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What is Quantum Computation?

Quantum state
Quantum dynamics
(Unitary operator,

Measurement)
Measurement

Quantum computer: a computer which makes use of quantumness

Computational output

・Outperforms classical computers for certain problems (E.g. FACTORING [Shor ʻ94])
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Universal gates set:
Approximate arbitrary
unitary operaots

Boykin, et. al., ’99

M. Bremner, et. al., ‘02CZ gate can be replaced by arbitrary entangling 2-qubit gates

𝑡

・Sampling from a wave-function distribution
Showing quantum spremacy

F. Arute, et al., Nature 574.7779 (2019)
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Quantum circuit model
Qubits: 𝜓 = 𝑎 0 + 𝑏 1 ∈ ℂ%

Output

Unitary operator: 𝑈 = 𝑒$%&'

・Measure local observables
Decision problem such as Factoring



Classical computer
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General quantum circuits

Classically simulatable quantum circuits
What makes quantum computation different from classical one? 
When is quantum computation tractable for classical one? 

Classically simulatable quantum circuits

E.g. Clifford circuit Matchgates circuit
D. Gottesman ‘97
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L. Valiant ‘01
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Low-entangled circuit
G. Vidal ‘03
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Non-equilibrium systems and Computation
Isolated quantum systems
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Trotzky, Stefan, et al., Nature physics (2012)

Thermalization
Control of cold atoms

(https://dep.ftmc.uam.es/quantum-
information-for-molecular-physics/)

Solvable model
Free-fermion

Classically simulatable QC

Do not thermalize
Not chaotic

Matchgate
Independent interest of computer science

L. Valiant (2001)

dual-unitary QC
Do thermalize

Chaotic ?
This is related to free fermion.

B. Terhal, D. Divinvenzo (2001)

OT
OC

Time (ms)
Quantum Chaos

Joshi, Manoj K., et al. PRL 124.24 (2020)



Definition of 1D dual-unitary quantum circuits
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Bertini, Kos, Prosen ‘19 Piroli, Bertini, Cirac, Prosen ‘20
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SWAP =

E.g. SWAP 𝑖 |𝑗⟩ = |𝑗⟩|𝑖⟩

𝑈 = 𝑢@⊗𝑢A𝑒
BC(DEF⊗FHDEI⊗IHJK⊗K)𝑣@⊗𝑣A

General form



Solvable initial states

…=

Condition ① Condition ②

Transfer matrix 𝐸 has unique 
maximum eigenvalue

𝐴(",$):𝜒×𝜒matrix

MPS

!
"
(|00⟩ + |11⟩) =

The simplest case：EPR pair chain

,

Piroli, Bertini, Cirac, Prosen ‘20



Computational power of 1D DUQC
Computational output: local measurement outcome ⟨𝜓(𝑡)|𝑂|𝜓(𝑡)⟩

Problem

𝑁

Measure local observable 𝑂
𝑡

Fixing the number of qubit 𝑁, determine ⟨𝜓(𝑡)|𝑂|𝜓(𝑡)⟩ of DUQC 
in time t.



Local expectation value
= Tr 𝑂 + 𝑂 𝑐8 ,

Early time：𝑡 ≤ 𝑁

𝑐 < 1: real number
Classically simulatable

Late time: 𝑡 = poly(𝑁)

Universal quantum computation

Result : local observables (1D)）
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Outline of proof

=

Def of dual-unitary

Construct 2-qubit gate

Contraction of tensor-network

M. J. Bremner,
et al., PRL (2002)

Universal gate set

𝑠𝑝𝑎𝑐𝑒

𝑡𝑖
𝑚
𝑒



Local expectation value
= Tr 𝑂 + 𝑂 𝑐8 ,

Early time：𝑡 ≤ 𝑁

𝑐 < 1: real number
Classically simulatable

Late time: 𝑡 = poly(𝑁)

Universal quantum computation

Result : local observables (1D)）

Computational complexity makes a transition!



Sampling complexity of 1D dual-unitary QC
Sample output of dual-unitary QC up to multiplicative error.problem

𝑧 ∈ 0,1 AR with probability 𝑝S

Is there a classical computer whose output {𝑞S}
satisfies  𝑝S − 𝑞S ≤ 𝑐𝑝S? (for some constant 𝑐)

Measure in 0 , 1 } basis

𝑡



Result : sampling complexity (1D)

Bremner, et al., ‘11Raussendorf, Briegel ‘01

・Sampling from measurement output distribution of 2D cluster states is inefficient
by classical computers under a computational complexity assumption.

・1D DUQC can generate a state equivalent to a 2D cluster state.

Classical sampling is hard.



2D dual-unitary QC
Initial state: rows of initial states in 1D caseQuantum circuits:

:qubit
: unitary gate
dual-unitary gate (even time)
arbitrary two-qubit unitary gate (odd time)

𝑡 = 4𝑛 𝑡 = 4𝑛 + 1

𝑡 = 4𝑛 + 2 𝑡 = 4𝑛 + 3



Computational power of 2D DUQC where output is obtained by local measurement.

Result : Local observables (2D)

Result

Ψ8(𝐴) 𝑼†𝑂𝑼 Ψ8(𝐴)

=
1
29%

Tr 𝑂 + 𝑂 𝑐8 ,

Early time：𝑡 ≤ 2𝑁

𝑐 < 1: real number

Classically simulatable

Late time: 𝑡 = 𝑝𝑜𝑙𝑦(𝑁)

Arbitrary quantum algorithms 
can be implemented.

universal quantum computation

𝑡~2𝑁
Classically simulatable

𝑡 = 𝑝𝑜𝑙𝑦(𝑁)

Universal quantum computation
𝑡



Sampling complexity (2D)
Sample from output distribution of 2D dual-unitary QC
up to multiplicative error.

problem

Depth-four 2D dual-unitary QC can generate 2D cluster states.

Sampling problem of depth-four 2D dual-unitary quantum circuits ＝
Sampling problem of depth-four 2D quantum circuits

hardness

𝑡𝑡 = 4

Unlikely to be classically simulatable



Conclusion

(might be an example for “computational phase transition”)

DUQCs is a new type of classically simulatable quantum circuits, 
where computational complexity highly depends on computational time. 

Deshpande, Abhinav, et al. PRL 121.3 (2018) Napp, John, et al. arXiv:2001.00021 (2019).

Future work

・relation between other exactly solvable models and quantum computation

・ computational power of DUQCs with non-solvable initial states


