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Thermodynamics in small systems

• Macroscopic systems
• Equilibrium state

• Small systems
• Nonequilibrium state

The second law (SL) 𝜎 ≥ 0

Thermodynamics Stochastic thermodynamics
Intensively studied in last 20 yearsEstablished in 1800s 

Δ𝑆: entropy change   𝛽: inverse temperature
𝑄: heat transferred from heat bath
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C. Bustamante et al., 
Physics Today 58, 7, 43-48 (2005) 

Molecule (RNA) 

extension

Entropy production: 𝜎 ≡ Δ𝑆 − 𝛽𝑄

Total entropy increase of system + heat bath

Trapped-ion

S. An. et. al., Nature 
Physics 11, 193‒199 (2015)

Thermodynamic laws in small systems?



The SL in stochastic thermodynamics

The fluctuation theorem

Probability distribution

⭕ the SL

Characterization at the trajectory level?

𝜎 ≥ 0
Ensemble level

𝜎 𝜓 < 0 for 
Trajectory level

❌ the SL
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Stochastic thermodynamic quantities
Different trajectories for each trial (fluctuation)
In small systems…

⟨𝜎⟩



The fluctuation theorem (FT)

𝑒!" = 1

𝑒!" = ∫𝑑𝜎 𝑃(𝜎)𝑒!"

= ∫𝑑𝜎 𝑃 −𝜎
= 1

Integral FT

integrate

• Rich implication 
• The SL

• Universal relation at the trajectory level

• Linear response theory
• Include nonlinear nonequilibrium region in stochastic thermodynamics

• Implies the SL
∵ 𝑒! " ≤ 𝑒!" = 1 = 𝑒# → 𝜎 ≥ 0

• Gives unified understanding
• Plays the central role

𝑃(−𝜎)
𝑃(𝜎)

= 𝑒./

Crooksʼ FT
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• Generalize this form of FT 
in our research



Information thermodynamics
Information 

theory
(Stochastic)

thermodynamics 

Information thermodynamics 
(our research)

Ordinary thermodynamic laws are violated under information processing
(measurement & feedback)
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Long history 
(since 1867)

Maxwellʼs demon

Great progress 
in last 15 years
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Work extraction from a single heat bath
→Violate the conventional SL

We need to 
consider the 
effect of the 

measurement.

Szilard engine

The demon

perform different 
protocols according to 
measurement outcomes

Feedback

𝑊 = ∫#
$

! 𝑑𝑉" #%$
!"

= 𝑘%𝑇 ln2
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The generalized thermodynamic laws

The ordinary SL

⟨𝑖 𝑋: 𝑌 ⟩ = 𝐥𝐧𝟐

Information obtained by the measurement

𝑋: moleculeʼs position
𝑌: measurement outcome

Work extraction: 𝑊 = 𝒌𝑩𝑻𝐥𝐧𝟐
Entropy change in ①→③: ∆𝑆 = 𝐥𝐧𝟐

The generalized SL

𝒊 : Relevant information

Violation of thermodynamics

The information gain quantifies 
the violation of thermodynamic law.

Mutual information
𝑖 𝑋: 𝑌 ≡ 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

• Correlation between 𝑋 and 𝑌
𝐻: Shannon entropy

In Szilard engine…

⟨𝑊⟩ + ⟨Δ𝐹⟩ ≤ 0 ⟨𝑊⟩ + ⟨Δ𝐹⟩ ≤ 𝒌𝑩𝑻 ⟨𝒊⟩
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Quantum continuous feedback control

C. Sayrin et. al., 
Nature 477, 73-77, (2011)

Prepare the photon 
number state | ⟩𝑛 = 3

po
pu

la
tio

n

initial state
State at fixed time
Successfully feedback-
controlled state

• Target of our research
• Prospective quantum control method
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Circuit QEDCavity QED

Stabilize Rabi oscillation

R. Vijay et. al., 
Nature 490, 77-80 (2012)

Feedback 
signal

Homodyne 
measurement

Red line: with feedback
Blue line: without feedback



The previous research and our work

𝒊: transfer entropy

𝒊: QC-mutual information

𝒊: mutual information

Classical 
system

Quantum 
system

Continuous 
measurement and feedback

Single 
measurement and feedback

The generalized SL: 𝜎 ≥ −⟨ 𝑖 ⟩
The generalized FT: 𝑒?@?A = 1

𝒊 : Information obtained
by measurement

？
our research 11

Sagawa&Ueda
PRE 2012 

Ito&Sagawa
PRL 2013

Sagawa&Ueda
PRL 2008

Funo et. al. 
PRE 2013

Sagawa&Ueda
PRL 2010 

Sagawa&Ueda
PRL 2012



Summary of our main results

𝜎 ≥ −⟨𝑖!"⟩

The generalized FT
𝑒#$#%9: = 1

The generalized SL

⟨𝑖!"⟩: QC-transfer entropy

• Related with other information measures

(analytically derived)

• Newly introduced
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Single Continuous

Classical mutual information transfer entropy

Quantum QC-mutual 
information

QC-transfer 
entropy

• Total information obtained 
by continuous measurementReveal the relationship between 

thermodynamics and information 
at ensemble level and trajectory level

Measurement
& feedback

System



Transfer entropy

𝑌3
𝑡& 𝑡&'(𝑡&)( 13

Transfer entropy • Conditioned on the past measurements
→Newly obtained information in 𝒕𝒏, 𝒕𝒏%𝟏

⟨𝑖67⟩ ≡>
389

:
𝐼(𝑥3, 𝑦3;9|𝑌3)

𝐼 𝑥', 𝑦'%( 𝑌' ≡ 𝐻 𝑥' 𝑌' + 𝐻 𝑦'%( 𝑌'
−𝐻 𝑥', 𝑦'%( 𝑌'

𝝈 ≥ − ⟨𝒊𝐓𝐄⟩, 𝒆?𝝈?𝒊𝐓𝐄 = 𝟏

Classical systems under 
continuous measurement and feedback

• Conditional mutual information

𝐻 𝑋 𝑌 ≡ ∑),+−𝑝(𝑋, 𝑌) ln 𝑝 𝑋 𝑌
• Conditional Shannon entropy

Single Continuous

Classical mutual information transfer entropy

Quantum QC-mutual 
information

QC-transfer 
entropy

Measurement 
& feedback

System



QC-mutual information

ℐIJ 𝜌K! : 𝑦 ≡ 𝑆 𝜌K! −>
L89

M
𝑝L𝑆(𝜌K!"#

L )

QC-mutual information

𝜌K!

Classical outcomes
𝑦 = 1

𝑦 = 2

𝑦 = 𝑚

…

𝜌*&'(
+

𝑝(

𝑝,

𝑝-

…

Quantum
state

Backaction 

von Neumann entropy: 𝑆 𝜌 ≡ −tr[𝜌 ln 𝜌]
• Quantum counterpart of Shannon entropy

Quantum systems under 
single measurement and feedback

𝜌*&'(
,

𝜌*&'(
-.(
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(Quantum-classical-mutual information)

𝝈 ≥ − ⟨𝑰𝐐𝐂⟩, 𝒆?𝝈?𝑰𝐐𝐂 = 𝟏
𝐼./ ≡ ℐ./: QC-mutual information

Single Continuous

Classical mutual information transfer entropy

Quantum QC-mutual 
information

QC-transfer 
entropy

Measurement 
& feedback

System



QC-transfer entropy

• QC-mutual information
quantifies the information obtained 
by the measurement in [𝑡&, 𝑡&'()

• Conditioned on the past 
measurement outcomes 𝑌'

cf. transfer entropy 𝑖01 ≡ ∑'2(3 𝐼(𝑥', 𝑦'%(|𝑌')

𝑖LM ≡ 6
NOP

Q?R

6
S&
𝑃[𝑌N]ℐLM 𝜌T&

S&: 𝑦NUR
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𝑌3

Single Continuous

Classical mutual information transfer entropy

Quantum QC-mutual 
information

QC-transfer 
entropy

Measurement
& feedback

System

Corresponding 
form

Conditional 
accumulation

𝑡& 𝑡&'(𝑡&)(
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Setup for our research

Time discretization 𝑡3 ≡ 𝑛 ⋅ Δ𝑡

Y4: Result until 𝑡' (i.e., (𝑦(, 𝑦,, … , 𝑦'))
𝑦': Measurement result at 𝑡'

… …

… …
𝑦3

Bath 
Inverse temp. 𝛽

System  

𝑦3;9𝑦3.9

Stochastic master equation (ℏ = 1)

Change Hamiltonian 𝐻5! + ℎ5! according to 𝑌'
𝐻5!: System Hamiltonian ℎ5!: External driving

Measurement apparatus

𝑡3 𝑡3;9𝑡3.9

Take continuous time limit Δ𝑡 → 0, 𝜏 const.
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Measurement outcome

Continuous feedback



Details of the derivation of the main result

• Entropy production 𝜎
• Information gain 𝑖./

The standard unraveling

𝑦+

𝑑+

𝑦+,-

𝑑+,-

Monitor heat-bath dissipation jump 𝒅𝒏

The goal 𝑒?@?A'( = 1
• Properly unravel into trajectories
• Define stochastic quantities 𝜎, 𝑖IJ

We need to…

Trajectory 𝜓/ is designated by • Measurement jump
• Dissipation jump

Stochastic quantities

Heat 𝑄[𝜓/] is determined from 𝑑&
⭕ Entropy production 𝜎 𝜓/ ≡ Δ𝑆 𝜓/ − 𝛽𝑄[𝜓/]

❌ Information gain (QC-transfer entropy) 𝑖01[𝜓/]

Cannot derive the generalized FT under standard unraveling
18
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Details of the derivation of the main result
Standard unraveling Alternate interaction Fine unraveling

Equivalent 
in Δ𝑡 → 0

Insert non-demolition 
PMs 𝑏&, 𝑐&

The fine unraveling reproduces original dynamics, 
by taking the average over 𝒃𝒏 𝒏8𝟏

𝑵 , 𝒄𝒏 𝒏8𝟏
𝑵 and 𝒅𝒏 𝒏8𝟏

𝑵 .

PMs do not destroy the 
state at the ensemble level

𝜌K!$#
Z!$# 𝜎K!$#

Z!

𝜌*&)(
2&)( ≡ ∑3& 𝑝

2&)( 𝑏& 𝑏& 𝑏&
𝜎*&)(
2& ≡ ∑4& 𝑝

2& 𝑐& 𝑐& 𝑐&



The generalized FT
𝒆?𝝈?𝒊𝐐𝐂 = 𝟏

can be derived.
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The fine unraveling

Detail of the derivation of the main result

• Measurement jump
• dissipation jump
• Inserted PMs 𝜋/ ≡ 𝑏&, 𝑐& &.(

5

Trajectory (𝜓/, 𝜋/) is designated by

Stochastic quantities
⭕ Entropy production 𝜎 𝜓/
⭕ Information gain (QC-transfer entropy) 𝑖01[𝜓/]

Defined in use of 𝑏&, 𝑐&
𝑖01 𝜓/ ≡ ∑&.(5 − ln 𝑝2&)( 𝑏& + ln 𝑝2& 𝑐&

𝜌T&)*
S&)* 𝜎T&)*

S&

Monitor heat-bath dissipation jump
Insert additional non-demolition PMs



Numerical demonstration

Reduce excited 
state population

Setting 
• Two level system at inverse temperature 𝛽
• Calculate the dynamics in 0 ≤ 𝑡 ≤ 𝜏

Reduce
system entropy

𝑀( = 𝛾% + 𝛾!
1 𝛿
𝛿 𝛿

• Continuous measurement

Apply 𝑈*+ = 𝜎, right after the detection of 𝑀-

𝜔 = 0.3, 𝜖 = 0.04, 𝜈 = 0.1𝜋, 𝛿 = 0.2,

𝛽 = 1, 𝛾± = 0.015𝜔 coth
𝛽𝜔
2

∓ 1

constants

• Hamiltonian 𝐻5 = 𝜔𝜎6, ℎ5 = 𝜖 cos 𝜈𝑡 𝜎7
• Heat-bath interaction 𝐿± = 𝛾±𝜎±

• Feedback

(Sudden pulse)
By the measurement and feedback…

21Randomly sampled 1.0×10C fine trajectories in this setting (Monte Carlo method)

Feedback protocol 

pulse 
applicationno

detection



Numerical demonstration
Result

Verification of the generalized FT

The GFT holds: 𝒆!𝝈!𝒊𝑸𝑪 = 𝟏

The FT is violated:
𝒆!𝝈 > 𝟏

Verification of the generalized SL

The GSL holds:
𝝈 ≥ −⟨𝒊𝑸𝑪⟩

Entropy is reduced: 
𝚫𝑺 < 𝟎

The SL is violated:
𝝈 < 𝟎

(denoted as GSL) (denoted as GFT)

22
(Error bars are hidden by the plots.)



Summary 

• generalize the SL and FT
• introduce the QC-transfer entropy
• perform numerical demonstration

Fundamental relationship between
thermodynamics and information

In quantum systems under continuous measurement and feedback, we

transfer entropy

QC-mutual 
information

mutual informationClassical 

Quantum

Continuous Single

QC-transfer 
entropy

Conditional accumulation

𝑒#$#%!" = 1𝜎 ≥ −⟨𝑖!"⟩
Measurement 

& feedback
System
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