2022/3/25 @YITP

Entanglement transport and thermalization in an isolated many-body system

Based on arXiv:2003.10106

To be published in JPSJ

Ryosuke Yoshii Sanyo-Onoda City University

Collaboration with

Shunji Tsuchiya and Yamashika Shion Chuo University

Outline

 Introduction: Thermalization of isolated systems, transport of entanglement

- Model
- Time-evolution of entanglement entropy
- Discussion on transport of entanglement and thermalization
- Conjecture for the condition of thermalization
- Summary

Introduction I: Thermalization of isolated systems

chaotic nonlinear dynamics

unitary linear dynamics

What is the mechanism of thermalization in quantum systems?

Thermalization in an isolated quantum system

$$|\psi(0)\rangle = \sum_{n} a_{n} |n\rangle \qquad |\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle = \sum_{n} a_{n} e^{-iE_{n}t} |n\rangle$$

$$\langle A(t)\rangle = \langle \psi(t) |A| |\psi(t)\rangle = \sum_{n,m} a_{n}^{*} a_{m} e^{i(E_{n} - E_{m})t} \langle n |A| m\rangle$$

$$\text{long-time average} \quad \overline{\langle A(t) \rangle} = \sum_{n} |a_{n}|^{2} A_{nn} \equiv \langle A \rangle_{\text{diagonal}}$$

$$\text{microcanonical average} \quad \langle A \rangle_{\text{microcan}} \equiv \frac{1}{\mathcal{N}_{E_{0},\Delta E}} \sum_{|E_{n} - E_{0}| < \Delta E} A_{nn}$$

$$E_{0} : \text{average energy}$$

$$E_{0} : \text{average energy}$$

$$\text{M. Rigol et al., Nature 452, 854 (2008)}$$

Eigenstate thermalization hypothesis

$$\langle n | A | n \rangle = \langle A \rangle_{\text{microcan}}$$

J. M. Deutsch (1991); M. Srednicki (1994)

n

Eigenstate thermalization hypothesis (ETH):

Initial state implicitly contains a thermal state

Eigenstate thermalization hypothesis

M. Rigol et al., Nature 452, 854 (2008)

A non-integrable system obeys ETH and thermalizes

Thermalization through entanglement

Measuring entanglement entropy

2nd order Renyi entropy: $S_2(A) = -\log \operatorname{Tr}(\rho_A^2)$

 $\rho_1 = \rho_2$

Tr (62)

Purity

 $Tr(\rho_1,\rho_2)$

Quantum state

overlap

quantum gas microscope is used to directly image the number parity of atoms on each lattice site

R. Islam et al., Nature 528, 77 (2015)

Entanglement and quantum thermalization in atomic gases

Dynamics of bosonic atoms in an optical lattice after quench from Mott regime $J/U \ll 1$ to weakly interacting superfluid regime $(J/U \sim 1)$

A. M. Kaufman, et al., Science **353**, 794 (2016).

Entanglement and quantum thermalization in atomic gases

A. M. Kaufman, et al., Science 353, 794 (2016).

agreement with eigenstate ensemble indicates consistency with ETH

Introduction 2: Transport of entanglement

FIG. 3. Entanglement entropy for the quench from $h_0 = \infty$ to h = 1, for various ℓ . The dashed lines are the leading asymptotic results for large ℓ , cf. Eq. (3.19). The inset shows the derivative with respect to the time of $S_{100}(t)$.

Calabrese and Cardy (2005), Kim and Huse (2013)

- Entanglement is not a conserved quantity:
 It can be locally created by the Ising-type interaction.
- Interpretation is based on the quasi-particle picture

Introduction 2: Transport of entanglement

S. Leichenauer and M. Moosa PRD 2015.

$$S(t) = 2s_{eq} \times \begin{cases} 2t, & t \leq \frac{L}{2}, \\ L, & \frac{L}{2} < t < \frac{R}{2}, \\ L - (t - \frac{R}{2}), & \frac{R}{2} < t < \frac{L+R}{2}, \\ L + (t - L - \frac{R}{2}), & \frac{L+R}{2} < t < \frac{2L+R}{2}, \\ L, & t > \frac{2L+R}{2}. \end{cases}$$

Result differs from the behavior expected by free quasi-particle.

Entangle can be generated even acausally separated systems

J. Koga, G. Kimura, and K. Maeda PRA 2018.

Question

How can we characterize propagation of entanglement?

Outline

- Introduction: Thermalization of isolated systems, transport of entanglement
- Time-evolution of entanglement entropy
- Discussion on transport of entanglement and thermalization
- Conjecture for the condition of thermalization
- Summary

Model

Model

• Transverse Ising (TI) model: Ising int. + transverse filed

Jordan-Wigner transformation

$$H = \sum_{k} \varepsilon_{k} \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right) \quad \text{``Free fermions''}$$
$$\varepsilon_{k} = 2 \left(J^{2} + h_{x}^{2} - 2h_{x} J \cos k \right)$$

Chaostic extensions

• Chaotic Ising (CI) model: Transverse filed + longitudinal field

$$H_{\text{chaos}} = -J\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + h_{x} \sum_{i} \sigma_{i}^{x} + h_{z} \sum_{i} \sigma_{i}^{z}$$

$$J = 1, h_{x} = 1.05, h_{z} = 0.5$$

• Extended chaotic Ising (ECI) model: chaotic Ising model + NNN interaction

One-site magnetization

Long time behavior

• Extended chaotic Ising model thermalizes due to strong non-integrability, while transverse Ising, chaotic Ising model does not show thermalization.

Entanglement entropy

Entanglement entropy for the subsystem R

Initial density matrix:

 $\rho_0 = |\psi_0\rangle \langle \psi_0|$

Density matrix at *t*: $\rho_{tot}(t) = e^{-iHt}\rho_0 e^{iHt}$

Reduced density matrix:

 $\rho_{\rm R} = {\rm Tr}_{\rm L} \rho_{\rm tot}$

Entanglement entropy: $S_{\rm R} = - \operatorname{Tr}(\rho_{\rm R} \log \rho_{\rm R})$

Iyoda and Sagawa, Phys. Rev. A 97, 042330 (2018).

Setup

only subsystem B evolves in time

Iyoda and Sagawa, Phys. Rev. A 97, 042330 (2018).

Setup

 $S_{\rm R}$ s for Case I and II exhibit deviation when the influence of the entanglement reaches the subsystem R

Propagation of Entanglement

Slope \sim propagation speed of entanglement

Outline

- Introduction: Thermalization of isolated systems, transport of entanglement
- Model
- Time-evolution of entanglement entropy
- Discussion on transport of entanglement and thermalization
- Conjecture for the condition of thermalization
- Summary

Thermalization: Extended chaotic Ising model

Consistency with experimentally measured Renyi entropy

• Saturation value of $S_{\rm R} \propto$ size of subsystem: "volume law"

Entanglement entropy: Extended chaotic Ising model

extended chaotic Ising model, 14+1 sites

 $S_{\rm R}$ s for Neel and EPR exhibit deviation at $t_{\rm dif}$

influence of entanglement reaches the subsystem R at t_{dif}

Entanglement entropy: Extended chaotic Ising model

extended chaotic Ising model, 14+1 sites

Two time scales

 $t^*: S_R(t)$ deviates from linear growth and saturates t_{dif} : influence of entanglement reaches the subsystem R

Entanglement entropy: Extended chaotic Ising model

extended chaotic Ising model, 14+1 sites

system thermalizes after the entanglement of the left edge at the initial moment spreads over the system

Entanglement entropy: Transverse Ising model

Transverse Ising model, 14+1 sites

• entanglement reaches the subsystem R after the saturation: $t^* < t_{dif}$

How about Chaotic Ising Model?

- Non-integrable
- Thermalize or not is controversial

Entanglement entropy: Chaotic Ising model

chaotic Ising model, 14+1 sites

large fluctuation of EE
 system seems not thermalized

• entanglement reaches the subsystem R after the saturation: $t^* < t_{dif}$

(Time-evolving block decimation algorithm)

Transverse Ising model, 30+1 sites

Chaotic Ising model, 30+1 sites

Smaller fluctuation compared to N=14

due to suppression of finite size effect

30 +

How about the propagation speed?

- Difference between three model?
- Parameter dependence?

Entanglement entropy: Chaotic Ising model

 Entanglement ballistically propagates with a constant velocity irrespective to the integrability

Propagation speed of entanglement

- $v_{\text{exchaos}} \gg v_{\text{chaos}}$ is related to thermalization?
- v_{chaos} and $v_{exchaos}$ are much less than the Lieb-Robinson bound for the Ising model $v_{LR} = 12eJ$.

Propagation speed of entanglement

Propagation speed of entanglement

transverse Ising model
$$H = -J \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} - h \sum_{i} \sigma_{i}^{x}$$

Jordan-Wigner transformation
 $H = \sum_{k} \varepsilon_{k} \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right)$
 $\varepsilon_{k} = 2 \left(J^{2} + h^{2} - 2hJ \cos k \right)$
 $v_{\max} = \max \left(\frac{d\varepsilon_{k}}{dk} \right) = \begin{cases} 2h & (h/J < 1) \\ 2J & (h/J \ge 1) \end{cases}$

the propagation speed of entanglement coincides with the **maximum group velocity** of quasiparticles

entanglement is carried by quasiparticles

Bipartite mutual information

Bipartite mutual information

Propagation speed of entanglement evaluated by two quantities

- $t_{\rm MI} \sim t_{\rm dif}$ means that A and R starts to have correlation when the influence of the entanglement reaches the subsystem.
- Two velocities measured by entanglement entropy and mutual information agree well: $v_{\rm MI} \sim v_{\rm EE}$.
- Bipartite information is also carried by quasiparticles.

Consistency between two method

Qualitatively the same behavior is checked

Tripartite mutual information

Tripartite mutual information

- Tripartite bipartite correlations propagate with the same speed!
- Negative $I_3(A | B | C)$ implies that scrambling takes place.

Outline

- Introduction: Thermalization of isolated systems, transport of entanglement
- Model
- Time-evolution of entanglement entropy
- Discussion on transport of entanglement and thermalization
- Conjecture for the condition of thermalization
- Summary

Discussion on two time scales

 t^* might not appropriate to characterize propagation speed of entanglement

Discussion on local creation of entanglement

 S_R increases with a constant ratio

EE is locally created with a constant ratio

Size of the Hilbert space for the subsystem: 2^d

 \longrightarrow max $S_R \propto d$: volume law

Discussion on entanglement transport and thermalization

Speculation on Chaotic Ising model

Our conjecture

Condition for thermalization: $t_{dif} \ll t^*$

 $t_{\rm dif} \ll t^*$ thermalizes $t_{\rm dif} > t^*$ not thermalizes

 $t_{\rm dif} > t^*$ not thermalizes

Conjecture

Thermalization, EE production and EE transport

 $t^* \ll t_{\rm diff}$

- Locally thermalize due to local EE production toward maximum value of EE $t\sim t^{*}$
- Locally produced EE propagates

Scrambled enough for thermalization

"Kibble-Zurek" like mechanism

global phase coherence of condensate is achieved after locally formed condensates are Josephson coupled

Global thermalization is not achieved

 $t \sim t_{\rm diff}$

Summary

- Two time scales characterizing time evolution of S_R
 - Transport of entanglement: t_{dif}
 - Local creation of entanglement: t^*

- Entanglement propagates with a constant velocity
- Condition for thermalization: $t_{dif} \ll t^*$
- Kibble-Zurek" like mechanism

Future perspectives

- Relation between thermalization and the two time scales
- Tripartite mutual information and OTOC