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What is quantum about a quantum harmonic oscillator?

Discrete Energy Levels

Zero-point Motion

Heisenberg Uncertainty

Classical systems can exhibit
the same behaviour

Bell Inequalities

With multipartite systems

Leggett–Garg, Noncontextual Inequalities

With sequential/compatible measurements

Negative “Probabilities”

From state tomography

System must be quantum
to exhibit these behaviours



What is not quantum about a quantum harmonic oscillator?

Classical Time Evolution Quantum Time Evolution

Time evolution of the quantum harmonic oscillator is as classical as it gets!



What is not quantum about a quantum harmonic oscillator?

Classical Time Evolution Quantum Time Evolution

From Tsirelson’s dusty arXivs, we ask the question:

How often is the coordinate of a harmonic oscillator positive?

Boris Tsirelson

Cite as: arXiv:quant-ph/0611147



“How often is the coordinate of a harmonic oscillator positive?”

Assumptions: We have one (1) harmonic oscillator with period T

For each round,

1. Prepare the system in some state

2. Wait for a duration
     (chosen randomly)

3. Measure the position of the system:
    Is                ?

A�er many rounds:           “how likely is           ?”

✓

Comment: Each round has system reset, or performed on ensemble of
                     identical oscillators — no sequential measurements!



“How often is the coordinate of a harmonic oscillator positive?”

A�er many rounds: how likely is           ?

✓ ✓ ✗ ✗ ✓ ✓

✗ ✓ ✓ ✓ ✗ ✓



“How often is the coordinate of a harmonic oscillator positive?”

A�er many rounds: how likely is           ?

✓ ✓ ✗ ✗ ✓ ✓

✗ ✓ ✓ ✓ ✗ ✓



Classical bound of      

Θ+

Θ−

For any classical state           ,



Classical bound of      

Θ+

Θ−

For any classical state            , define



The quantum case

Wigner function                takes the place of the joint probability density

Time evolution is precession in phase space

Following the same arguments as before,

Then, what’s the difference between the two?



Violating the classical bound

Position and momentum are incompatible observables                  :
              is a quasiprobability distribution

Negative values are allowed, if marginals are probabilities

What if we concentrate the negativity into     ?

(from normalisation)



Violating the classical bound

Position and momentum are incompatible observables                  :
              is a quasiprobability distribution

Negative values are allowed, if marginals are probabilities

What if we concentrate the negativity into     ?

Largest quantum violation for

Quantum harmonic oscillators can beat the
classical bound!



Certifying quantumness with precessions in harmonic systems

Assumptions: 1. Dynamics of the system is a uniform precession

2. Period of the system is known

Protocol: For each round, 1. Prepare the system

2. Randomly wait a duration 

3. Measure the position 

A�er many rounds:           “how likely is           ?”

If                            , the harmonic oscillator is quantum

Quantum–classical gap allows us to certify nonclassicality

No need for sequential or simultaneous measurements!



Generalisation of protocol

Protocol with K times Precession in Real Space (Spins)

• Quantum–classical gap exists for all     odd

• Non-trivial (but loose) upper bound for       

• Gap exists for all  , excluding 

•                 : conjectured to be the largest
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Certifying quantumness with precessions in... anharmonic systems?

No fixed period    : Replace     with some choice of    ; measure at times

Classical bound can be 1: When period of oscillation is too large or too small

All measurements occur before
particle leave positive plane

✓

✓

✓

✓ ✓

✓

Particle completes its cycle
between each measurement

Non-oscillating

✓
✓ ✓

Particle does not oscillate, same
as                           or

Limit energy range                                 where these “bad cases” do not happen



Certifying quantumness with precessions in anharmonic systems

Assumptions: 1. Dynamics of the system is given by a Hamiltonian

2. Parameters                     of the system are known

3. Energy of the system is bounded

Protocol:

3. Measure the position 

A�er many rounds:           “how likely is           ?”

For each round, 1. Prepare the system

2. Randomly wait a duration 

If                            , the anharmonic system is quantum

If a “good” choice of                          can be made!



Anharmonic example: Kerr-like Hamiltonian

Describes systems with Kerr nonlinearities, transmon systems in the dispersive regime

where

Classical solution given by

With energy-dependent frequency



Anharmonic example: Kerr-like Hamiltonian

No quantum gap when 

Performing the protocol with and , classical bound unchanged



Conclusion

• To detect quantumness: Ask “How o�en is the coordinate of a uniformly-precessing variable positive?”

• For anharmonic systems: Include assumption of energy bounds

• To witness entanglement: Weighted sum of coordinates of two harmonic oscillators

✓ ✓ ✗




