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Topologically-ordered phases in (2+1)D

• Phases that are not described by the symmetry-breaking paradigm (no
local order parameter).
E.g., fractional quantum Hall states

• Support anyons; neither bosons nor fermions but have non-trivial exchange
(braiding) statistics

• Characterized by the properties of anyons (fusion, braiding, etc.)

• Bulk-boundary correspondence
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• How can we extract/measure topological data?
Direct observations of abelian braiding statistics [Nakamura et al (20), Bartolomei et

al (20)] , central charge [Banerjee et al (18), Kasahara et al (18)]

• Topological data can be captured by topological entanglement entropy
[Levin-Wen, Kitaev-Preskill (05)]

• This talk: go beyond bipartition and study reflected entropy and
entanglement negativity
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Entanglement entropy

• The von-Neumann entanglement entropy:

SA := −TrA(ρA ln ρA)

for the reduced density matrix ρA = TrB |Ψ〉〈Ψ|

• For topologically-ordered ground states in (2+1)D [Levin-Wen, Kitaev-Preskill (05)]

SA = const.× `− lnD

“Topological entanglement entropy” γ = lnD carries universal data
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Edge theory approach to entanglement

• The ground state |GS〉 near the entangling surface is well approximated by
a conformal boundary state |B〉: [Qi-Katsura-Ludwig (12)]

[T (σ)− T̄ (σ)] |B〉 = 0 (0 ≤ σ < 2π)

where T (T̄ ) is the stress tensor for the edge state of A (B).

• More precisely, near the entangling boundary, |GS〉 ∼ e−εHedge |B〉 where
ε ∼ 1/(bulk gap).

• The reduced density matrix is

ρA ∝ TrB
[
e−εHedge |B〉〈B|e−εHedge

]
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Going beyond entanglement entropy for bipartition

• Go beyond bipartition, and study entanglement quantities

• Multipartite entanglement?

|GHZ〉 = 1√
2

[| ↑↑↑〉+ | ↓↓↓〉] , |W〉 = 1√
3

[| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉]

• Reflected entropy and entanglement negativity

6 / 28



Reflected Entropy

[Dutta-Faulkner (19)]

• The von-Neumann entropy of a canonical
purification:

ρAB =
∑
i

pi |ψi〉 〈ψi|AB

→|√ρAB〉AA∗BB∗ ≡
∑
i

√
pi |ψi〉AB |ψ

∗
i 〉A∗B∗ .

By tracing out BB∗, we define:

RA:B := SvN (A ∪A∗)

• Satisfies hA:B ≡ RA:B − IA:B ≥ 0. hA:B is sometimes called Markov gap.
[Hayden-Parrikar-Sorce (21)]

• Admits holographic dual RA:B = 2EW [Dutta-Faulkner (19)]
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Reflected entropy

• Reflected entropy can capture tripartite entanglement [Akers-Rath (19)]

hGHZ = 0 hW = 1.49 ln 2− 0.92 ln 2 > 0.

• More genetically, hA:B = 0 if and only if a state |ψ〉 ∈ HABC is a sum of
“triangle state”: [Zou-Siva-Soejima-Mong-Zaletel (20)]

|ψ〉 =
∑
j

√
pj |ψj〉Aj

R
B
j
L
|ψj〉Bj

R
C
j
L
|ψj〉Cj

R
A
j
L

where Hα = ⊕jHαj
L
⊗H

α
j
R

. E.g., |GHZ〉 = 1√
2 [| ↑↑↑〉+ | ↓↓↓〉]
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Reflected entropy

• For the ground state of (1+1)D CFT defined on a circle;

hA:B = (c/3) ln 2

(for any NA/N and NB/N in the limit N →∞) [Zou-Siva-Soejima-Mong-Zaletel

(20)]

• (1+1)D system is gapped if and only if h = 0. [Zou-Siva-Soejima-Mong-Zaletel (20)]

• Holography: hA:B ≥ `AdS
2GN

ln 2 [Hayden-Parrikar-Sorce (21)]

When hA:B > 0 there is no Markov recovery channel for ρABB∗ or ρBAA∗
(A→ B → B∗ or B → A→ A∗ are not quantum Markov chains); hA:B
gives the optimal fidelity of a recovery process of canonical purification.
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Reflected entropy (and negativity) in tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]

• Studied chiral p-wave superconductor (the Ising TQFT) with c = 1/2 and
the integer quantum Hal state with c = 1.
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Main result – Reflected entropy

• We computed the Markov gap hA:B = RA:B − IA:B using the
bulk-boundary correspondence:

hA:B = c

3 ln 2, c: central charge.

• Combined with numerics in lattice models, hA:B ≥ (c/3) ln 2 in general.

• Agrees with the recent claim [Zou, Siva, Soejima, Mong, Zaletel (2110.11965)]

((c/3) ln 2 = 0.116, 0.231 for c = 1 and c = 1/2).

• Modular commutator: i〈[KAB ,KBC ]〉 = πc/3 Kim-Shi-Kato-Albert (21)
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Multipartition topological phases using string field theory

• String field theory = many-body (second quantized) string theory

• Interaction vertices in string field theory

[Witten (86), Gross-Jevicki (87), LeClair-Peskin-Preitschopf (89), ...]

• Vertex state |V 〉 ' Topological ground state |Ψ〉 near the entangling
boundary by utilized bulk-boundary correspondence

• Generalized [Qi-Katsura-Ludwig (12)] for tripartition geometry
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Tripartition by “vertex state”

• Need to find the “ground” states near the entangling boundaries; three
copies of edge theories interact

[T I(σ)− T I+1(2π − σ)]|V 〉 = 0 I = A,B,C
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Vertex state

• Borrow ideas from string field theory (“vertex states”). Vertex state
|V 〉 ∈ H3

edge satisfies

〈V |
(
Oα|0〉1 ⊗Oβ |0〉2 · · ·Oγ |0〉N

)
=
〈
ω1[Oα]ω2[Oβ ]ω3[Oγ ]

〉
C

• We constructed |V 〉 explicitly for chiral p-wave superconductor and Chern
insulators. From e−εHedge |V 〉, we can construct the ground state and
reduced density matrix near the entangling boundaries
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Entanglement negativity

• Entanglement negativity and logarithmic negativity, using partial transpose
[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

N (ρ) :=
∑
λi<0

|λi| =
1
2
(
||ρTB ||1 − 1

)
,

E(ρ) := log(2N (ρ) + 1) = log ||ρTB ||1.

• Good entanglement measure since LOCC monotone. Entanglement
entropy is LOCC monotone only only for pure states.

• For mixed states, negativity can extract quantum correlations only.
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Tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]

• Studied chiral p-wave superconductor (the Ising TQFT) with c = 1/2 and
the integer quantum Hal state with c = 1.
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Negativity spectrum
• For fermionic systems, the eigenvalues of ρTBA∪B are complex. Nontrivial

distribution of the eigenvalues of ρTBA∪B

c.f. Entanglement spectrum [SR-Hatsugai (06)]

• C.f. (1+1)D fermionic CFTs (6-fold structure) [Shapourian-Ruggiero-SR-Calabrese

(19)] (1+1)D topological superconductor (8-fold structure)
[Inamura-Kobayashi-SR (19)]
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Lattice Chern insulator calculations

• Lattice fermion model fr = (f↑r, f↓r):

H =
−i
2

∑
r

∑
µ=x,y

[
f†r τµfr+aµ − f

†
r+aµτµfr

]
+

1
2

∑
r

∑
µ=x,y

[
f†r τzfr+aµ + f†r+aµτzfr

]
+ u
∑

r

f†r τzfr ,
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Reflected entropy

• hA:B is minimal in the topological phase around u = 1.34

• hA:B ∼ (c/3) ln 2× 2.3

• Note that there are four trijunctions, as opposed to two in the edge theory
calculations. May result in a factor of 2.

• See also: [Zou, Siva, Soejima, Mong, Zaletel (2110.11965)]
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Negativity and negativity spectrum

Negativity spectrum

• “Trivial” for |u| → ∞
• “Circular distribution”

deep in the Ch=1 phase

Entropy and Negativity
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Wave function overlap

• Vertex state ↔ Wave function overlap Aαβγ

Aαβγ = 〈V |
(
|φ1
α〉|φ2

β〉|φ3
γ〉〉
)

= 〈φ∗γ |φαφβ〉

• Wave function overlap Aαβγ can be used to extract OPE coefficients (and
more) of (1+1)d lattice quantum systems at conformal critical point
[Zou-Vidal arXiv:2108.09366] [Liu-Zou-SR arXiv:2203.xxxxx]
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Wavefunction overlap and OPE

• Wave function overlap can be mapped on to a 3pt function on a plane:

Aαβγ
A111

= 〈φ1
α(−∞)φ2

β(−∞)φ3∗
γ (+∞)〉Pants

= Jacobian · 〈φ1
α(w1)φ2

β(w2)φ3∗
γ (w3)〉C

∝ Cαβγ
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Finite size corrections

• Finite size corrections:
Aαβγ
A111

= Ã
(0)
αβγ +

∑
pαβγ>0

Ã
(p)
αβγL

−pαβγ

pαβγ : operator content of the Z2 orbifold theory

• Explicitly, when L3 = L1 + L2 and L1 = L2 = L,

A111 ∝ L−c/8

and

Aαβγ =
∑

δ,χ̂=0,1

a(δ,χ̂) 2−2∆α−2∆β+2∆γCαβγ L
−∆(δ,χ̂)
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Application: Haagerup model

Interacting anyon chain for the Haagerup fusion category
[Huang-Lin-Ohmori-Tachikawa-Tezuka (21); Vanhove-Lootens-Damme-Wolf-Osborne-Haegeman-Verstraete (21)] :

H = −
∑
i

P (i)
ρ ,

P (i)
c |ai−1aiai+1〉 =

∑
a′
i

[F ai−1ρρ
ai+1 ]aic[F

ai−1ρρ
ai+1 ]∗a′

i
c|ai−1a

′
iai+1〉

Hilbert space:

|a1a2 · · · aN 〉 =

[Feiguin et al (06)]

24 / 28



Realizes a CFT with c ' 2? 2d CFT which has the Haagerup fusion category
as its symmetry. Which CFT?
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1013× 100 4× 100 6× 100

N

4× 10−1

5× 10−1

A
I
I
I

c/8 = 0.257
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J
∗ I
/A

I
I
I

|J〉: lowest eigenstate with spin 1 at size N = 3n+ 1. |J∗〉: lowest eigenstate
with spin 1 at size N = 3n+ 2; are they chiral currents? Expect:

AJJ∗1
A111

= 2−2∆J−2∆J∗−2∆1CJJ∗1 = 1
16

Obtained AJJ∗1
A111

' 0.02 numerically.
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Summary/Outlook

• New tripartition setup and new calculations of entanglement quantities

• They may capture topological data beyond topological entanglement
entropy, e.g., Abelian v.s. Non-abelian, total central charge.

• Finite-T topological transition can be detected by negativity
[Hart-Castelnovo(18);Lu-Hsieh-Grover(19)]

• May have an implication on numerics (tensor-networks)

• May have an implication in string field theory?

• Other entanglement quantities, such as odd entropy, entanglement of
purification, etc?

• Experiments: Many-body interference or randomized measurements [Islam et

al (15)] [Kaufman et al (16)] [Lukin et al (18)] [Brydges (19)]
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Negativity for topological liquid

[Lee-Vidal (13), Castelnovo (13), Wen-Matsuura-SR (16), Wen-Chang-SR (16) Lim-Asasi-Teo-Mulligan (21)]

• Generic state on a torus: |ψ〉 =
∑

a
ψa|ha〉〉

• Mutual information and negativity:

IA1:A2 = πc

12
l2
ε
− 2 lnD + 2

∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2

EA1:A2 = πc

16
l2
ε
− lnD + ln

(∑
a

|ψa|2da
)

E is dependent on ψa only for non-Abelian topological order (for Abelian
topological order, da = 1 for all a).
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