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Two long-time properties of many-body systems

1) Quantum complexity growth

complexity t ~ 2

2n |

e s




Two long-time properties of many-body systems

1) Quantum complexity growth

complexity ¢ ~ 27 t e
1
1
1

2n |




Two long-time properties of many-body systems

1) Quantum complexity growth

2) Subsystem entropy fluctuations
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Overview

Define quantum complexity

Complexity by design

>

>

» Complexity of local random quantum circuits
» Complexity saturation and recurrence for RQCs
>

Subsystem entropy fluctuations



Quantum complexity growth



Quantum complexity

Quantum complexity is an important
and well-established notion in QI

Recent interest in quantum many-body physics:

» distinguish topological phases of matter at
zero temperature [Chen, Gu, Wen]

» describe regions behind black hole horizons
in AdS/CFT [susskind], [Stanford, Susskind]




Quantum complexity

Quantum complexity is an important
and well-established notion in QI

Recent interest in quantum many-body physics:

» distinguish topological phases of matter at
zero temperature [Chen, Gu, Wen]

» describe regions behind black hole horizons
in AdS/CFT [susskind], [Stanford, Susskind]

More generally, complexity growth is one universal
aspect of real-time dynamics in strongly-interacting
many-body systems

— relation to thermalization, quantum chaos, ...




Complexity

some intuition

Complexity is a somewhat intuitive notion

The traditional definition involves building a circuit with gates
drawn from a universal gate set, which implements the state or
unitary to within some tolerance §

o) @

We are interested in the minimal size of a circuit that achieves this



Complexity

some intuition

Complexity is a somewhat intuitive notion

The traditional definition involves building a circuit with gates
drawn from a universal gate set, which implements the state or
unitary to within some tolerance §

o) @

We are interested in the minimal size of a circuit that achieves this

Consider systems of n qudits (with local dim ¢), such that d = ¢"



Complexity

some expectations

It is believed(/expected/conjectured) that the complexity of a simple initial state,
grows (possibly linearly) under the time-evolution by a chaotic Hamiltonian

Cs(e™™ ) e

saturating after an exponential time
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Complexity
some expectations

It is belieVed(/expected/conjectured) that the Comp|exity eith

linearly) for a chaotic Hamiltonian H

grows (possibly

65(67“—“) t ~ en

saturating after an exponential time

computing the quantum complexity analytically is very hard (especially
for a fixed H)



Complexity

some expectations

Cj(e_th) t e~ et

Why?

polynomial/linear growth: early time collisions should be rare; upper
bounds on growth from Hamiltonian simulation algorithms

saturation: counting d-balls in U(d), doubly exp (~ (1/6)*"") ‘distinct’
unitaries, and thus can reach any unitary with a depth ¢ ~ 2" circuit



Complexity

some expectations

C(S(@th) t e~ et

To make progress:

— use complexity theoretic assumptions to make statements about the
complexity of a particular Hamiltonian evolution at exponentially long
times [Aarsonson], [Susskind], [Bohdanowicz, Brand&o]

— focus on ensembles of time-evolutions (RQCs)



Our goal

Consider random quantum circuits, on n qudits of local dimension ¢,
evolving with staggered layers of 2-site unitaries, each drawn randomly
from a gate set G

where evolution to time t is given by U, = U® .. .UM

and try to prove the growth of complexity in this model



Our goal

Consider random quantum circuits, on n qudits of local dimension ¢,
evolving with random nearest-neighbor 2-site unitaries, each drawn
randomly from a gate set G

where evolution to time t is given by U, = U® .. .UM

and try to prove the growth of complexity in this model



Complexity growth in RQCs

Specifically, it has been conjectured that

Conjecture [Brown, Susskind], [Susskind]

Most local random quantum circuits of depth ¢ have a complexity
that scales linearly in t for an exponentially long time.

This sounds reasonable, but is hard to prove: one needs to show that
collisions between circuits of subexponential size are rare.



Complexity growth in RQCs

Specifically, it has been conjectured that

Conjecture [Brown, Susskind], [Susskind]

Most local random quantum circuits of depth ¢ have a complexity
that scales linearly in t for an exponentially long time.

This sounds reasonable, but is hard to prove: one needs to show that
collisions between circuits of subexponential size are rare.

Another approach: focus on the exact circuit complexity
[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern]



Complexity growth in RQCs

(some results)

We expect that complexity grows linearly in time, saturating after an
exponential time

What we prove for RQCs on n qubits

Cs(RQC) t~ e t~e"
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Complexity growth in RQCs

(some results)

We expect that complexity grows linearly in time, saturating after an
exponential time

What we prove for RQCs on n qudits (large ¢)

Cs(RQC) t~ e tetm
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Unitary complexity

Consider a system of n qudits with local dimension ¢, where d = ¢™.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let GG, denote the set of all circuits of size r

where () € G



Unitary complexity

Consider a system of n qudits with local dimension ¢, where d = ¢™.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let GG, denote the set of all circuits of size r

Complexity of a unitary

We say that a unitary U € U(d) has d-complexity Cs(U) = r if and
only if
r = min {r' AV e G st U=V < (5}

(where the distance used is ||/ — Vo and U = U(p)U")



Complexity from measurements

We can consider an alternative (stronger) definition of the complexity of
a state or unitary, in terms of an optimal distinguishing measurement

Roughly, the strong complexity of U is the minimal circuit required to
implement an ancilla-assisted measurement capable of distinguishing U
from the completely depolarizing channel D

Task is to distinguish the channels with restricted state preparation and
measurements as

maximize |Tr(M((Z/{ ®RI)|pXo| — (D ®I)|¢)(¢|))|
subject to M € M., |¢) =V 1]0), V € G,

9 A




Complexity by design

We are interested in the complexity of random quantum circuits

To make progress we can derive some general statements about
the complexity of unitary k-designs

But first, we need to define the notion of a unitary design



Unitary k-designs
Haar: (unique L/R invariant) measure on the unitary group U(d)
k-fold channel: ®%(0) = 32, p Uk (O)UT @k

exact k-design: (IDgC)(O) = oW

Haar

(O)

but for general k, few exact constructions are known



Unitary k-designs
Haar: (unique L/R invariant) measure on the unitary group U(d)
k-fold channel: ®%(0) = 32, p Uk (O)UT @k

exact k-design: (I)((gk)(O) = oW

Haar

(O)

but for general k, few exact constructions are known

~

For ¢ > 0, an ensemble £ is an e-approximate k-design if the
k-fold channel obeys

/Approximate k-design

<e

o - ot

Haar
S

- J

— designs are powerful



Unitary k-designs

If an ensemble of unitaries £ forms an approximate k-design

the average over & is close to the average over the full unitary group up
to the k-th moment

UL Ut
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k of these k of these .
U(d) U(d)




Intuition for k-designs

(eschewing rigor)

How random is the time-evolution of a system compared to the full
unitary group U(d)?

Consider an ensemble of time-evolutions at a fixed time t: & = {U;}
e.g. RQCs, Brownian circuits, or {e*#* H € £y} generated by
disordered Hamiltonians

quantify randomness:
when does &; form a k-design?
(approximating moments of U(d))



Complexity by design

an exercise in enumeration
Consider an approximate unitary k-design & = {p;, U;}
Can we say anything about the complexity of U;'s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity



Complexity by design

an exercise in enumeration
Consider an approximate unitary k-design & = {p;, U;}
Can we say anything about the complexity of U;'s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity

Can prove the following two (informal) statements:
» with high prob, a unitary U drawn from an e-approx k-design
& has complexity Cs5(U) ~ nk

> an e-approx k-design £ contains an exp # (~ e"¥) of distinct
unitaries with this complexity



Complexity by design

an exercise in enumeration
Consider an approximate unitary k-design & = {p;, U;}
Can we say anything about the complexity of U;'s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity

/Complexity for unitary designs h

With probability > 1 — =", a unitary U ~ &, drawn from an
e-approximate k-design has

Cs(U) > (nklogq —log(1 + €) + klog(1 + 6%))

1
~ logn|G|




RQCs and randomness

Consider local RQCs on n qudits, with gates drawn randomly from
a universal gate set GG

Now we need a powerful result from [Brandio, Harrow, Horodecki]

/RQCS form approximate designs h

For k < V/d, the set of local random quantum circuits of depth
t forms an e-approximate unitary k-design if

t > ck™(n + log(1/€))

\where ¢ is a constant )

i.e. RQCs of depth t = O(nk!!) form k-designs



Complexity by design

Now we can combine these two results to say something about the
complexity of local random circuits

» with very high probability, a local RQC of depth ¢, has
complexity Cs > n(t/n)/!

» the set of depth ¢ local RQCs contains an exp number of
distinct unitaries with this complexity




Complexity by design

Now we can combine these two results to say something about the
complexity of local random circuits

» with very high probability, a local RQC of depth ¢, has
complexity Cs > n(t/n)/!

» the set of depth ¢ local RQCs contains an exp number of
distinct unitaries with this complexity

This establishes a polynomial relation between Cs(U)

the growth of complexity and depth of the
circuit up to exponential times t < Vd = q”/2

— but what we really want is linear growth



Complexity growth from design growth

What we have shown is that
complexity ~ k

Using [Brand3o, Harrow, Horodecki], local RQCs form k-designs in
t = O(nk') depth, gives complexity ~ ¢1/11

Cs(U)




Complexity growth from design growth

Using results about the design growth for various models we can prove
statements about their complexity growth:

» Stochastic quantum Hamiltonian/Brownian quantum circuit
[Onorati, Buerschaper, Kliesch, Brown, Werner, Eisert]

=> > Tt o5

i<k a,B

design depth t = O(nk'!) gives complexity growth ~ ¢!/



Complexity growth from design growth

Using results about the design growth for various models we can prove
statements about their complexity growth:

» Stochastic quantum Hamiltonian/Brownian quantum circuit
[Onorati, Buerschaper, Kliesch, Brown, Werner, Eisert]

design depth t = O(nk'!) gives complexity growth ~ ¢!/

» Nearly time-independent Hamiltonian dynamics
[Nakata, Hirche, Koashi, Winter]

Hamiltonian

() — H —
Hy HY —_— iy Y

Ldesign (2-desi {3-desigal {rdeigih>

k-designs in O(n?k) steps (up to k = /n) gives short time complexity
growth ~ ¢



RQCs and t ~ k

an appeal for linearity

To get a linear growth in complexity we need a linear growth in
design
complexity ~ k ~ t
we had t = O(nk!!), but would need t = O(nk)
A lower bound on the k-design depth for these RQCs is Q(nk)

Can we prove that RQCs saturate this lower bound? (and are thus
optimal implementations of k-designs)



Design growth in RQCs

Theorem (Design growth at large ¢) [NHJ] N
RQCs on n qudits form e-approximate k-designs when

t >4dnk+logl/e — t=0(nk)

for some g > qg, where go depends on the size of the circuit )

Theorem (Design growth for ¢ = Q(k?)) [Haferkamp, NHJ] )

RQCs on n qudits with ¢ > 6k form e-approximate k-designs
when

t > 18(2nklogq+logl/e) — t=O(nklogk) D




Designs from domain walls and gaps

Two approaches to computing the design depth for RQCs:

1) Partition function of a lattice model

IN
)

2>

{o}

2) Spectral gap of a local Hamiltonian

5 i



Towards linear complexity growth

This makes some progress on the conjecture for random quantum circuits
with large local dimension ¢

Cs(RQC) t~e® t~et
|
1

d2a

i.e. complexity is growing linearly in time ¢



Linear growth from small gaps

For RQCS, the spectral gap enters as [Brown, Viola], [Brandio, Horodecki]

distance to forming a design) < dQ’C 1-—
( g gn) =~
n

where H,, . is a frustration-free Hamiltonian

n ®k,k
Hyp=>Y (H - [i:b )
=1

7 %141



Linear growth from small gaps

For RQCS, the spectral gap enters as [Brown, Viola], [Brandio, Horodecki]

A(Hup)\'
(distance to forming a design) < d?* <1 - (k))
n

where H,, . is a frustration-free Hamiltonian

n ®k,k
H,p= Z (11 - [i:][] )
i=1

7 %1+1
) Cs(RQC t~ e t~ e
An exponentially-small, but k- (RQC) ¢ ;e
ind, gap allows us to prove a : :
linear complexity growth at late e*"] ' '

times
(A(Hpp) = Q(e™™))




Complexity saturation

How do we prove that complexity has saturated?

Haar random unitaries have maximal complexity, C5(U) ~ d?, but RQCs
only approach Haar when ¢t — oo



Complexity saturation

How do we prove that complexity has saturated?

Haar random unitaries have maximal complexity, C5(U) ~ d?, but RQCs
only approach Haar when ¢t — oo

At exponential times (¢t ~ €5") RQCs equidistribute

vrqc(Br(U)) Vol(e-r)

(more formally, the measure assigned to balls by the ensemble of RQCs
vrQc(Br(U)) = Volgaar(c - 1) for all U € U(d))



Complexity saturation

This allows us to show that

Cs(RQC) t~e®  tee

dQA

(can also prove that recurrences happen at doubly-exp times)



Explicit recurrence times

Once we achieve equidistribution, the probability of ‘walking’ to a
particular unitary becomes = that as prescribed by the Haar measure

==




Subsystem entropy fluctuations

(a potential avatar of complexity)



Entropy fluctuations

Consider an n qubit system, initially in an unentangled state |¢), which
undergoes some evolution U; (e.g. by e *#* for a chaotic H or RQC)

Consider the vN entropy
V) (S(p) = —trplogp) of a

@ B subsystem

palt) = trp Uy |[¥)|Uf

we expect the subsystem entropy to go like



Entropy fluctuations

Consider an n qubit system, initially in an unentangled state |¢), which
undergoes some evolution U; (e.g. by e *#* for a chaotic H or RQC)

Consider the vN entropy
V) (S(p) = —trplogp) of a

@ B subsystem

palt) = trp Uy |[¥)|Uf

we expect the subsystem entropy to go like

S(pa(t))

ten
1
1

How often does the subsystem entropy fluctuate?



Entropy fluctuations

e How rare are entropy fluctuations after thermalization?

e How long must we wait (post-eq) to see an O(1) fluctuation in the
subsystem entropy S(pa(t))?



Entropy fluctuations

e How rare are entropy fluctuations after thermalization?

e How long must we wait (post-eq) to see an O(1) fluctuation in the
subsystem entropy S(pa(t))?

For RQCs, we prove that

[y
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Pr(fluctuation)
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time (circuit depth)

Need to wait a doubly-exp long time to see a fluctuation



Entropy fluctuations

The (informal) theorem statements are

For 1D RQCs on n qubits of depth ¢, the entropy of the evolved state
on the subsystem pa () obeys

et t<em
Pr (S t)) <log(da) —0) < n
r (S(pa(t)) <log(da) )N{ee fo

Let N5 be the number of times ¢ that a subsystem A satisfies
S(pa(t)) <log(da) — 9§ for all times from ¢ = ¢y, log(da) up to t = e®ree?,
where ¢, > 1 and crec < 1

For 1D RQCs on n qubits, and n > Q(ctn log(da)), the probability of
an entropy fluctuation is bounded as

1 1
e di®

Pr (N3 >0) <

(similar statements for the distance to the max mixed state)



Future science

» Can we prove anything about Cs(e~*1%) for a fixed Hamiltonian?

or for an ensemble of Hamiltonians?

» Can we prove a linear design growth at small ¢ (e.g. some constant
local dimension) for an exponentially long times?

» Improved RQC gaps? would give closer to linear growth and earlier
saturation time

» Connections between (the rarity of) subsystem entropy fluctuations
and complexity growth in many-body systems?

» Study the pseudorandomness properties of other RQCs (e.g. charge
Conserving CirCUitS [Khemani, Vishwanath, Huse], [Rakovszky, Pollmann, von Keyserlingk])

» Explore implications of strong definition of complexity (in terms of an
optimal measurement) in holography and for many-body physics?



Thanks!



