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Notation and conventions

e Hilbert spaces (Ha,Hp,...) are all finite-dimensional

e set of non-negative linear operators: P(H ), P(Hp),. ..

e the word “state” denotes normalized density matrices (pa,04,...)

e set of density matrices: D(H ), D(Hp),. ..

e support: supppa = (kerpa)*

e quantum channels £ : A — B are completely positive trace-preserving
(CPTP) linear maps from operators on H 4 to operators on Hp

e trace-dual map ! : B — A is defined by
Tr[€(X ) Y] = Tr[X 4 ET(YR)] for all linear operators X4 and Yp

e identity operator: 1 4; identity channel: id; maximally mixed state:
wap = dzlllA
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Recommended references

F. Dupuis, L. Kraemer, P. Faist, J. M. Renes, and R. Renner: Generalized

Entropies. Freely available on the arXiv at
https://doi.org/10.48550/arXiv.1211.3141

e V. Tomamichel: Quantum Information Processing with Finite Resources
— Mathematical Foundations. Freely available on the arXiv at
https://doi.org/10.48550/arXiv.1504.00233

e S. Khatri and M. M. Wilde: Principles of Quantum Communication
Theory: A Modern Approach. Freely available on the arXiv at
https://doi.org/10.48550/arXiv.2011.04672

please refer to the above references’ bibliography also for the right credits

to give for each definition and result introduced here
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In a zoo there are many animals:
they all have their role
and they are all beautiful



Basic information-theoretic quantities

e von Neumann entropy:
pa € D(Ha) ~ H(A), = —Tr{palog, pa}
e quantum conditional entropy:
paB € D(Ha®Hp) ~ H(A|B),:= H(AB), — H(B),
e quantum mutual entropy:
paB €E D(HAa®Hp) ~ I(A;B),:=H(A),+ H(B), — H(AB),
e quantum conditional mutual information:

pasc € D(Ha®Hp@Hc) ~ I(A;C|B), .= H(A|B), + H(C|B), — H(AC|B),

3/38



In fact, they all arise from one single quantity



' quantum relative entropy: Kullback—Leibler—-Umegaki relative

entropy

Definition
Let p€ D(H), Q € P(H), and Q. := Q + €l; the
is given by

D(pl|Q) = lim Tr {plog, p— plog, Qc} -
e—0t

Useful properties:
e Klein's inequality: Tr{p} > Tr{Q} = D(p||Q) >0
e p=<Q = D(pllQ) <0
e Q<@ = D(plQ) = D(pllQ")
° ¢c>0 = D(pllcQ) +logy c = D(p||Q)
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How other quantities arise from KLU relative entropy

e von Neumann entropy: H(A), = —D(palll4)
e quantum conditional entropy:
H(A|B), = —D(paplla ® pp) = —infy,epn,) D(papllla ® op)
e quantum mutual information:
I(A; B), = D(paBllpa®pB) = info,ep(34),rseD(3s) D(paABlloARTE)
e quantum conditional mutual information:

I(A,C|B)p = D(pABc”O'ABc) where

TABC = glogs(pap®@lc)+log(la®ppc)—loga(La®pp®lc)
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Natural properties of KLU relative entropy

e positivity on states: for any p,o € D(H), D(p|lo) >0
e faithfulness: for any p,o € D(H), D(p|lo) =0 < p=o0

e data-processing (DP) property: for any p € D(H), any Q € P(H), and
any quantum channel &€, D(p||Q) > D(E(p)|IE(Q))
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The role of the data-processing property

In particular, the DP property of KLU relative entropy is very useful to prove
inequalities.

e example (mathematics): I(A;C|B), > 0 (strong subadditivity). Proof:

I(A;C|B), = H(A|B), + H(C|B), — H(AC|B),
— H(C|B), - H(C|AB),
= D(pascllpas ® 1c) — D(pscllps ® 1c)
= D(pascllpas ® wc) — D(pscllps ® we)
>0,

where the last inequality comes from taking the partial trace over A
e example (physics): T'y = Z~le=A%a,
D(pallTa) = B(F — (#a),) — H(A),, hence, for a channel such that
E(T4) =T4,
AH(A) > —BA(HA)
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Is the KLU relative entropy “unique”?

~> Rényi’'s axiomatic approach



Petz—Rényi relative entropies

Definition
Let pe D(H), Q € P(H), and Q. := Q + €l; for all o € (0,1) U (1, +00),
the is defined as
1 —a
Da(pllQ) = lim —— log, T{p* Q1) .

o : for all p,o € D(H), D, (p||(7):0 — p=o0

. ra<d = Da(pllQ) < Do (pllQ)

o : for any a € (0,1) U (1,2], any p € D(H), any Q € P(H),

and any channel &, D, (p||Q) > Do (E(p)||IE(Q))
e for any p € D(H) and any Q € P(H),
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“Sandwiched” Rényi relative entropies

Definition
Let pe D(H), Q € P(H), and Q. := Q + €l; for all o € (0,1) U (1, +00),
the is defined as

Da(pllQ): = lim — bgﬂr{(Q}z“pQ;g;ﬂ)a}

e—0t o — 1

1
lim

a d=e g \®
tim Lo, e { (o @ 01

° - for all p,o € D(H), Du(pllo) =0 < p=0c
. ra<ad = Da(pllQ) < Do (pllQ)
° : for any a € [3,1) U (1,400), any p € D(H), any

Q € P(H), and any channel &, Do (p||Q) = Da(E()|E(Q))
e forany p € D(H) and any Q € P(H),

~ 2
o forany p,o € D(H), Di(pllo) = —log, H\/ﬁﬁul = o058



Geometric Rényi relative entropies

Definition
Let p € D(H), Q@ € P(H), and Q. := Q + €l; for all @ € (0,1) U (1, +00),
the is defined as

= . 1 1 1 \“
Dalpll@) := lim 2= log, Tr {“@ (@”@) “@} |

B (0llQ) = D (o]l Q) i
o : forall p,oc € D(H), Do(pllo) =0 <= p=o0
O ra<ad = f)u(p”Q) < ﬁu’(p”Q)
. : forany a € (0,1)U (1,2], any p € D(H), any Q € P(H),
and any channel &, D, (p||Q) > Do (E(p)||E(Q))
for &« — 1 does not converge to KLU relative entropy, but to

: lima1 Da(pl|Q) = Tr{plogy(y/pQ 1 /5))
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Fundamental relation between generalized quantum Rényi relative

entropies

Theorem
For any p € D(H), any Q € P(H), and any a € (0,1) U (1, +00), if

’

Da(pllQ) = Da(p|lQ) = Da(pllQ) -
If , then for any a € (0,1) U (1,2]:

Da(plQ) < DalpllQ) < DalpllQ) -

Moreover: any “natural” quantum generalization of the classical Rényi
relative entropies
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With so many entropies,
which is the “right” one to use?

It depends...



Example: the quantum Chernoff bound

one ~ SL oF Wwa copres

B E-o-b-

e guessing probability:

Pguess(p7 P U) ‘= MaxXo<E<1 Tr {pEP + (]— - p)(]l - E)U}
e intuition: the more copies are given, the more distinguishable the states

become, that is, Pyuess(p, p27,0%") 2225 1
e question: how fast?
e answer (quantum Chernoff bound):

limy, 00 — 2 10gy [1 — Pauess(p, p2",0%™)] = C(p, o) where

C(pllo) := sup —log, Tr{p® o'7*} .
g(0,1)
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Instead, the cases o — 0 and o — co become
particularly useful in the finite block-length
regime



“min” and “max” quantum relative entropies

Definition
Let p € D(H) and Q € P(H) the

are defined as

DuinlpllQ) = lim DalplQ) . (= DalellQ))
Dmax(p||Q) := ah_)ngo 50&@”@) @
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The max-relative entropy

Theorem
For p € D(H) and Q € P(H), if suppp C suppQ, we have

Dmax(pHQ) - 1Og2 )‘max(\/ﬁQ_l\/ﬁ)
= log, inf{\: p < \Q}

= log, sup Te{Mp} ;
M>0: Tr{MQ}<1

otherwise Dyax(p||Q) := +o0.

e for any p € D(H) and any Q € P(H),

o s for all p,o € D(H), Dmax(pllo) =0 <= p=o0o

° : for any p € D(H), any Q € P(H), and any channel &,
Dumax(pl|Q) > Dmax(E(p)[IE(Q))
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The min-relative entropy

Theorem
For p € D(H) and Q € P(H), we have

Dinin(p[|Q) = —log, Tr{II, Q} .

o : for any p € D(H), any Q € P(H), and any channel &,
e itis faithful: Dyin(pllc) =0 =5 p=o
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71%€ J) > 3 : Hilbert a-divergences B

Definition (F.B. and G.Gour, PRA, 2017)
For any p,o € D(H) and any o > 1, the is defined as

Tr{E
a log,  sup H{Ep}

H, = .
(p”g) a—1 a~11<E<1 Tr{EO'}

° : for all p,o € D(H) and all « > 1,
Ha(pllo) =0 <= p=o0

° : for any a > 1, any p,o € D(H), and any channel &,
Ha(pllo) > Ho(E(p)|IE(0))

limg 00 Ha(PHU) = DmaX(pHU)

lim, 1+ Ha(pllo) = 5155 |p — ol; (i-e., a Brégman divergence!)
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Smoothing and conditioning



e “smoothing”, in the context of quantum information entropies, means
to make the quantity continuous in its left argument

e think in particular about Dmin(p||c) = —log, Tr{Il,c}, which is not
continuous in p

e this is important both mathematically (to deal with limits etc.) and
technologically (because there is always error in the characterization of
states)

e ‘“conditioning” instead is the process of updating information-theoretic
quantities when side-information is available

e both smoothing and conditioning are treated as optimizations over some
sets (i.e., as entropic projections)
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How to smooth?

Definition (State-smoothing and operator-smoothing)
For any p € D(H), let us define

)

Bi(p) ={0<P<1:Tr{Pp}>1—¢}.
Then, for any Q € P(H),

= 1nf( ) Drax (0]|Q)

pEB-

mm(p”Q) D;—I(ﬂ”Q) = 10g2 PEIE*(p) TI{P Q} .

€

The quantity D% (p||@Q), now known as , was
originally introduced in [F.B. and N. Datta. IEEE Trans. Inf. Th. (2010)] as the
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The asymptotic equipartition property

Theorem
For any p,o € D(H) and any € € (0,1)

H 1 € T m
lim —Dy (p*"|0®") = D(pllo) ,

n—oo N
and

1
lim 7D;nax(p®n‘|0-®n) = D(p”U) .

n—00 M
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How to condition?

There are various ways to express H(A|B),, but we focus on the following

two:
H(A|B), = —D(pas|1a @ p5)
H(A|B), = — inf D 1 .
(A[B), =~ nf D(pasllla®on)
Definition

For all e > 0 we define

Hyin(Alop)p == —Dpax(papllla ® op)
A|B f D¢ . 1 .
mm( ‘ ) 63613(7-[5) max(pAB“ A ®UB)
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Applications in quantum information theory:
one-shot entanglement theory
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Quantum entanglement as a resource: the LOCC paradigm

Ciassica
CoMMuA NG

-~

BOB
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One-shot distillation and dilution

e One-shot entanglement distillation:

LeLOCC
PAB \II—IZ/B/ &® "’\I]X/B/ .

Nmax(paB)
e One-shot entanglement dilution:

LeLOCC
\I/XB®"’®\I/:XB > 0A'B’.

Muin(o arpr)

e Correspondingly,

e one-shot distillable entanglement: Eg)(pAB) = Nmax(paB);
e one-shot entanglement cost: E(Cl)(UA/B/) = Mmnin(ca/p’)
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Allowing for finite accuracy

With an eye to practical implementations we define:

One-shot entanglement e-distillation:

LeLOCC, . € — _
papr——— pap RV p ®@ - Vyp.

Nmax(pas;e)
One-shot entanglement e-dilution

_ _ reLocc, . e
Vp® @V g———0ap Roap.

Munin (0 41 575€)

Correspondingly,

e one-shot e-distillable entanglement: Eg)(pAB;e) = Nnax(paB;e);

e one-shot entanglement e-cost: Eg)(aA/B/;e) = Mnin(cap;e€) 24/38



Pure states: one-shot zero-error distillable entanglement

5 Given an initial pure state 14, denote by A"’ the i-th largest eigenvalue of
4 = "Trp{tas}. Nielsen (1999) showed that a maximally entangled state of rank
R,ie R/ 2?:1 |i)|2), can be distilled if and only if

max — 41 —1.

1. )\1&1 :éw <R

=il,

2. )\w —&—)\w < 2R
3. and so on.

4 /:‘\l)l ‘\‘ Yap;0) > Ii)g._, L% = —Dmax(/l/)AHﬂA) =5 Hmln(A)dl
N 25/38



Considering finite accuracy

Consider the set of pure states 7, (1)1 5) : {\(7'4/; chap ~ /'4/;}

K elocc — —~_
4 _h R \I
;SR Lo |

1= A maximally entangled state of rank R = blde can always be distilled
P

up to an e-error, i.e.,

( ) ]
Eli (Yapi€e) > max ]“f%g \; J = —Drﬁnax(wAH]lA):: Hrﬁnin(A)w

e P () /\I,Ivmx
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The min-entropy is the one-shot distillable entanglement

Theorem

For any pure bipartite state 1) op and any € > 0, the min- entropy of the
reduced state is the

Hiin(A)y < < HE (A)y — logy(1 — 24/€)

ool

5
where € = 27¢€5 .
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The max-entropy is the one-shot entanglement cost

e Vidal, Jonathan, and Nielsen (2000): a pure bipartite state ¥4 can
be obtained by LOCC from a maximally entangled state of rank R with a
minimum error of e =1 — 327, /\i.

e as a consequence,
Eé”(wAB;O) =log, rank 94 = —Dmin(¥a||14)=: Hmax(A)y.

e also with finite accuracy:
ES (ap;€) ~ He (A
@; (’l/)AB7 6) = max( )d)a

where HS . (A), := D5, (a1 4).
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Summary of the pure state case

EY (Wapse) =~ Hgn(A)y < Hasx(Ay =~ ES (Wasse)

- min

! \ / !

EX(Yap) = H(A)y = EZ(YaB)

where “F(p;€e) — G(p)" means lim,_,o lim, o =F(p®";€) = G(p)

1 well-known phenomenon of “asymptotic reversibility” of pure-state

entanglement
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Reverse data-processing theorems
and the theory of statistical comparison



Extending the data-processing inequality

The data-processing property is so useful that any improvement can be very
important.

There are two main directions of investigation:

e theory of approximate reversibility:
D(pllo) — D(E(p)l|E(0)) = 0+6
e theory of statistical sufficiency, deficiency, and comparison:

D(p1llp2) = D(o1]|ow) <= i = £(p3)

30/38



Question. For which triples (p,0,&), D(p|lo) = D(E(p)||E(0))?

If and only if &,(e) := \/o&T [\/% . 51(0)} /o satisfies

(The other equality &, 0 £(c) = o is satisfied by construction.)

Question

More generally, suppose that D(p|lo) = D(p'||o”).
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No: the answer is not so simple!



Quantum statistical comparison

Given two families of quantum states, E = {p; : i € I} and F' = {0, : i € I},
express the condition:

there exists a channel &€ such that £(p;) = o; forall i €T

as a collection of inequalities of the form
9(E) > g(F) ,

for all g in a suitable family of real-valued functions.
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The prototype of statistical comparison: Lorenz curves and ma-

jorization

e two probability distributions, I A
Pp=(p1,---,pn) and q = (q1,...,qn)
truncated sums P(k) = Zle pj and
Qk) =" g forallk=1,....,n
e p majorizes q, i.e., p = q, whenever
P(k) > Q(k), for all k '

(

W th Sk 4

minimal element: uniform distribution
e=n"'(1,1,---,1)

(@r,ye) = (k/n, P(k)), 1<k<n

Hardy, Littlewood, and Pdlya (1929)

p =g <= q= Mp, for some bistochastic matrix M (i.e., Me = e)
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Generalization: dichotomies and relative m

e two pairs of probability distributions, i.e., two
dichotomies, (p,,p,) and (q;,q,), of dimension m
and n, respectively

e relabel entries such that ratios p} /p5 and q{/qé are
nonincreasing

e construct the truncated sums Pi(k) = 3. p} and
Py(k) = 327, pb
e do the same for Q1 (k) and Q2(k)

Relative Lorenz curves:

(@, yk) = (P2(k), P1(k))

e (p,,p>) = (qy,q,) iff the relative Lorenz curve of the
former is never below that of the latter

Blackwell’s Theorem for Dichotomies (1953)
(P1,pP2) = (q4;,05) <= q;, = Mp,, for some stochastic matrix M.
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The case of quantum dichotomies

Question

When is one quantum dichotomy (p1, p2) sufficient for another one (o1, 02)?
That is, when does there exist a quantum channel £ such that o; = E(p;)?

e qubit case: very similar to the classical case (Alberti and Uhlmann, 1983)
otherwise counterexamples (Matsumoto, 2014)

e finite dimensional case: needs an extended comparison (F.B.,
arXiv:1505.00535; G. Gour, D. Jennings, F.B., R. Duan, |. Marvian, Nat.
Comm., 2018)

e quantum relative Lorenz curves: the following are equivalent (F.B. and G.
Gour, PRA, 2017)

® (p1,p2) = (01,02)
e Ha(pillp2) = Ha(o1]lo2) and Ha(p2(lp1) = Ha(oz[|lon) for all a > 1
e Dy (p1llp2) = Dy (o1]lo2) for all € € [0,1]
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Conclusions



Not even mentioned in this intr

e Bregman divergences and entropic projections

e infinite dimensional case

e theory of approximate reversibility and Petz's transpose map
e Bayesian inference and learning

e Fisher information and information geometry

e large deviation theory

e DP property under positive maps and statistical morphisms
e additivity properties

e channel entropies

e many applications (information and communication theory, complexity
theory, cryptography, statistical mechanics, etc.)
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Take-home messages

e entropies are statistical concepts: there is no entropy without a
stochastic process (perhaps hidden)

e entropies are measures of statistic distinguishability

e we need many different entropies because there are many inequivalent
notions of “distinguishability” (discrimination, guesswork, estimation,
etc.)

e KLU relative entropy is very special within all statistical sciences, but not
by any means the only one to learn and use

37/38



Presenter’s work on the subject

® Buscemi, F; Sutter, D; Tomamichel, M: An information-theoretic treatment of quantum dichotomies. Quantum 3, 209 (2019). arXiv link

e Gour, G; Jennings, D; Buscemi, F; Duan, R; Marvian, |: Quantum majorization and a complete set of entropic conditions for quantum
thermodynamics. Nature Communications 9, 5352 (2018). arXiv link

o Buscemi, F: Reverse Data-Processing Theorems and Computational Second Laws. Springer Proceedings in Mathematics & Statistics, vol
261, 135-159 (2018). arXiv link

® Buscemi, F; Gour, G: Quantum relative Lorenz curves. Phys. Rev. A 95, 012110 (2017). arXiv link
® Buscemi, F: Fully quantum second-law-like statements from the theory of statistical comparisons. Preprint arXiv:1505.00535 [quant-ph].

e Buscemi, F; Datta, N: General theory of assisted entanglement distillation. 1EEE Trans. Inf. Th., vol. 59 (3), pp.1940-1954 (2013). arXiv
link

e Buscemi, F: Comparison of quantum statistical models: equivalent conditions for sufficiency. Comm. Math. Phys., vol. 310, pp.625-647
(2012). arXiv link

e Buscemi, F; Datta, N: Entanglement cost in practical scenarios. Phys. Rev. Lett., vol. 106, 130503 (2011). arXiv link
e Buscemi, F; Datta, N: Distilling entanglement from arbitrary resources. J. Math. Phys., vol. 51 (10), 102201 (2010). arXiv link

e Buscemi, F; Datta, N: The quantum capacity of channels with arbitrarily correlated noise. |EEE Tran. Inf. Th., vol. 56 (3), pp.1447-1460
(2010). arXiv link

38/38


https://arxiv.org/abs/1907.08539
https://arxiv.org/abs/1708.04302
https://arxiv.org/abs/1607.08335
https://arxiv.org/abs/1607.05735
https://arxiv.org/abs/1505.00535
http://arxiv.org/abs/1009.4464
http://arxiv.org/abs/1009.4464
http://arxiv.org/abs/1004.3794
http://arxiv.org/abs/0906.3698
https://arxiv.org/abs/1006.1896
https://arxiv.org/abs/0902.0158

	Smoothing and conditioning
	Applications in quantum information theory: one-shot entanglement theory
	Reverse data-processing theorems and the theory of statistical comparison
	Conclusions

