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Introduction I: Thermalization of isolated systems

Classical system: ergodicity Quantum system

What is the mechanism of thermalization in quantum systems?

unitary linear dynamicschaotic nonlinear dynamics 



|ψ(t)⟩ = e−iHt |ψ(0)⟩ = ∑
n

ane−iEnt |n⟩

⟨A⟩microcan ≡
1

𝒩E0,ΔE ∑
|En−E0|<ΔE

Ann

⟨A⟩diagonal = ⟨A⟩microcan

Thermalization

⟨A(t)⟩ = ⟨ψ(t) |A |ψ(t)⟩ = ∑
n,m

a*n amei(En−Em)t⟨n |A |m⟩

long-time average ⟨A(t)⟩ = ∑
n

|an |2 Ann ≡ ⟨A⟩diagonal

microcanonical average

M. Rigol et al., Nature 452, 854 (2008)

 : average energyE0

Thermalization in an isolated quantum system

|ψ(0)⟩ = ∑
n

an |n⟩



Eigenstate thermalization hypothesis

Eigenstate thermalization hypothesis (ETH):

⟨n |A |n⟩ = ⟨A⟩microcan

Initial state implicitly contains a thermal state

⟨A⟩diagonal = ∑
n

|an |2 Ann

= ⟨A⟩microcan ∑
n

|an |2

= ⟨A⟩microcan

ETH thermalization

J. M. Deutsch (1991); M. Srednicki (1994)



A non-integrable system obeys ETH and thermalizes

M. Rigol et al., Nature 452, 854 (2008)

Eigenstate thermalization hypothesis



Thermalization through entanglement

⇢A = TrB⇢ =
1

2
(|0iAh0|+ |1iAh1|)

<latexit sha1_base64="W5C/XOChcXBot5U+ruz241iE34Y="></latexit>

mixed state

entanglement entropy: SA = �Tr(⇢A log ⇢A) = 1

<latexit sha1_base64="cXS/n/DJY/UQcr/t+AohTZOtacM="></latexit>

: entangled state

Tr(⇢2A) =
1

2
< Tr(⇢2AB) = 1

<latexit sha1_base64="SaHj3lxPtN1ogMnAmHXSIJhR9gA="></latexit>

quantum purity:

ρAB = |ψ⟩AB⟨ψ |

|ψ⟩AB =
1

2
( |00⟩AB + |11⟩AB)

trace out over B:

finite T

density matrix:

example: two qubits



Measuring entanglement entropy
 2nd order Renyi entropy: S2(A) = − logTr(ρ2

A)

⟨Pi⟩ = Tr(ρ2)

R. Islam et al., Nature 528, 77 (2015)

quantum gas microscope is used to 
directly image the number parity of 
atoms on each lattice site



Entanglement and quantum 
thermalization in atomic gases

A. M. Kaufman, et al., Science 353, 794 (2016).

Dynamics of bosonic atoms in an optical lattice after quench from Mott 
regime  to weakly interacting superfluid regime ( )J/U ≪ 1 J/U ∼ 1



A. M. Kaufman, et al., Science 353, 794 (2016).

agreement with eigenstate ensemble indicates consistency with ETH

Entanglement and quantum thermalization 
in atomic gases



Introduction 2: Transport of entanglement

Calabrese and Cardy (2005), Kim and Huse (2013)

t* =
L
2v

vv

L

t*

: propagation speed of entanglementv

・Entanglement is not a conserved quantity: 

　It can be locally created by the Ising-type interaction.

・Interpretation is based on the quasi-particle picture



Introduction 2: Transport of entanglement

How can we characterize propagation of entanglement?

Question

S. Leichenauer and M. Moosa PRD 2015.

Result differs from the behavior

expected by free quasi-particle.

Entangle can be generated even acausally separated systems
J. Koga, G. Kimura, and K. Maeda PRA 2018.
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Model

• Transverse Ising (TI) model: Ising int. + transverse filed

Htrans = − J∑
i

σz
i σz

i+1 + hx ∑
i

σx
i J = 1, with various hx

Integrable system

Jordan-Wigner transformation

H = ∑
k

εk (γ†
k γk −

1
2 )

εk = 2 (J2 + h2
x − 2hxJ cos k)

“Free fermions”



Chaostic  extensions

• Chaotic Ising (CI) model:  Transverse filed + longitudinal field

• Extended chaotic Ising (ECI) model: chaotic Ising model + NNN interaction

Hchaos = − J∑
i

σz
i σz

i+1 + hx ∑
i

σx
i + hz ∑

i

σz
i

Hexchaos = − J∑
i

σz
i σz

i+1 − J′ ∑
i

σz
i σz

i+2 + hx ∑
i

σx
i + hz ∑

i

σz
i

J = 1, hx = 1.05, hz = 0.5

J = 1, J′ = 0.8, hx = 1.05, hz = 0.5

non-integrable

non-integrable



One-site magnetization

1d, 14 sites

⟨A⟩diagonal = ∑
n

|an |2 ⟨n |A |n⟩
|ψ(t)⟩ = ∑

n

ane−iEnt |n⟩

⟨A⟩microcan(E0) =
1

𝒩E0,ΔE ∑
|En−E0|<ΔE

⟨n |A |n⟩

chaotic Isingextended chaotic Ising
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FIG. 1: (Color online) Schematic picture of spin chain (top figure), (I) Time-evolution of EE for the subsystem R, and (II) that
of local magnetization Mz = 〈σz

N 〉 for the TI, CI, and ECI models. The diagonal and microcanonical averages for each model
are, respectively, indicated as the broken horizontal line and the dotted horizontal line in (II). The diagonal and microcanonical
average are, respectively, 0.131 and 0.165 for the CI model, −1.03×10−15 and −1.86×10−17 for the TI model, and 4.24×10−2

and 4.16× 10−2 for the ECI model. Fig. (III) shows the longtime behaviour of local magnetization Mz.

both the time scales of the entanglement propagation and the local entanglement generation should be encoded in
the characteristic time t∗. However, it is not clear how t∗ is related with the two time scales.

To study propagation speed of entanglement, it is necessary to evaluate time for entanglement to propagate a
certain distance. For this purpose, we make a comparison of the time-evolution of EE for the two cases that start
from the different initial states, schematically shown in Fig. 2. We consider a system that consists of N + 1 spins
where a single spin at the site i = 0 is attached on the left end of the spin chain on the sites 1 ≤ i ≤ N . We hereafter
refer to the spin chain without the attached spin as the “bulk part”. In studying dynamics, we let the bulk part
evolve in time under the Hamiltonian (1).

In the initial state (a), the attached spin and the bulk part are in a product state as

|ψ〉a = |0〉0 ⊗ |Ψ〉bulk. (6)

Transverse Ising



Thermalization

• Extended chaotic Ising model thermalizes due to strong non-integrability, 
while transverse Ising, chaotic Ising model does not show thermalization. 

4
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FIG. 1: (Color online) Schematic picture of spin chain (top figure), (I) Time-evolution of EE for the subsystem R, and (II) that
of local magnetization Mz = 〈σz

N 〉 for the TI, CI, and ECI models. The diagonal and microcanonical averages for each model
are, respectively, indicated as the broken horizontal line and the dotted horizontal line in (II). The diagonal and microcanonical
average are, respectively, 0.131 and 0.165 for the CI model, −1.03×10−15 and −1.86×10−17 for the TI model, and 4.24×10−2

and 4.16× 10−2 for the ECI model. Fig. (III) shows the longtime behaviour of local magnetization Mz.

both the time scales of the entanglement propagation and the local entanglement generation should be encoded in
the characteristic time t∗. However, it is not clear how t∗ is related with the two time scales.

To study propagation speed of entanglement, it is necessary to evaluate time for entanglement to propagate a
certain distance. For this purpose, we make a comparison of the time-evolution of EE for the two cases that start
from the different initial states, schematically shown in Fig. 2. We consider a system that consists of N + 1 spins
where a single spin at the site i = 0 is attached on the left end of the spin chain on the sites 1 ≤ i ≤ N . We hereafter
refer to the spin chain without the attached spin as the “bulk part”. In studying dynamics, we let the bulk part
evolve in time under the Hamiltonian (1).

In the initial state (a), the attached spin and the bulk part are in a product state as

|ψ〉a = |0〉0 ⊗ |Ψ〉bulk. (6)

Long time behavior

1d, 14 sites



Entanglement entropy

Entanglement entropy for the subsystem R

ρR = TrLρtotReduced density matrix: 

SR = − Tr(ρR log ρR)Entanglement entropy: 

Initial density matrix: ρ0 = |ψ0⟩⟨ψ0 |

Density matrix at t: ρtot(t) = e−iHtρ0eiHt

Trace out

L R

d



A RB

|ψ0⟩ =
1

2
( |10⟩ + |01⟩) ⊗ |101010⋯⟩

|ψ0⟩ = |10101010⋯⟩

A RB

Case I:

Case II:

Iyoda and Sagawa, Phys. Rev. A 97, 042330 (2018).Setup

initial state

EPR pair

Neel

EPR

initial state

t = 0

only subsystem B evolves in time



A RB

|ψ0⟩ =
1

2
( |10⟩ + |01⟩) ⊗ |101010⋯⟩

|ψ0⟩ = |10101010⋯⟩

A RB

Case I:

Case II:

initial state

t = tdif

s for Case I and II exhibit deviation when the influence 
of the entanglement reaches the subsystem R
SR

entangled

Neel

EPR

initial state

Iyoda and Sagawa, Phys. Rev. A 97, 042330 (2018).Setup



Propagation of Entanglement

Slope  propagation speed of entanglement∼

ℓ3

t3

ℓ1

t1

ℓ4

ℓ3
ℓ2

t4t3t2t1

ℓ1

ℓ4

t4

ℓ2

t2
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Thermalization: Extended chaotic Ising model

• Consistency with experimentally measured Renyi entropy
• Saturation value of   size of subsystem: “volume law”SR ∝

RL

d

Neel

extended chaotic Ising model, 14+1 sites

6

t
0

3

2

1

2 4 6 8 1210 14
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

t
0

3

2

1

2 4 6 8 1210 14
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

t
0

3

2

1

2 4 6 8 1210
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

14

4

(I)

(II)

(III)

t*

t*

t*

tdiff

tdiff

tdiff

FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

t



Entanglement entropy: Extended chaotic Ising model

s for Neel and EPR exhibit deviation at SR tdif

influence of entanglement reaches the subsystem R at tdif

ℓ

Neel

R
EPR

R

extended chaotic Ising model, 14+1 sites
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FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

t



ℓ

Neel

R
EPR

R

Two time scales

 : influence of entanglement reaches the subsystem Rtdif

 :  deviates from linear growth and saturatest* SR(t)

extended chaotic Ising model, 14+1 sites

Entanglement entropy: Extended chaotic Ising model
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FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

t
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Entanglement entropy: Extended chaotic Ising model
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FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

t
t*>tdif

system thermalizes after the entanglement of the left 
edge at the initial moment spreads over the system
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Transverse Ising model, 14+1 sites

Entanglement entropy: Transverse Ising model

• entanglement reaches the subsystem R after the saturation:  t*<tdif

• large fluctuation of EE system does not thermalize
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FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)



How about Chaotic Ising Model?

• Non-integrable

• Thermalize or not is controversial
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chaotic Ising model, 14+1 sites

Entanglement entropy: Chaotic Ising model

• entanglement reaches the subsystem R after the saturation:  t*<tdif

• large fluctuation of EE system seems not thermalized
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FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)
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Larger system size
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Chaotic Ising model, 30+1 sites

(Time-evolving block decimation algorithm)

Smaller fluctuation compared to N=14

due to suppression of finite size effect  



How about the propagation speed?

• Difference between three model?

• Parameter dependence?



• Entanglement ballistically propagates with a constant velocity 
irrespective to the integrability
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Propagation speed of entanglement

vchaos ∼ 2

vexchaos ∼ 4.5

•  is related to thermalization?
•  and  are much less than the Lieb-Robinson bound 
for the Ising model .

vexchaos ≫ vchaos
vchaos vexchaos

vLR = 12eJ



H = − J∑
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FIG. 4: (Color online) (I) tdiff and tMI are plotted as a function of ! for the TI model with hx = 1.0. The propagation speeds
of EE and mutual information are evaluated from the slope of the curves as vdiff = 2.3 and vMI = 2.0. (II) tdiff is plotted
as a function of ! for the TI model for various strength of the transverse field hx. Propagation speed of entanglement vTI is
proportional to hx as vTI ! 2hx for hx < 1, while it is a constant vTI ! 2.0 for hx ≥ 1.

where γ†k is the creation operator of a quasi-particle with momentum k. The energy dispersion of quasi-particles is
given by

εk = 2
√
1 + h2

x − 2hx cos k. (10)

The maximum group velocity of quasi-particles is found to be

vmax = maxk{∂εk/∂k} =

{
2hx, (hx < 1),
2, (hx ≥ 1).

(11)

The same dependence of vTI and vmax on hx thus indicates that EE propagates with quasi-particle excitations. We
note that vTI in Eq. (8) is much below the upper bound 12e determined by the Lieb-Robinson theorem applied to the
TI model [38].

Figure 4 (II) shows that the curve for the CI model has the same slope as those for the TI model with hx ≥ 1. It
suggests that the longitudinal magnetic field does not affect propagation speed of entanglement and strongly supports
the validity of the quasi-particle picture for transport of entanglement in the CI model despite its non-integrability.

C. Extended Chaotic Ising Model

Figure 3 (III) shows time-evolution of EE for the ECI model. The saturation of EE clearly demonstrates ther-
malization of the system. The two time scales t∗ and tdiff also arise analogous to the CI model. tdiff is shorter
than those for the TI and CI models due to the next-nearest-neighbor (NNN) interaction, since it directly transports
entanglement between the NNN sites. In contrast to the CI model, however, the two curves for the initial states (a)
and (b) split at tdiff much earlier than the saturation at t∗, i.e., tdiff # t∗. It indicates that thermalization is achieved
after entanglement spreads over the system.

The propagation speed of entanglement can be evaluated from the $-tdiff curve for the ECI model, which is not
straight due to the even-odd dependence of tdiff , in Fig. 4 (II). Since the NNN interaction directly couples the attached

h ≥ 1
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the propagation speed of entanglement coincides with 
the maximum group velocity of quasiparticles

entanglement is carried by quasiparticles

Propagation speed of entanglement



Bipartite mutual information

mutual information measures correlation 
between A and B

I(A |B) = SA + SB − SAB

A RB

t = tMI

A RB

t = 0

SA = 1, SR = 0, SAR = 1

I(A |R) ≠ 0

entanglement reaches the subsystem R at tMI

I(A |R) = 0

A B

correlation between A and R



•  means that A and R starts to have correlation when 
the influence of the entanglement reaches the subsystem.

• Two velocities measured by entanglement entropy and mutual 
information agree well:  .

• Bipartite information is also carried by quasiparticles.

tMI ∼ tdif

vMI ∼ vEE

tMI

Bipartite mutual information
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where γ†k is the creation operator of a quasi-particle with momentum k. The energy dispersion of quasi-particles is
given by

εk = 2
√
1 + h2

x − 2hx cos k. (10)

The maximum group velocity of quasi-particles is found to be

vmax = maxk{∂εk/∂k} =

{
2hx, (hx < 1),
2, (hx ≥ 1).

(11)

The same dependence of vTI and vmax on hx thus indicates that EE propagates with quasi-particle excitations. We
note that vTI in Eq. (8) is much below the upper bound 12e determined by the Lieb-Robinson theorem applied to the
TI model [38].

Figure 4 (II) shows that the curve for the CI model has the same slope as those for the TI model with hx ≥ 1. It
suggests that the longitudinal magnetic field does not affect propagation speed of entanglement and strongly supports
the validity of the quasi-particle picture for transport of entanglement in the CI model despite its non-integrability.

C. Extended Chaotic Ising Model

Figure 3 (III) shows time-evolution of EE for the ECI model. The saturation of EE clearly demonstrates ther-
malization of the system. The two time scales t∗ and tdiff also arise analogous to the CI model. tdiff is shorter
than those for the TI and CI models due to the next-nearest-neighbor (NNN) interaction, since it directly transports
entanglement between the NNN sites. In contrast to the CI model, however, the two curves for the initial states (a)
and (b) split at tdiff much earlier than the saturation at t∗, i.e., tdiff # t∗. It indicates that thermalization is achieved
after entanglement spreads over the system.

The propagation speed of entanglement can be evaluated from the $-tdiff curve for the ECI model, which is not
straight due to the even-odd dependence of tdiff , in Fig. 4 (II). Since the NNN interaction directly couples the attached
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such domains, known as the Kibble-Zurek mechanism [44, 45], was explained in terms of the finite propagation speed
of light or causality in the context of cosmology [44]. Since causally disconnected regions do not influence each other,
they have independent choices for the order parameter. The formation of domains in the Kibble-Zurek mechanism is
analogous to local saturation of EE in our problem. The independent choice of the order parameter in each domain
leads to the loss of coherence in the Kibble-Zurek mechanism. This is analogous to the situation where the system
does not thermalize when it is not scrambled enough in the CI model. Our result shows that the local thermalization
time t∗s are almost the same for three models, though it is found that the ECI model achieves the thermalization. The
significant difference between ECI model and the rests is the propagation speed of EE. These facts can be understood
if the Kibble-Zurek like mechanism takes places for the thermalization as discussed above. This interpretation is also
consistent with the fact that the TI model does not thermalize irrespectively of the magnitude of the magnetic field,
since the propagation speed of EE cannot exceed the maximum quasi-particle velocity.

Figure 12 clearly shows that tdiff and t∗ hardly depend on the size of the system and tdiff > t∗ up to N = 30.
We have also confirmed that thermalization is not achieved up to N = 14 (Fig. 1 III). Based on these results, we
expect that the CI model does not thermalize even in sufficiently large systems, which is consistent with the claim of
Ref. [35]. However, whether the CI model thermalizes or not in sufficiently large systems is beyond the scope of the
present work, so we leave a detailed study of this issue in the future.

In the present work, we have investigated the three models to focus on the two aspects of the system; integrability
and NNN interactions. We note that a thermalizing model with only NN interactions should give deeper insights

Propagation speed of entanglement evaluated by two quantities



Consistency between two method
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where γ†k is the creation operator of a quasi-particle with momentum k. The energy dispersion of quasi-particles is
given by

εk = 2
√
1 + h2

x − 2hx cos k. (10)

The maximum group velocity of quasi-particles is found to be

vmax = maxk{∂εk/∂k} =

{
2hx, (hx < 1),
2, (hx ≥ 1).

(11)

The same dependence of vTI and vmax on hx thus indicates that EE propagates with quasi-particle excitations. We
note that vTI in Eq. (8) is much below the upper bound 12e determined by the Lieb-Robinson theorem applied to the
TI model [38].

Figure 4 (II) shows that the curve for the CI model has the same slope as those for the TI model with hx ≥ 1. It
suggests that the longitudinal magnetic field does not affect propagation speed of entanglement and strongly supports
the validity of the quasi-particle picture for transport of entanglement in the CI model despite its non-integrability.

C. Extended Chaotic Ising Model

Figure 3 (III) shows time-evolution of EE for the ECI model. The saturation of EE clearly demonstrates ther-
malization of the system. The two time scales t∗ and tdiff also arise analogous to the CI model. tdiff is shorter
than those for the TI and CI models due to the next-nearest-neighbor (NNN) interaction, since it directly transports
entanglement between the NNN sites. In contrast to the CI model, however, the two curves for the initial states (a)
and (b) split at tdiff much earlier than the saturation at t∗, i.e., tdiff # t∗. It indicates that thermalization is achieved
after entanglement spreads over the system.

The propagation speed of entanglement can be evaluated from the $-tdiff curve for the ECI model, which is not
straight due to the even-odd dependence of tdiff , in Fig. 4 (II). Since the NNN interaction directly couples the attached
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on thermalization, since there is no a priori reason that the model yields a short tdiff . More case studies are indeed
necessary for giving a definitive conclusion on the conjecture.

The simple setup for measuring the propagation speed of EE that we proposed in this paper may be easily applied to
cold atom experiments. We specifically propose to use the setup for the experiments done by Greiner’s group [12, 20],
in which Rényi entropy of ultracold bosonic atoms in a 1D optical lattice has been measured. The dynamics of Rényi
entropy starting from the Mott insulating state that has been already measured corresponds to the dynamics of EE
starting from the initial state (a). For realizing the initial state (b), we first prepare atoms in the Mott insulating
regime and isolate two atoms on the left end of the chain by a high potential barrier. After ramping down the barrier
potential between the two sites, we let the two sites evolve in time so that two atoms are entangled. The propagation
speed of entanglement can be estimated by comparing the dynamics of Rényi entropy for the whole system except
the single site on the left end analogous to the present study. An extension of the present work to dynamics of atoms
in optical lattices is in progress [46].
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Appendix A: Finite Size Effect

In this Appendix, we show that the finite-size effect is irrelevant to the evaluation of propagation of entanglement.
We plot tMI for different system sizes in Fig. 7 for the CI and ECI models. It clearly justifies the evaluation of the
propagation speed of entanglement for N = 14, because the finite size effect only appears in a few sites near the edge
of the system, which does not affect the evaluation seriously.

Appendix B: tdiff and tMI for a Larger Threshold

In our calculation, we have chosen the threshold 10−7 so that the velocities evaluated by tdiff and tMI do not
change in accuracy of 1 % even if we choose smaller thresholds such as 10−8 or 10−9. However, for the experimental
realizability, the threshold is too small. In fact, the propagation speed of entanglement can be estimated with lower
accuracy even if we choose larger thresholds. Figures 8 and 9 show the l-dependence of tdiff and tMI evaluated with
the threshold 10−3, respectively. They demonstrate that the propagation speed of entanglement can be still estimated
with lower accuracy. We thus expect that our proposal is still valid for experiments.

Qualitatively the same behavior is checked
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Discussion on two time scales
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B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑
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We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as
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Discussion on local creation of entanglement

EE is locally created with a constant ratio

Size of the Hilbert space for the subsystem: 2d

 : volume lawmaxSR ∝ d

d

Constant ratio

max SR(d = 4)

 increases with a constant ratioSR

max SR(d = 3)

max SR(d = 2)

t* t



Discussion on entanglement transport and thermalization

thermalizes not thermalizes
tdif ≪ t* tdif > t*

tdif ≪ t*
system is “scrambled" enough Thermalization

entanglement spreads very fast over the system

Condition for thermalization: tdif ≪ t*

extended chaotic Ising
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TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

Transverse Ising
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B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR



Speculation on Chaotic Ising model

thermalizes

not thermalizes

tdif ≪ t*
tdif > t*

Condition for thermalization: tdif ≪ t*

Our conjecture

6

t
0

3

2

1

2 4 6 8 1210 14
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

t
0

3

2

1

2 4 6 8 1210 14
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

t
0

3

2

1

2 4 6 8 1210
0

SEE

d=2 (a)

(b)

d=3 (a)

(b)

d=4 (a)

(b)

14

4

(I)

(II)

(III)

t*

t*

t*

tdiff

tdiff

tdiff

FIG. 3: (Color online) Comparison of time-evolution of EE starting from the initial states (a) and (b) for the (I) CI model, (II)
TI model, and (III) ECI model. Arrows indicate tMI for d = 2 (! = 8). The time scale t∗ is indicated by the dashed vertical
lines in each figure. t∗s are chosen to be the same for three models due to the difficulty of the quantitative definition.

B. Transverse Ising Model

We apply the same analysis made above to the TI model in order to examine what determines the propagation
speed of entanglement. Figure 3 (II) shows the time-evolution of EE for the TI model. The similar behaviour to the
CI model is found. Namely, the curves for the initial states (a) and (b) precisely coincide during the linear increase
in t < t∗ and they split at tdiff(> t∗) after saturation. Figure 4 (II) shows !-tdiff plot for various strength of the
transverse magnetic field. It demonstrates that entanglement spreads with a constant speed, because each curve has
a constant slope. The slope of the curve increases monotonically as hx increases for hx < 1, whereas it is almost
independent of hx for hx ≥ 1. Thus, the propagation speed of entanglement vTI can be evaluated as

vTI "
{

2hx, (hx < 1),
2, (hx ≥ 1).

(8)

The TI model can be diagonalized by the Jordan-Wigner transformation [34] as

H =
∑

k

εk

(
γ†kγk − 1

2

)
, (9)

SR

not thermalizestdif > t*



Conjecture

Thermalization, EE production and EE transport

• Locally thermalize due to local EE production 
toward maximum value of EE

• Locally produced EE propagates

t* ≪ tdifft* ≫ tdiff

Global thermalization is not achievedScrambled enough for thermalization

t ∼ tdiff

t ∼ t*

“Kibble-Zurek” like mechanism

global phase coherence of condensate 
is achieved after locally formed 
condensates are Josephson coupled



・Two time scales characterizing time evolution of 

       - Transport of entanglement: 
　　- Local creation of entanglement: 

・Entanglement propagates with a constant velocity 

・Condition for thermalization: 

・Kibble-Zurek” like mechanism 

SR

tdif
t*

tdif ≪ t*

Summary 

Future perspectives

• Relation between thermalization and the two time scales
• Tripartite mutual information and OTOC

t ∼ t* t ∼ tdif


