Universal construction of decoders from encoding black boxes

Satoshi Yoshida，Akihito Soeda，Mio Murao
Department of Physics，The University of Tokyo

Motivation

- Isometry operation

Encoding of quantum state on a higher-dimensional Hilbert space

Decoding: inverse operation of encoding

Motivation

- Examples of black box isometry

Encoding oracle in quantum algorithms (eg. HHL algorithm) [Harrow et al. 2009]

Information scrambling dynamics as error correcting code [Hayden, Preskill 2007]

Motivation

- Question

How to decode an encoding operation given as a black box?

- Straightforward strategy: Process tomography

Tomography of a black box isometry $\tilde{\mathcal{V}}$
\rightarrow Implement its inverse $\tilde{\mathcal{V}}_{\text {inv }}$ based on the classical description of $\tilde{\mathcal{V}}$
\times The cost of tomography is very heavy.

- Another strategy: Higher-order quantum transformation

Transform a black box isometry $\tilde{\mathcal{V}}$ to its inverse $\tilde{\mathcal{V}}_{\text {inv }}$ without knowing its classical description
\checkmark Less query complexity of $\tilde{\mathcal{V}}$ than tomography.

Higher-order quantum transformation

- Input black box operation + Fixed quantum circuit = Output operation

Higher-order quantum transformation

- Probabilistic protocol

Determine accept/reject based on the measurement outcome

Higher-order quantum transformation

- Multiple input case

Cf. We can also consider higher-order quantum transform that cannot be implemented by quantum circuit.

Task: Isometry inversion

- Given: k copies of a black box isometry $\tilde{\mathcal{V}}: \mathcal{L}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{L}\left(\mathbb{C}^{D}\right)$

$$
-\sqrt{V_{d, D}}-\quad \times k
$$

*Thick wire: D-dimensional space

- Task: Implement the inverse operation $\tilde{\mathcal{V}}_{\text {inv }}$ s.t. $\tilde{\mathcal{V}}_{\text {inv }} \circ \tilde{\mathcal{V}}=\tilde{\mathrm{id}}$.

Previous work: Unitary inversion

- The special case $(D=d)$ of isometry inversion = Unitary inversion
- Given: k copies of a black box unitary $\tilde{\mathcal{U}}: \mathcal{L}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{L}\left(\mathbb{C}^{d}\right)$
- Task: Implement the inverse operation $\tilde{\mathcal{U}}^{\dagger}$

Theorem [Quintino et al. 2019].
There exists a unitary inversion protocol with the success probability

$$
p=1-\mathcal{O}\left(d^{3} / k\right) .
$$

Previous work: Unitary inversion

- Main idea

Previous work: Unitary inversion

- Main idea

- Unitary complex conjugation [Miyazaki et al. 2019]

J. Miyazaki, A. Soeda, and M. Murao, Phys. Rev. Research 1, 013007 (2019).

Previous work: Unitary inversion

- Main idea

- Unitary complex conjugation [Miyazaki et al. 2019]

Irreducible decomposition of $U^{\otimes d-1}: \quad U^{\otimes d-1}$

Totally antisymmetric subspace

Previous work: Unitary inversion

- Main idea

- Unitary transposition [Quintino et al. 2019]

Gate teleportation

Previous work: Unitary inversion

- Main idea

- Unitary transposition [Quintino et al. 2019]

Port-based teleportation [Ishizaka and Hiroshima, 2008]

M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda and M. Murao, Phys. Rev. A 100, 062339 (2019).

Previous work: Unitary inversion

- Unitary inversion [Quintino et al. 2019]

Unitary complex conjugation + Port-based teleportation

Previous work: Unitary inversion

- Unitary inversion [Quintino et al. 2019]

Unitary complex conjugation + Port-based teleportation

Previous work: Unitary inversion

- Unitary inversion [Quintino et al. 2019]

Unitary complex conjugation + Port-based teleportation

Extension of unitary inversion?

- Decomposition of unitary inversion

Representation theory of unitary group

Extension of unitary inversion?

- Decomposition of unitary inversion

- Direct extension?

Extension of unitary inversion?

- Decomposition of unitary inversion

- Direct extension? \rightarrow Isometry does not form a group

Research question

- How to implement isometry inversion?
- Difference with unitary inversion?

Result

- Construction of efficient probabilistic protocol for isometry inversion

- Difference between unitary inversion and isometry inversion

$$
\begin{aligned}
& -V-\mapsto-V^{\dagger}-=-V-\mapsto-V^{*}-\quad+-V-\mapsto-V^{T}- \\
& \text { isometry inversion complex conjugation } X \text { transposition D-dependent }
\end{aligned}
$$

Result

- Construction of efficient probabilistic protocol for isometry inversion

- Difference between unitary inversion and isometry inversion

Result 1:

Probabilistic isometry inversion protocol

Theorem 1. The following quantum circuit implements isometry inversion with the success probability

$$
p=1-\mathcal{O}\left(d^{3} / k\right) \longleftarrow \text { Independent of } D
$$

Result 1:

Probabilistic isometry inversion protocol

- Main idea

Construct a CPTP map $\widetilde{\Psi}$ satisfying the following lemma.
Lemma 2. For any isometry $V_{d, D}: \mathbb{C}^{d} \rightarrow \mathbb{C}^{D}$, the following relation holds, where $\mathrm{d} U_{d}$ is the Haar measure on the unitary group $U(d)$.

$$
\begin{gathered}
-\sqrt{V_{d, D}}- \\
-V_{d, D}-\tilde{\Psi}- \\
\vdots \\
\vdots \\
-V_{d, D}-
\end{gathered} \quad \begin{gathered}
-U_{d}- \\
-\mathrm{V}_{d} \\
\begin{array}{l}
-U_{d}- \\
\vdots \\
-U_{d}-
\end{array}
\end{gathered}
$$

CPTP map $\widetilde{\Psi}=$ Quantum Schur transform [Harrow, 2005]+"trace-and-replace"
A. W. Harrow, PhD Thesis, arXiv: quant-ph/0512255

Result 1:
 Probabilistic isometry inversion protocol

- Main idea Insert the CPTP map $\widetilde{\Psi}$ into a unitary inversion protocol

Result 1:

Probabilistic isometry inversion protocol

- Main idea

Insert the CPTP map $\widetilde{\Psi}$ into a unitary inversion protocol

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$,

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$,

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$,

$$
\text { Lemma } 2
$$

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$,

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$, the output state is ρ

Result 1:

Probabilistic isometry inversion protocol

- Proof

If the input state is $\rho_{\text {in }}=V \rho V^{\dagger}$, the output state is ρ

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- The CPTP map $\widetilde{\Psi}$ should satisfy

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- The CPTP map $\widetilde{\Psi}$ should satisfy

Choose a "nice" basis to express these operations

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:
Unitary group $U(d) \ni U \mapsto U^{\otimes k} \in \mathcal{L}(\mathcal{H})$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:
Unitary group $U(d) \ni U \mapsto U^{\otimes k} \in \mathcal{L}(\mathcal{H})$
Symmetric group $\mathfrak{S}_{k} \ni \sigma \mapsto S_{\sigma} \in \mathcal{L}(\mathcal{H})$ s.t. $S_{\sigma}\left|i_{1}, \cdots, i_{k}\right\rangle=\left|i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(k)}\right\rangle$
Permutation operator

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:
Unitary group $U(d) \ni U \mapsto U^{\otimes k} \in \mathcal{L}(\mathcal{H})$
Symmetric group $\mathfrak{S}_{k} \ni \sigma \mapsto S_{\sigma} \in \mathcal{L}(\mathcal{H})$ s.t. $S_{\sigma}\left|i_{1}, \cdots, i_{k}\right\rangle=\left|i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(k)}\right\rangle$
Permutation operator
Schur-Weyl duality:

$$
\mathcal{H}=\oplus_{\mu} u_{\mu}^{(d)} \otimes \mathcal{S}_{\mu}^{(k)} \quad \mu: \text { Young tableau with } k \text { boxes }
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:
Unitary group $U(d) \ni U \mapsto U^{\otimes k} \in \mathcal{L}(\mathcal{H})$
Symmetric group $\mathfrak{S}_{k} \ni \sigma \mapsto S_{\sigma} \in \mathcal{L}(\mathcal{H})$ s.t. $S_{\sigma}\left|i_{1}, \cdots, i_{k}\right\rangle=\left|i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(k)}\right\rangle$

Permutation operator

Schur-Weyl duality:

$$
\begin{gathered}
\mathcal{H}=\oplus_{\mu} \mathcal{U}_{\mu}^{(d)} \otimes S_{\mu}^{(k)} \quad \mu: \text { Young tableau with } k \text { boxes } \\
U^{\otimes k}=\oplus_{\mu} U_{\mu} \otimes I_{\mathcal{S}_{\mu}} \\
S_{\sigma}=\oplus_{\mu} I_{U_{\mu}} \otimes \sigma_{\mu}
\end{gathered}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Schur-Weyl duality

Consider the following representations on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}$:
Unitary group $U(d) \ni U \mapsto U^{\otimes k} \in \mathcal{L}(\mathcal{H})$
Symmetric group $\mathfrak{S}_{k} \ni \sigma \mapsto S_{\sigma} \in \mathcal{L}(\mathcal{H})$ s.t. $S_{\sigma}\left|i_{1}, \cdots, i_{k}\right\rangle=\left|i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(k)}\right\rangle$

Permutation operator

Schur-Weyl duality:

$$
\begin{gathered}
\mathcal{H}=\oplus_{\mu} u_{\mu}^{(d)} \otimes S_{\mu}^{(k)} \quad \mu: \text { Young tableau with } k \text { boxes } \\
U^{\otimes k}=\oplus_{\mu} U_{\mu} \otimes I_{S_{\mu}} \\
S_{\sigma}=\oplus_{\mu} I_{u_{\mu}} \otimes \sigma_{\mu^{2}} \\
\text { Irreducible representation }
\end{gathered}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Quantum Schur transform

Transformation from computational basis to Schur-Weyl basis

$$
\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes k}\left\{\begin{array}{c}
\\
\vdots \\
\vdots
\end{array} U_{\mathrm{Sch}} \frac{\mathcal{M} \ni|\mu\rangle}{\frac{u_{\mu}^{(d)}}{\delta_{\mu}^{(k)}}}\right. \text { label of irrep. }
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

D Decomposition of $U^{\otimes k}$

$$
U^{\otimes k}=\oplus_{\mu} U_{\mu} \otimes I_{S_{\mu}}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

D Decomposition of $U^{\otimes k}$

$$
U^{\otimes k}=\oplus_{\mu} U_{\mu} \otimes I_{\mathcal{S}_{\mu}}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Extend to decomposition of $V^{\otimes k}$ for isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{D}$

$$
V^{\otimes k}=\oplus_{\mu} V_{\mu} \otimes I_{\mathcal{S}_{\mu}}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Extend to decomposition of $V^{\otimes k}$ for isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{D}$

$$
V^{\otimes k}=\oplus_{\mu} V_{\mu} \otimes I_{\mathcal{S}_{\mu}}
$$

Isometry
Identity

$$
V_{\mu}: \mathcal{U}_{\mu}^{(d)} \rightarrow \mathcal{U}_{\mu}^{(D)}
$$

$$
I_{\delta_{\mu}}: \mathcal{S}_{\mu}^{(k)} \rightarrow \mathcal{S}_{\mu}^{(k)}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

- Extend to decomposition of $V^{\otimes k}$ for isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{D}$

$$
V^{\otimes k}=\oplus_{\mu} V_{\mu} \otimes I_{\mathcal{S}_{\mu}}
$$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

" "Trace-and-replace" of $\mathcal{U}_{\mu}^{(D)}$ after $V^{\otimes k}$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

-"Trace-and-replace" of $\mathcal{U}_{\mu}^{(D)}$ after $V^{\otimes k}$

Result 1:

Construction of the CPTP map $\widetilde{\Psi}$

" "Trace-and-replace" of $\mathcal{U}_{\mu}^{(D)}$ after $V^{\otimes k}$

Result 1:

Performance of isometry inversion

- Performance comparison with unitary embedding strategy

If an isometry V is given as the following form, the inverse operation $\tilde{\mathcal{V}}_{\text {inv }}$ can be implemented by inverting the unitary U.

Result 1:

Performance of isometry inversion

- Performance comparison with unitary embedding strategy

If an isometry V is given as the following form, the inverse operation $\tilde{\mathcal{V}}_{\text {inv }}$ can be implemented by inverting the unitary U.

However, the success probability depends on D.

Result 1:

Performance of isometry inversion

- Performance comparison with unitary embedding strategy

Eg. 5 qubit code ($d=2, D=2^{5}$)

Result

- Construction of efficient probabilistic protocol for isometry inversion

- Difference between unitary inversion and isometry inversion

$$
\begin{aligned}
&-U-\mapsto-U^{\dagger}-=-U-\mapsto-U^{*}-+ \\
& \begin{aligned}
&-U-U-\mapsto-U^{T}- \\
& \text { unitary inversion } \text { complex conjugation } \checkmark
\end{aligned} \quad \begin{array}{ll}
\text { transposition } \checkmark \\
-V-\mapsto-V^{\dagger}-= & -V-\mapsto-V^{*}-+ \\
-V-\mapsto-V & -V-V^{T}- \\
\text { isometry inversion } & \text { complex conjugation } \times \quad \text { transposition D-dependent }
\end{array}
\end{aligned}
$$

Result 2:

Direct extension of unitary inversion?

- Main idea for unitary inversion protocol in [Quintino et al. 2019]

Result 2:

Direct extension of unitary inversion?

- Main idea for unitary inversion protocol in [Quintino et al. 2019]

- Similar strategy for isometry inversion?

Result 2:

Direct extension of unitary inversion?

- Main idea for unitary inversion protocol in [Quintino et al. 2019]

- Similar strategy for isometry inversion? \rightarrow No!

Result 2:

Direct extension of unitary inversion?

- Isometry complex conjugation is impossible.

Theorem 3. Probabilistic isometry complex conjugation is impossible when $D \geq 2 d$.

Result 2:

Direct extension of unitary inversion?

- Isometry complex conjugation is impossible.

Theorem 3. Probabilistic isometry complex conjugation is impossible when $D \geq 2 d$.

Proof idea: Impossibility of state complex conjugation $|\phi\rangle \mapsto\left|\phi^{*}\right\rangle$ [Yang et al. 2014]

Result 2:

Direct extension of unitary inversion?

- Isometry complex conjugation is impossible.

Theorem 3. Probabilistic isometry complex conjugation is impossible when $D \geq 2 d$.

Proof idea: Impossibility of state complex conjugation $|\phi\rangle \mapsto\left|\phi^{*}\right\rangle$ [Yang et al. 2014]

V

Result 2:

Direct extension of unitary inversion?

- Isometry transposition is possible but inefficient. Modified port-based teleportation \rightarrow Isometry transposition
Theorem 4. There exists a probabilistic isometry transposition protocol with the success probability

$$
p=\frac{k}{D d+k-1} .
$$

But this protocol is inefficient since the success probability depends on D.
$-V-\mapsto-V^{\dagger}$
isometry inversion $=$ complex conjugation
 transposition

Application

- Quantum algorithms with encoding oracle and its inverse (uncomputation)

Eg. HHL algorithm

Summary

- Isometry inversion: Decoding a black box encoding V using k copies of the black box
- Success probability $p=1-\mathcal{O}\left(d^{3} / k\right) \longleftarrow$ Independent of D
- Main idea: CPTP map $\widetilde{\Psi}$ transforms parallel copies of any isometry into parallelized random unitary
- Difference with unitary inversion

$$
\begin{aligned}
& \begin{array}{lll}
-U-\mapsto-U^{\dagger}-= & -U-\mapsto-U^{*}-\quad+ & -U-\mapsto-U^{T}- \\
\text { unitary inversion } & \text { complex conjugation } \checkmark \quad \begin{array}{ll}
\text { transposition } \checkmark
\end{array}
\end{array} \\
& -V-\mapsto-V^{\dagger}-=-V-\mapsto-V^{*}-\quad+\quad-V-\mapsto-V^{T}- \\
& \text { isometry inversion } \\
& \text { complex conjugation }
\end{aligned}
$$

