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Topologically-ordered phases in (2+1)D

Phases that are not described by the symmetry-breaking paradigm (no
local order parameter).
E.g., fractional quantum Hall states

Support anyons; neither bosons nor fermions but have non-trivial exchange
(braiding) statistics
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Characterized by the properties of anyons (fusion, braiding, etc.)

Bulk-boundary correspondence
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e How can we extract/measure topological data?
Direct observations of abelian braiding statistics [Nakamura et al (20), Bartolomei et
al (20)], central charge [Banerjee et al (18), Kasahara et al (18)]

e Topological data can be captured by topological entanglement entropy
[Levin-Wen, Kitaev-Preskill (05)]

e This talk: go beyond bipartition and study reflected entropy and
entanglement negativity
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Entanglement entropy

e The von-Neumann entanglement entropy:

Sa:=—Tra(palnpa)

for the reduced density matrix pa = Trp |¥) (|

B

e For topologically-ordered ground states in (2-+1)D [Levin-Wen, Kitaev-Preskill (05)]
Sa = const. Xx £ —InD

“Topological entanglement entropy” v = InD carries universal data
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Edge theory approach to entanglement

e The ground state |GS) near the entangling surface is well approximated by
a conformal boundary state | B): [Qi-Katsura-Ludwig (12)]

[T(0) —T(o)]|B) =0 (0< o< 2m)

where T' (T') is the stress tensor for the edge state of A (B).

e More precisely, near the entangling boundary, |GS) ~ ¢~ “"¢is¢| B) where
€ ~ 1/(bulk gap).

o The reduced density matrix is

pa o< Trp [e= et | B)(Ble™ o]
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Going beyond entanglement entropy for bipartition

e Go beyond bipartition, and study entanglement quantities

(a)

e Multipartite entanglement?
L _ L
V2 V3

o Reflected entropy and entanglement negativity

|GHZ) = — [| 1) + [ D], (W) [0 + [ 1) + [ 4]
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Reflected Entropy

[Dutta-Faulkner (19)]

e The von-Neumann entropy of a canonical
purification:

PAB = Z;Di [vi) (Wil ap

= 1VPaB) aarpp* = Z\/ITin‘)AB [47) A= -

By tracing out BB*, we define:
Ra.p := Syn(AUA")

o Satisfies ha.p = Ra: — [a: > 0. ha.p is sometimes called Markov gap.
[Hayden-Parrikar-Sorce (21)]

e Admits holographic dual Ra.p = 2Ew [Dutta-Faulkner (19)]



Reflected entropy

o Reflected entropy can capture tripartite entanglement [Akers-Rath (19)]
hcgaz =0 hw =149In2—-0.92In2 > 0.

e More genetically, ha.g = 0 if and only if a state |¢)) € Hapc is a sum of
“triangle state”: [Zou-Siva-Soejima-Mong-Zaletel (20)]

) = D VBli) as g3 930 g3 1 ids ad
J

where H, = @j?‘lai ®HD‘%- Eg. |GHZ) = % (1) + [ D]
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Reflected entropy

e For the ground state of (14+1)D CFT defined on a circle;
ha.p = (¢/3)In2

(for any N4/N and Np/N in the limit N — 00) [Zou-Siva-Soejima-Mong-Zaletel
(20)]

e (141)D system is gapped if and only if h = 0. [Zou-Siva-Soejima-Mong-Zaletel (20)]

e Holography: ha.p > éé‘;d]\sl In 2 [Hayden-Parrikar-Sorce (21)]
When ha.p > 0 there is no Markov recovery channel for papp* or ppaa*
(A— B — B* or B— A — A" are not quantum Markov chains); ha.p
gives the optimal fidelity of a recovery process of canonical purification.



Reflected entropy (and negativity) in tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]

D’ s

S gons

'

e Studied chiral p-wave superconductor (the Ising TQFT) with ¢ = 1/2 and
the integer quantum Hal state with ¢ = 1.

10/28



Main result — Reflected entropy

o We computed the Markov gap ha.p = Ra.p — la.B using the
bulk-boundary correspondence:

ha.p = gln 2, c: central charge.

e Combined with numerics in lattice models, ha.p > (¢/3)In2 in general.

e Agrees with the recent claim [zou, Siva, Soejima, Mong, Zaletel (2110.11965)]
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((¢/3)In2 =0.116,0.231 for c=1 and ¢ = 1/2).

e Modular commutator: ([Kap, Kpc]) = m¢/3 Kim-Shi-Kato-Albert (21)



Multipartition topological phases using string field theory

e String field theory = many-body (second quantized) string theory

o Interaction vertices in string field theory

J

[Witten (86), Gross-Jevicki (87), LeClair-Peskin-Preitschopf (89), ...]

e Vertex state |V') ~ Topological ground state |¥) near the entangling
boundary by utilized bulk-boundary correspondence

vy = o

o Generalized [QiKatsura-Ludwig (12)] for tripartition geometry



Tripartition by “vertex state”

e Need to find the “ground” states near the entangling boundaries; three
copies of edge theories interact

T (o) =T (2r —0)]|[V)=0 I=AB,C




Vertex state
e Borrow ideas from string field theory (“vertex states”). Vertex state
|V) € H2y,. satisfies

(V| (Oalo >1®OB|0> -0,|0)n)
= (w1[0a] w2[O5]ws[0,] ) .

W, [w
(D™ - ®
A P
Wy

M

e We constructed |V') explicitly for chiral p-wave superconductor and Chern
insulators. From e~“Hedse| /), we can construct the ground state and
reduced density matrix near the entangling boundaries
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Entanglement negativity

e Entanglement negativity and logarithmic negativity, using partial transpose
[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

N(p) = 3 Il = 2 (™11~ 1),

A; <0
E(p) = 1og(2N(p) + 1) = log [|p"2 .

e Good entanglement measure since LOCC monotone. Entanglement
entropy is LOCC monotone only only for pure states.

o For mixed states, negativity can extract quantum correlations only.



Tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]
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e Studied chiral p-wave superconductor (the Ising TQFT) with ¢ = 1/2 and
the integer quantum Hal state with ¢ = 1.
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Negativity spectrum

o For fermionic systems, the eigenvalues of Piﬁs are complex. Nontrivial
distribution of the eigenvalues of pzﬁB

o

Entanglement spectrum
o
o
T
i

o
3

2

c.f. Entanglement spectrum [SR-Hatsugai (06)]

o C.f. (1+1)D fermionic CFTs (6-f0|d structure) [Shapourian-Ruggiero-SR-Calabrese
(19)] (141)D topological superconductor (8-fold structure)
[Inamura-Kobayashi-SR (19)]
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Lattice Chern insulator calculations

o Lattice fermion model fr = (fir, fir):

H=— - Z Z |:frTHfr+au *fr+au l"fri|

r pu=z,y
+ - Z Z |:frTzfr+a“+fr+aMTZfr:| +uzfr7-zfr»
r pu=x,y
(b) g
DAL
Ch=1 L Ch=0 —1
| : | > B, .0

u=0 u=2
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Reflected entropy

® ha.p is minimal in the topological phase around u = 1.34
e hap~(c/3)In2x 23

o Note that there are four trijunctions, as opposed to two in the edge theory
calculations. May result in a factor of 2.
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e See also: [Zou, Siva, Soejima, Mong, Zaletel (2110.11965)]
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Negativity and negativity spectrum

Negativity spectrum Entropy and Negativity
u =0 u =1 (a) ()
L . 1 - 2 7 2
2RO
L~ . e
1 0 1 1 0 1
Re(() Re(C)
u =2 u=3
1 : 1 - - \\v
SN Y T ; \u
- 1
- 0 1 1 0 1
Re(¢) Re(¢)
e “Trivial” for |u| — oo
e “Circular distribution”

deep in the Ch=1 phase

20/28



Wave function overlap

vy = i

o Vertex state <> Wave function overlap A.sy

Aapy = (VI(Io)163)163))) = (6% |dads)

e Wave function overlap A,g~ can be used to extract OPE coefficients (and
more) of (1+1)d lattice quantum systems at conformal critical point
[Zou-Vidal arXiv:2108.09366] [Liu-Zou-SR arXiv:2203.xxxxx]
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Wavefunction overlap and OPE
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e Wave function overlap can be mapped on to a 3pt function on a plane:

2% — (94 (~00)03 (—00)d5 (+00))pan

= Jacobian - (¢p (w1)d5(w2) 3" (w3))e
x Capy
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Finite size corrections

e Finite size corrections:

Aapy _ A0 i®) 7 —Pap
Toy = At D AG LT
Pap~y>0

Dag~: Operator content of the Zy orbifold theory
o Explicitly, when L3 = L1 + L2 and L1 = Ly = L,
A111 x L_C/S
and

—2AL—2A542A “ Ay o
Aapy = ) a2 80 200428 O, L7800
5,%=0,1

N
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Application: Haagerup model

Interacting anyon chain for the Haagerup fusion category

[Huang-Lin-Ohmori-Tachikawa-Tezuka (21); Vanhove-Lootens-Damme-Wolf-Osborne-Haegeman-Verstraete (21)] :

H= —ZPP(”,

PPai—raiaii) = Z[Fif;f””]aic[Fé‘f;fpp}:;claifla;awo

a’
i

Hilbert space:

lataz - an) =

[Feiguin et al (06)]
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Realizes a CFT with ¢ ~ 27 2d CFT which has the Haagerup fusion category
as its symmetry. Which CFT?

Periodic ‘ Open

¢ = 2.034(4) c=2.11(7)
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|.J): lowest eigenstate with spin 1 at size N = 3n + 1. |J*): lowest eigenstate
with spin 1 at size N = 3n + 2; are they chiral currents? Expect:

Ajgea —2A;—2A ;5 —2A
LIT 928528 =2y 2
A1z 16

Obtained % ~ 0.02 numerically.
111



Summary/Outlook

New tripartition setup and new calculations of entanglement quantities

They may capture topological data beyond topological entanglement
entropy, e.g., Abelian v.s. Non-abelian, total central charge.

Finite-T topological transition can be detected by negativity
[Hart-Castelnovo(18);Lu-Hsieh-Grover(19)]

May have an implication on numerics (tensor-networks)
May have an implication in string field theory?

Other entanglement quantities, such as odd entropy, entanglement of
purification, etc?

Experiments: Many-body interference or randomized measurements [islam et
al (15)] [Kaufman et al (16)] [Lukin et al (18)] [Brydges (19)]
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Negativity for topological liquid
[Lee-Vidal (13), Castelnovo (13), Wen-Matsuura-SR (16), Wen-Chang-SR (16) Lim-Asasi-Teo-Mulligan (21)]

e Generic state on a torus: [¢)) = Za Ya|bha))

e Mutual information and negativity:

!
Lajias = 5= =2InD+2Y Wl Inda = [vul* Infipuf®

a

Enyiny = 71%% —InD+1n (Z Wa|2d“)

a

& is dependent on ¢, only for non-Abelian topological order (for Abelian
topological order, d, =1 for all a).
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