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Two long-time properties of many-body systems

1) Quantum complexity growth
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Two long-time properties of many-body systems

1) Quantum complexity growth

2) Subsystem entropy fluctuations
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Overview

I Define quantum complexity

I Complexity by design

I Complexity of local random quantum circuits

I Complexity saturation and recurrence for RQCs

I Subsystem entropy fluctuations



Quantum complexity growth



Quantum complexity

Quantum complexity is an important
and well-established notion in QI C�(| i)

Recent interest in quantum many-body physics:

I distinguish topological phases of matter at
zero temperature [Chen, Gu, Wen]

I describe regions behind black hole horizons
in AdS/CFT [Susskind], [Stanford, Susskind] C = V

More generally, complexity growth is one universal
aspect of real-time dynamics in strongly-interacting
many-body systems

→ relation to thermalization, quantum chaos, . . .

R2
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Complexity
some intuition

Complexity is a somewhat intuitive notion

The traditional definition involves building a circuit with gates
drawn from a universal gate set, which implements the state or
unitary to within some tolerance δ

U ≈

We are interested in the minimal size of a circuit that achieves this

Consider systems of n qudits (with local dim q), such that d = qn
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Complexity
some expectations

It is believed(/expected/conjectured) that the complexity of a simple initial state,
grows (possibly linearly) under the time-evolution by a chaotic Hamiltonian

t ∼ en

t

Cδ(e−iHt |ψ〉)

saturating after an exponential time
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for a fixed H)
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Complexity
some expectations

t ∼ en

t

Cδ(e−iHt)

Why?

polynomial/linear growth: early time collisions should be rare; upper
bounds on growth from Hamiltonian simulation algorithms

saturation: counting δ-balls in U(d), doubly exp (∼ (1/δ)2
2n

) ‘distinct’
unitaries, and thus can reach any unitary with a depth t ∼ e2n circuit



Complexity
some expectations

t ∼ en

t

Cδ(eiHt)

To make progress:

→ use complexity theoretic assumptions to make statements about the
complexity of a particular Hamiltonian evolution at exponentially long
times [Aarsonson], [Susskind], [Bohdanowicz, Brandão]

→ focus on ensembles of time-evolutions (RQCs)



Our goal

Consider random quantum circuits, on n qudits of local dimension q,
evolving with staggered layers of 2-site unitaries, each drawn randomly
from a gate set G

t

where evolution to time t is given by Ut = U (t) . . . U (1)

and try to prove the growth of complexity in this model



Our goal

Consider random quantum circuits, on n qudits of local dimension q,
evolving with random nearest-neighbor 2-site unitaries, each drawn
randomly from a gate set G

t

where evolution to time t is given by Ut = U (t) . . . U (1)

and try to prove the growth of complexity in this model



Complexity growth in RQCs

Specifically, it has been conjectured that

Conjecture [Brown, Susskind], [Susskind]

Most local random quantum circuits of depth t have a complexity
that scales linearly in t for an exponentially long time.

This sounds reasonable, but is hard to prove: one needs to show that
collisions between circuits of subexponential size are rare.

Another approach: focus on the exact circuit complexity
[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern]
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Complexity growth in RQCs
(some results)

We expect that complexity grows linearly in time, saturating after an
exponential time

What we prove for RQCs on n qubits

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

d2
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exponential time
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Unitary complexity

Consider a system of n qudits with local dimension q, where d = qn.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let Gr denote the set of all circuits of size r

U ≈

where ∈ G



Unitary complexity

Consider a system of n qudits with local dimension q, where d = qn.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let Gr denote the set of all circuits of size r

Complexity of a unitary

We say that a unitary U ∈ U(d) has δ-complexity Cδ(U) = r if and
only if

r = min
{
r′ : ∃V ∈ Gr′ s.t. ‖U − V ‖ ≤ δ

}

(where the distance used is ‖U − V‖� and U = U(ρ)U†)



Complexity from measurements

We can consider an alternative (stronger) definition of the complexity of
a state or unitary, in terms of an optimal distinguishing measurement

Roughly, the strong complexity of U is the minimal circuit required to
implement an ancilla-assisted measurement capable of distinguishing U
from the completely depolarizing channel D

Task is to distinguish the channels with restricted state preparation and
measurements as

maximize
∣∣Tr
(
M
(
(U ⊗ I)|φ〉〈φ| − (D ⊗ I)|φ〉〈φ|

))∣∣
subject to M ∈Mr′ , |φ〉 = V |0〉 , V ∈ Gr

V M

|φ〉



Complexity by design

We are interested in the complexity of random quantum circuits

To make progress we can derive some general statements about
the complexity of unitary k-designs

But first, we need to define the notion of a unitary design



Unitary k-designs

Haar: (unique L/R invariant) measure on the unitary group U(d)

k-fold channel: Φ
(k)
E (O) ≡∑i piU

⊗k
i (O)U †i

⊗k

exact k-design: Φ
(k)
E (O) = Φ

(k)
Haar(O)

but for general k, few exact constructions are known

Approximate k-design

For ε > 0, an ensemble E is an ε-approximate k-design if the
k-fold channel obeys ∥∥∥Φ

(k)
E − Φ

(k)
Haar

∥∥∥
�
≤ ε

→ designs are powerful
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Unitary k-designs

If an ensemble of unitaries E forms an approximate k-design

the average over E is close to the average over the full unitary group up

to the k-th moment

〈
. . . U . . . U †︸ ︷︷ ︸

k of these

. . .

〉

U(d)

≈
〈
. . . U . . . U †︸ ︷︷ ︸

k of these

. . .

〉

U(d)



Intuition for k-designs
(eschewing rigor)

How random is the time-evolution of a system compared to the full
unitary group U(d)?

Consider an ensemble of time-evolutions at a fixed time t: Et = {Ut}
e.g. RQCs, Brownian circuits, or {e−iHt, H ∈ EH} generated by

disordered Hamiltonians

U(d)

1
•
Ut

quantify randomness:
when does Et form a k-design?
(approximating moments of U(d))



Complexity by design
an exercise in enumeration

Consider an approximate unitary k-design Ek = {pi, Ui}

Can we say anything about the complexity of Ui’s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity
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Consider an approximate unitary k-design Ek = {pi, Ui}

Can we say anything about the complexity of Ui’s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity

Can prove the following two (informal) statements:

I with high prob, a unitary U drawn from an ε-approx k-design
E has complexity Cδ(U) ≈ nk

I an ε-approx k-design E contains an exp # (∼ enk) of distinct
unitaries with this complexity



Complexity by design
an exercise in enumeration

Consider an approximate unitary k-design Ek = {pi, Ui}

Can we say anything about the complexity of Ui’s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements count the number of unitaries of a
specific complexity

Complexity for unitary designs

With probability ≥ 1 − e−nk, a unitary U ∼ Ek drawn from an
ε-approximate k-design has

Cδ(U) ≥ 1

log n|G|
(
nk log q − log(1 + ε) + k log(1 + δ2)

)



RQCs and randomness

Consider local RQCs on n qudits, with gates drawn randomly from
a universal gate set G

Now we need a powerful result from [Brandão, Harrow, Horodecki]

RQCs form approximate designs

For k ≤
√
d, the set of local random quantum circuits of depth

t forms an ε-approximate unitary k-design if

t ≥ ck11(n+ log(1/ε))

where c is a constant

i.e. RQCs of depth t = O(nk11) form k-designs



Complexity by design

Now we can combine these two results to say something about the
complexity of local random circuits

I with very high probability, a local RQC of depth t, has
complexity Cδ & n(t/n)1/11

I the set of depth t local RQCs contains an exp number of
distinct unitaries with this complexity

This establishes a polynomial relation between
the growth of complexity and depth of the
circuit up to exponential times t ≤

√
d = qn/2

→ but what we really want is linear growth
t

Cδ(U)
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Complexity growth from design growth

What we have shown is that

complexity ∼ k

Using [Brandão, Harrow, Horodecki], local RQCs form k-designs in
t = O(nk11) depth, gives complexity ∼ t1/11

t

Cδ(U)



Complexity growth from design growth

Using results about the design growth for various models we can prove

statements about their complexity growth:

I Stochastic quantum Hamiltonian/Brownian quantum circuit
[Onorati, Buerschaper, Kliesch, Brown, Werner, Eisert]

H(t) =
∑
j<k

∑
α,β

J αβjk (t)σαj σ
β
k

design depth t = O(nk11) gives complexity growth ∼ t1/11



Complexity growth from design growth

Using results about the design growth for various models we can prove

statements about their complexity growth:

I Stochastic quantum Hamiltonian/Brownian quantum circuit
[Onorati, Buerschaper, Kliesch, Brown, Werner, Eisert]

design depth t = O(nk11) gives complexity growth ∼ t1/11

I Nearly time-independent Hamiltonian dynamics
[Nakata, Hirche, Koashi, Winter]

k-designs in O(n2k) steps (up to k =
√
n) gives short time complexity

growth ∼ t



RQCs and t ∼ k
an appeal for linearity

To get a linear growth in complexity we need a linear growth in
design

complexity ∼ k ∼ t

we had t = O(nk11), but would need t = O(nk)

A lower bound on the k-design depth for these RQCs is Ω(nk)

Can we prove that RQCs saturate this lower bound? (and are thus
optimal implementations of k-designs)



Design growth in RQCs

Theorem (Design growth at large q) [NHJ]

RQCs on n qudits form ε-approximate k-designs when

t ≥ 4nk + log 1/ε → t = O(nk)

for some q ≥ q0, where q0 depends on the size of the circuit

Theorem (Design growth for q = Ω(k2)) [Haferkamp, NHJ]

RQCs on n qudits with q ≥ 6k2 form ε-approximate k-designs
when

t ≥ 18(2nk log q + log 1/ε) → t = O(nk log k)



Designs from domain walls and gaps

Two approaches to computing the design depth for RQCs:

1) Partition function of a lattice model

Z =
∑
{σ}

≤ ?

2) Spectral gap of a local Hamiltonian

∆(Hn,k) ≥ ?

E

∆



Towards linear complexity growth

This makes some progress on the conjecture for random quantum circuits
with large local dimension q

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

d2

i.e. complexity is growing linearly in time t



Linear growth from small gaps

For RQCs, the spectral gap enters as [Brown, Viola], [Brandão, Horodecki]

(distance to forming a design) ≤ d2k
(

1− ∆(Hn,k)

n

)t
where Hn,k is a frustration-free Hamiltonian

Hn,k =

n∑
i=1

(
I−

i i+1

⊗k,k )

An exponentially-small, but k-
ind, gap allows us to prove a
linear complexity growth at late
times

(∆(Hn,k) ≥ Ω(e−c·n))

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

e2n
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Complexity saturation

How do we prove that complexity has saturated?

Haar random unitaries have maximal complexity, Cδ(U) ≈ d2, but RQCs
only approach Haar when t→∞

At exponential times (t ∼ e5n) RQCs equidistribute

U
r

νRQC(Br(U))

≈ c · r

Vol(c · r)

(more formally, the measure assigned to balls by the ensemble of RQCs
νRQC(Br(U)) ≈ VolHaar(c · r) for all U ∈ U(d))
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Complexity saturation

This allows us to show that

t

Cδ(RQC) t ∼ e2n t ∼ e5n

d2

(can also prove that recurrences happen at doubly-exp times)



Explicit recurrence times

Once we achieve equidistribution, the probability of ‘walking’ to a
particular unitary becomes ≈ that as prescribed by the Haar measure

U(d)

C≤rδ

t

Cδ(RQC)

t ∼ ee
n

e2n



Subsystem entropy fluctuations

(a potential avatar of complexity)



Entropy fluctuations
Consider an n qubit system, initially in an unentangled state |ψ〉, which
undergoes some evolution Ut (e.g. by e−iHt for a chaotic H or RQC)

A B

|ψ〉
Consider the vN entropy
(S(ρ) = −tr ρ log ρ) of a
subsystem

ρA(t) = trB Ut|ψ〉〈ψ|U†t

we expect the subsystem entropy to go like

t

S(ρA(t))

tth

How often does the subsystem entropy fluctuate?
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Entropy fluctuations

• How rare are entropy fluctuations after thermalization?

• How long must we wait (post-eq) to see an O(1) fluctuation in the
subsystem entropy S(ρA(t))?

For RQCs, we prove that

t ∼ log(dA) t ∼ en

P
r(

fl
u

ct
u

at
io

n
) 1

1/ee
n

time (circuit depth)

Need to wait a doubly-exp long time to see a fluctuation
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Entropy fluctuations

The (informal) theorem statements are

For 1D RQCs on n qubits of depth t, the entropy of the evolved state
on the subsystem ρA(t) obeys

Pr
(
S(ρA(t)) ≤ log(dA)− δ

)
.

{
e−t t ≤ en

e−e
n

t > en

Let Nent
A be the number of times t that a subsystem A satisfies

S(ρA(t)) ≤ log(dA)− δ for all times from t = cth log(dA) up to t = ecrecd,
where cth > 1 and crec < 1

For 1D RQCs on n qubits, and n ≥ Ω(cth log(dA)), the probability of
an entropy fluctuation is bounded as

Pr
(
Nent
A > 0

)
.

1

eδ
1

d
cth
A

(similar statements for the distance to the max mixed state)



Future science

I Can we prove anything about Cδ(e−iHt) for a fixed Hamiltonian?
or for an ensemble of Hamiltonians?

I Can we prove a linear design growth at small q (e.g. some constant
local dimension) for an exponentially long times?

I Improved RQC gaps? would give closer to linear growth and earlier
saturation time

I Connections between (the rarity of) subsystem entropy fluctuations
and complexity growth in many-body systems?

I Study the pseudorandomness properties of other RQCs (e.g. charge
conserving circuits [Khemani, Vishwanath, Huse], [Rakovszky, Pollmann, von Keyserlingk])

I Explore implications of strong definition of complexity (in terms of an

optimal measurement) in holography and for many-body physics?



Thanks!


