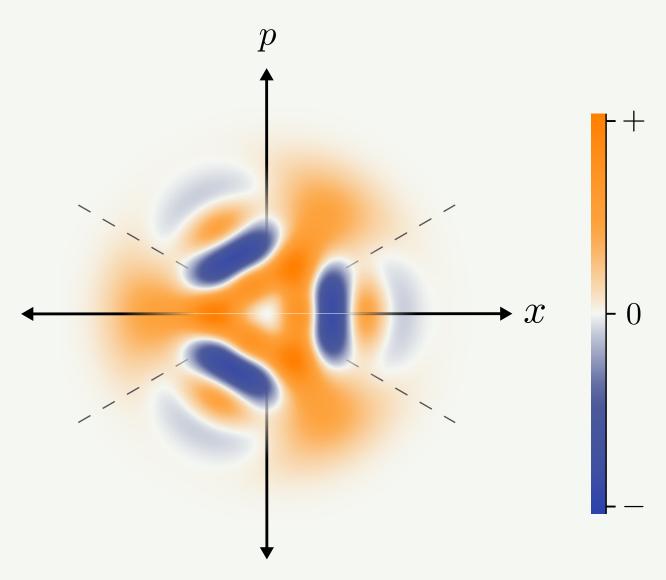
Negative values are allowed, if marginals are probabilities

What if we concentrate the negativity into Θ_{-} ?

$$P_3^{\infty} = \frac{2}{3}\mathcal{I}_+ + \frac{1}{3}\mathcal{I}_-$$

 $\mathcal{I}_{-} < 0 \implies \mathcal{I}_{+} > 1$ (from normalisation)

$$\implies P_3^{\infty} > \frac{2}{3} = \mathbf{P}_3^c$$



Violating the classical bound

Position and momentum are incompatible observables $[X, P] \neq 0$: W(x, p) is a *quasi*probability distribution

Negative values are allowed, if marginals are probabilities

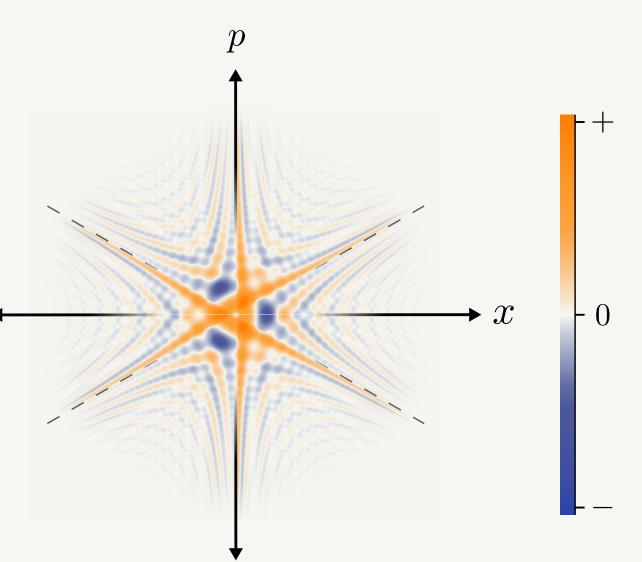
What if we concentrate the negativity into Θ_{-} ?

$$P_3^{\infty} = \frac{2}{3}\mathcal{I}_+ + \frac{1}{3}\mathcal{I}_-$$

Largest quantum violation for $E < 2101\hbar\omega$

 $\mathbf{P}_3^{\infty} \gtrsim 0.709 > \mathbf{P}_3^c$

Quantum harmonic oscillators can beat the classical bound!



Certifying quantumness with precessions in harmonic systems

Assumptions: 1. Dynamics of the system is a uniform precession 2. Period of the system is known

Protocol: For each round, 1. Prepare the system

3. Measure the position x(t)

After many rounds: $P_3 =$ "how likely is x > 0?"

If $P_3 > \mathbf{P}_3^c = \frac{2}{3}$, the harmonic oscillator is quantum

Quantum–classical gap allows us to certify nonclassicality

No need for sequential or simultaneous measurements!

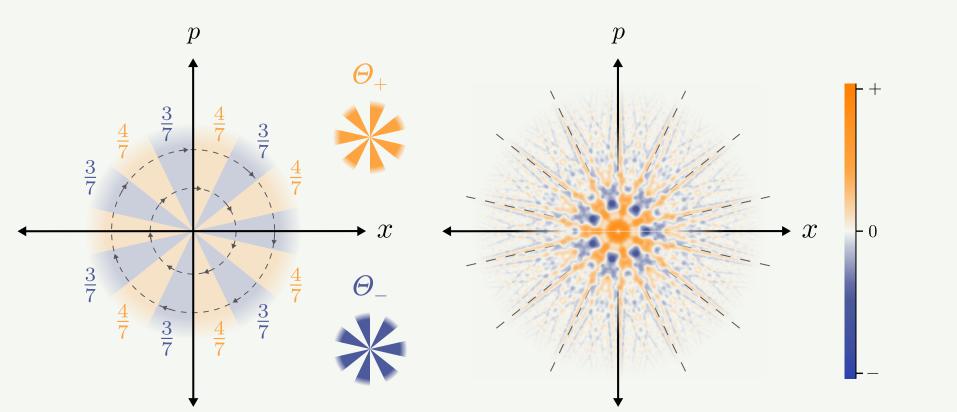
- 2. Randomly wait a duration $t \in \{0, \frac{T}{3}, \frac{2T}{3}\}$

Generalisation of protocol

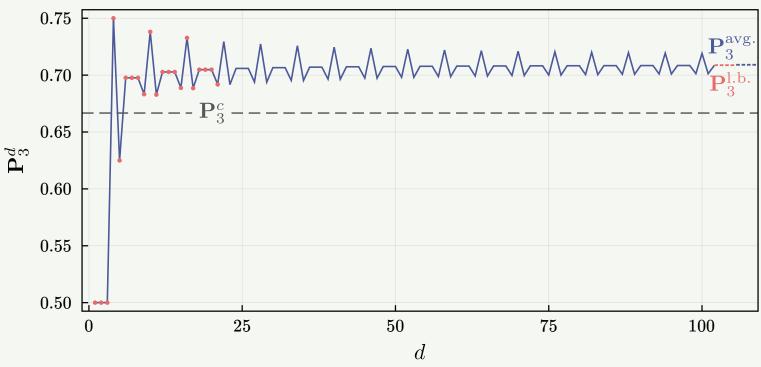
Protocol with K times

$$P_{K} = \frac{1}{K} \sum_{k=0}^{K-1} \Pr\left(x(\frac{kT}{K}) > 0\right) \qquad \qquad J_{x}(t) =$$

- Quantum–classical gap exists for all *K* odd
- Non-trivial (but loose) upper bound for \mathbf{P}_{K}^{∞}



- Gap exists for all *j*, excluding j = 0, 1/2, 1, 2
- $\mathbf{P}_3^4 = 3/4$: conjectured to be the largest



Precession in Real Space (Spins)

$$H = -\omega J_z$$

 $= \cos(\omega t) J_x(0) + \sin(\omega t) J_y(0)$

Generalisation of protocol

Uniform Precessions of Effective Oscillators

• Sum of variables precessing with the same frequency are uniformly precessing

$$H = -\omega \left(J_z^{(1)} + J_z^{(2)} \right) \qquad P_K = \frac{1}{K} \sum_{k=0}^{K-1} \Pr \left(J_x^{(1)}(t_k) + J_x^{(2)}(t_k) > 0 \right)$$

• Protocol with total angular momentum: maximally-violating state is always entangled

$$H = \sum_{j=1}^{2} \left(\frac{p_j^2}{2m} + \frac{1}{2} m_j \omega_j^2 x_j^2 \right) - g x_1 x_2 = \sum_{\sigma \in \{+,-\}} \frac{p_\sigma^2}{2\mu} + \frac{1}{2} \mu \omega_\sigma^2 x_\sigma^2 \qquad P_K = \frac{1}{K} \sum_{k=0}^{K-1} \Pr(x_\sigma(t_k) > 0)$$

• Protocol with two harmonic oscillators: does a violation in the normal mode tell us anything about the entanglement?

Witnessing entanglement with uniform precessions

Assumptions: 1. System consists of two harmonic oscillators

$$H = \sum_{j=1}^{2} \left(\frac{p_j^2}{2m_j} + \frac{1}{2} m_j \omega_j^2 x_j^2 \right) - g x_1 x_2 = \sum_{\sigma \in \{+,-\}} \frac{p_\sigma^2}{2\mu} + \frac{1}{2} \mu \omega_\sigma^2 x_\sigma^2$$

2. Period of the normal modes are T_{σ}

Protocol: For each round, 1. Prepare the system

After many rounds: $P_3 =$ "how likely is $x_{\sigma} > 0$?"

We already know that $P_3^c \leq \mathbf{P}_3^c = \frac{2}{3}$ for classical states

What about the values of P_3 for *separable* states?

2. Randomly wait a duration $t \in \{0, \frac{T_{\sigma}}{3}, \frac{2T_{\sigma}}{3}\}$ 3. Measure the positions $x_1(t), x_2(t)$

Quantum violation of separable states

Consider a separable state and its corresponding Wigner function

$$\rho = \sum_{k} p_k \ \rho_1^{(k)} \otimes \rho_2^{(k)}$$

$$W_{\rho}(x_1, p_1; x_2, p_2) = \sum_k p_k W_{\rho_1^{(k)}}(x_1, p_1) W_{\rho_2^{(k)}}(x_2, p_2)$$

Consider the special case
$$x_+ \propto \left(\frac{m_1}{m_2}\right)^{\frac{1}{4}} x_1 + \left(\frac{m_2}{m_1}\right)^{\frac{1}{4}} x_2$$

Then, the above state has the reduced Wigner function

$$W_{\text{tr}_{-}(\rho)}(x_{+}, p_{+}) = \frac{1}{\pi\hbar} \sum_{k} p_{k} \operatorname{tr}\left(\rho_{1}^{(k)} U(x_{+}, p_{+})\rho_{2}^{(k)} U^{\dagger}(x_{+}, p_{+})\right)$$

for some unitary $U(x_+, p_+)$.

$$\Big)^{\frac{1}{4}}x_2$$

Quantum violation of separable states

$$\rho = \sum_{k} p_k \ \rho_1^{(k)} \otimes \rho_2^{(k)}$$

$$W_{\text{tr}_{-}(\rho)}(x_{+}, p_{+}) = \frac{1}{\pi\hbar} \sum_{k} p_{k} \operatorname{tr}\left(\rho_{1}^{(k)} U(x_{+}, p_{+})\rho_{2}^{(k)} U^{\dagger}(x_{+}, p_{+})\right)$$

Since $W_{\rho}(x_+, p_+) \ge 0$ permits a classical description, it cannot violate the classical bound

 $\rho \text{ is separable } \Longrightarrow P_3 \leq \mathbf{P}_3^c = \frac{2}{3}$

or conversely

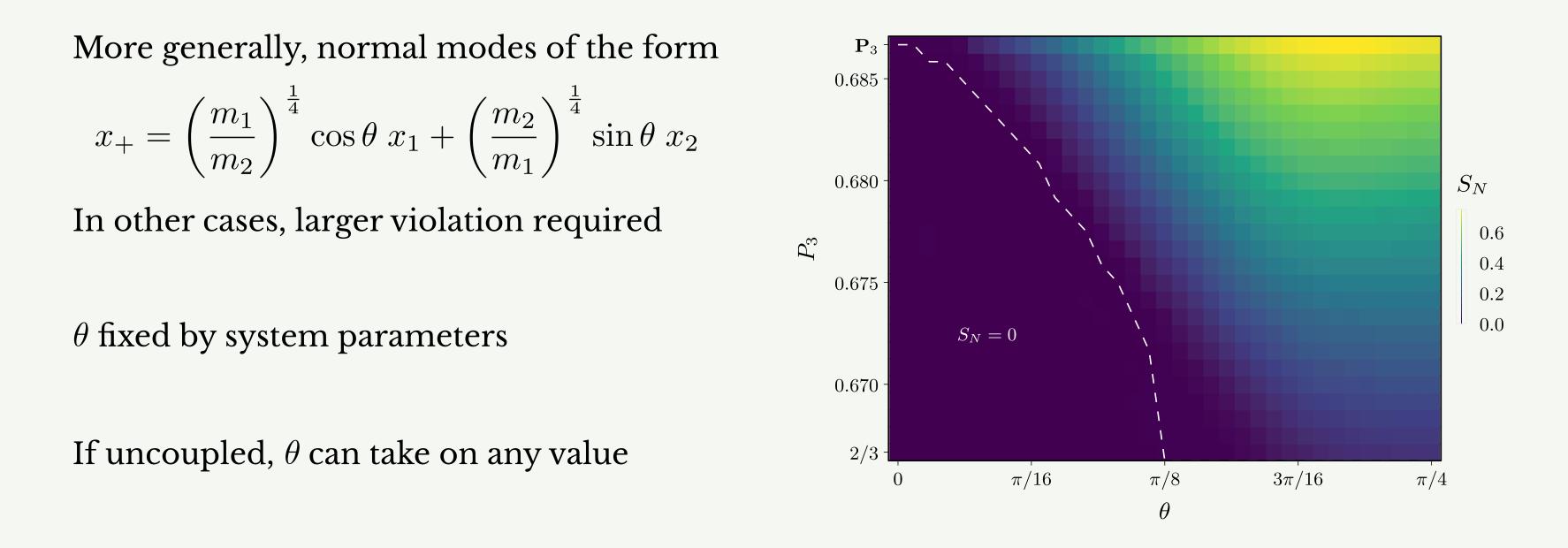
$$P_3 > \mathbf{P}_3^c = \frac{2}{3} \implies \rho \text{ is } not \text{ separ}$$

If $P_3 > \mathbf{P}_3^c = \frac{2}{3}$, the harmonic oscillators are entangled

rable

Other aspects of our entanglement witness

The criterion works for any *K* odd; entangled if $P_K > \mathbf{P}_K^c$



Motivation for an alternative entanglement witness

Commonly used criteria for entanglement based on quantum uncertainty relations

For example, Duan et al. [arXiv:quant-ph/9908056]: for some real number c, define

$$u \equiv |c|\tilde{x}_1 + \frac{1}{c}\tilde{x}_2 \qquad v \equiv |c|\tilde{p}_1 - \frac{1}{c}\tilde{p}_2 \qquad \qquad \tilde{x}_j \equiv x_j\sqrt{\frac{m_j\omega_j}{\hbar}} \qquad \tilde{p}_j \equiv \frac{p_j}{\sqrt{m_j\hbar\omega_j}}$$

The state is entangled if $\left\langle (\Delta u)^2 \right\rangle + \left\langle (\Delta v)^2 \right\rangle < c^2 + \frac{1}{c^2}$ For any sufficiently pure classical states, $\left\langle (\Delta u)^2 \right\rangle + \left\langle (\Delta v)^2 \right\rangle$

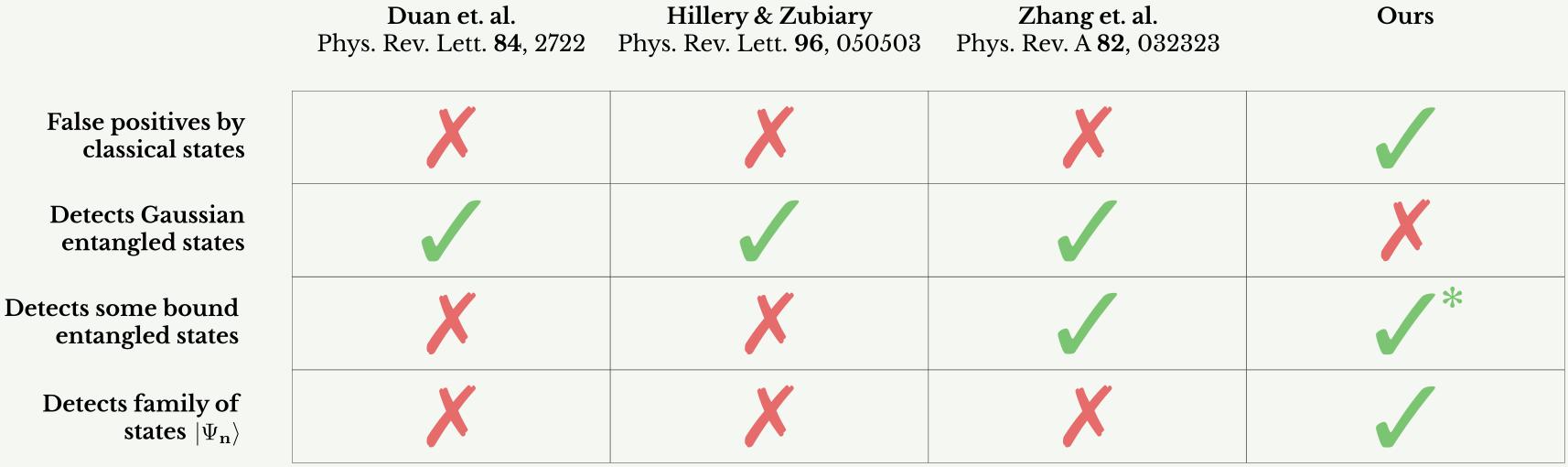
Requires measurement precision set by \hbar , open to false positives by classical states

These issues become important as entanglement of mesoscopic/macroscopic objects become possible

$$)^2 \Big\rangle \to 0$$

Comparison with other entanglement witnesses

Generally, our criterion is useful in some cases, while other criteria might be useful in others



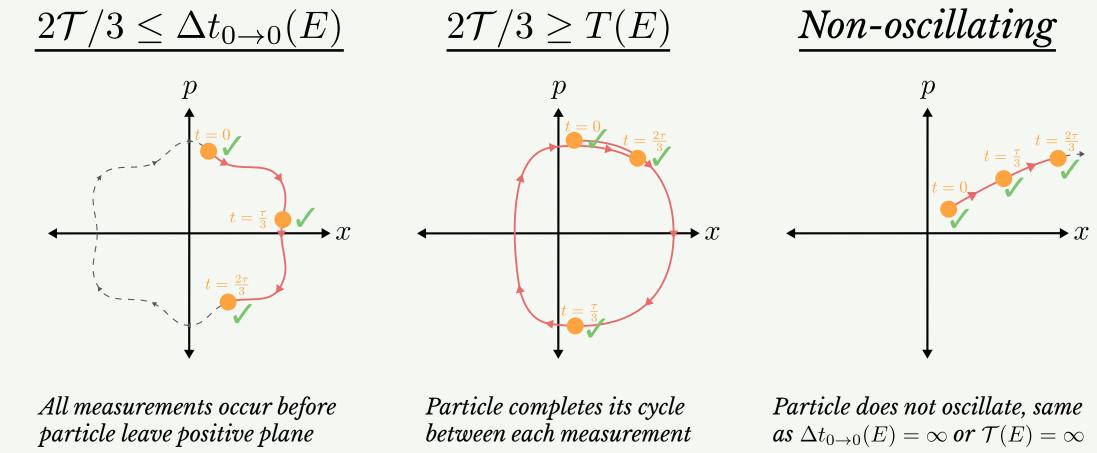
$$|\Psi_{\mathbf{n}}\rangle = \sum_{j=0}^{\mathbf{n}K} \sum_{n=\lfloor\frac{j}{K}\rfloor}^{\mathbf{n}} \psi_n \sqrt{\binom{nK}{j}} (\cos\theta)^{nK-j} (\sin\theta)^j |nK|^2$$

 $|K-j\rangle \otimes |j\rangle$, $|\psi_0| < 1$

Certifying quantumness with precessions in... anharmonic systems?

No fixed period T: Replace T with some choice of \mathcal{T} ; measure at times $t \in \{0, \frac{T}{3}, \frac{2T}{3}\}$

Classical bound can be 1: When period of oscillation is too large or too small



Limit energy range $E_{\min} < E < E_{\max}$ where these "bad cases" do not happen

Certifying quantumness with precessions in anharmonic systems

Assumptions: 1. Dynamics of the system is given by a Hamiltonian H(x, p)

2. Parameters (ω_0, α, \ldots) of the system are known

3. Energy of the system is bounded $E_{\min} < E < E_{\max}$

Protocol: For each round, 1. Prepare the system

3. Measure the position x(t)

After many rounds: $P_3 =$ "how likely is x > 0?"

If $P_3 > \mathbf{P}_3^c = \frac{2}{3}$, the anharmonic system is quantum

If a "good" choice of $\mathcal{T}, E_{\min}, E_{\max}$ can be made!

- 2. Randomly wait a duration $t \in \{0, \frac{T}{3}, \frac{2T}{3}\}$

Anharmonic example: Kerr-like Hamiltonian

$$H(x,p) = H_0(x,p) + \frac{\alpha}{2\hbar\omega^2} H_0^2(x,p) \quad \text{where} \quad H_0(x,p) = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2$$

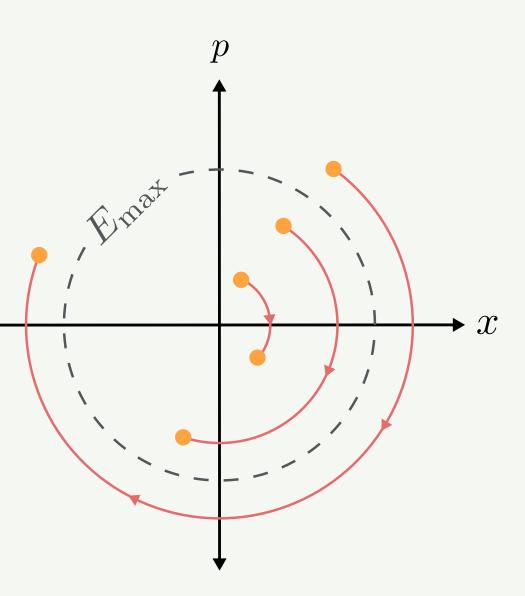
Describes systems with Kerr nonlinearities, transmon systems in the dispersive regime

Classical solution given by

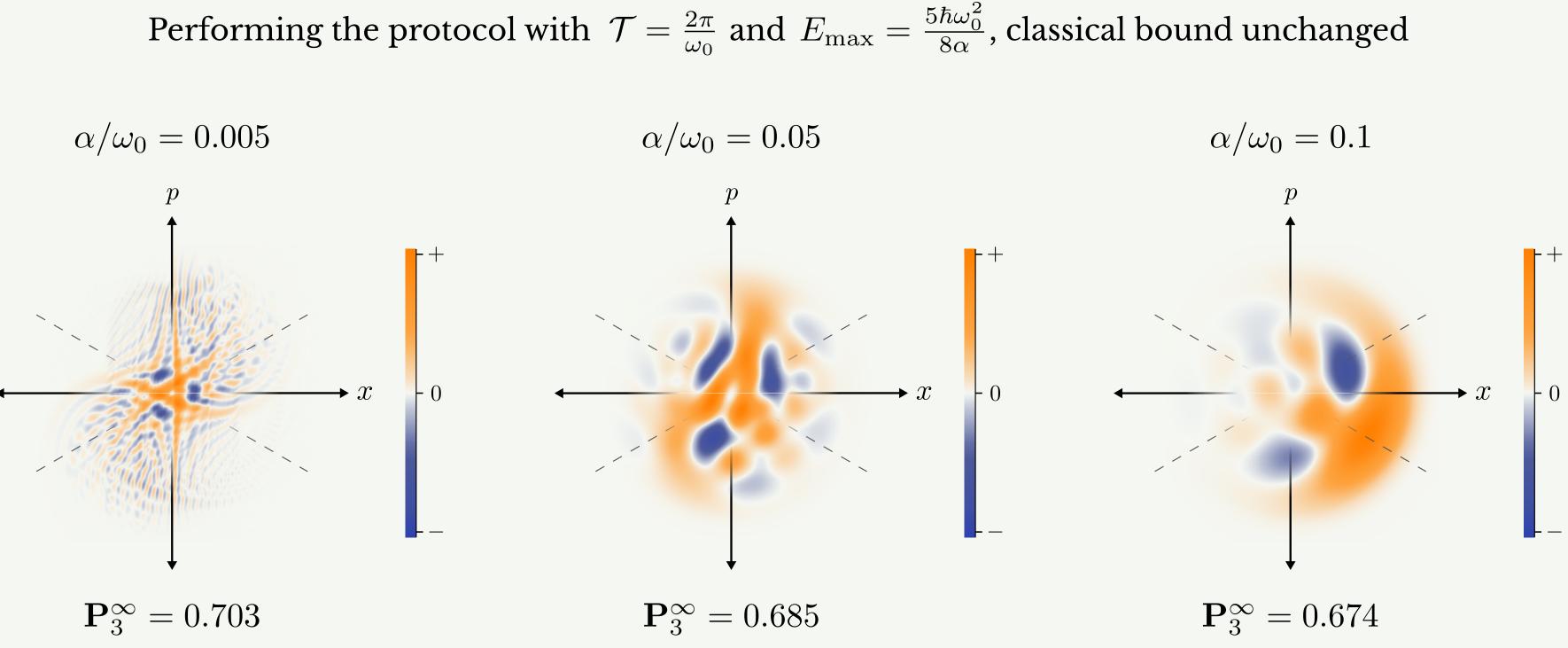
$$x(t) = x(0)\cos(\omega(E)t) + \frac{p(0)}{m\omega}\sin(\omega(E)t)$$

With energy-dependent frequency

$$\omega(E) = \sqrt{1 + \frac{2\alpha E}{\hbar\omega_0^2}}\omega_0$$



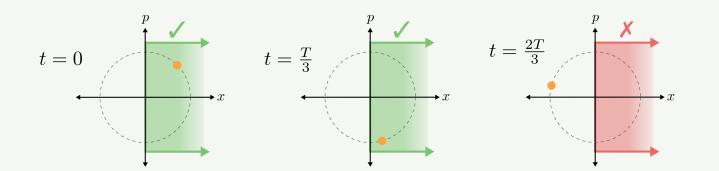
Anharmonic example: Kerr-like Hamiltonian



No quantum gap when $\alpha/\omega_0 \ge 1/9$

Conclusion

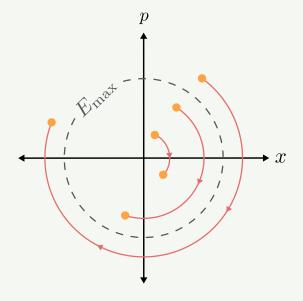
• To detect quantumness: Ask "How often is the coordinate of a uniformly-precessing variable positive?"



• To witness entanglement: Weighted sum of coordinates of two harmonic oscillators

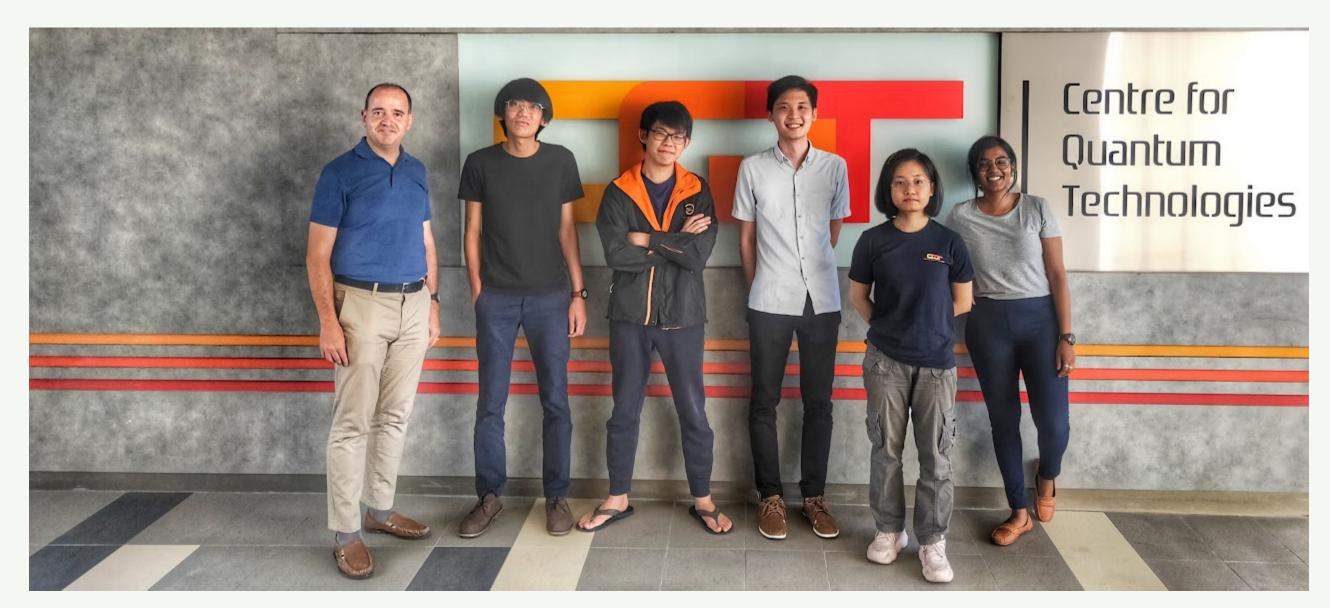
$$P_K = \frac{1}{K} \sum_{k=0}^{K-1} \Pr(\sqrt{w_1} x_1(t_k) + \sqrt{w_2} x_1(t_k)) + \sqrt{w_2} x_1(t_k) + \sqrt{w_2} x_1(t_k)$$

• For anharmonic systems: Include assumption of energy bounds



 $c_2(t_k) > 0)$

Thank you for your attention!



Peter Sidajaya Valerio Scarani Zaw Lin Htoo Meng Shuyang Clive Cenxin Aw Pooja Jayachandran

Special thanks: Miguel Navascués for bringing Tsirelson's paper to our attention