Quantum fluctuation theorem under continuous measurement and feedback arXiv:2112.09351

Toshihiro Yada (Tokyo University)

Collaborators

Nobuyuki Yoshioka (Tokyo Univ.) Takahiro Sagawa (Tokyo Univ.)

Quantum Information Entropy in Physics (March 23rd, 2022)

Outline

1. Introduction

Stochastic thermodynamics Information thermodynamics

2. Summary of our research

Motivation Comparison with the previous research

3. Details of our research

Setup Derivation of the main result Numerical demonstration

Thermodynamics in small systems

extension

Thermodynamics Established in 1800s

- Macroscopic systems
- Equilibrium state

The second law (SL) $\sigma \geq 0$

Entropy production: $\sigma \equiv \Delta S - \beta Q$

 $\left\{ \begin{array}{ll} \Delta S: \text{ entropy change } \beta: \text{ inverse temperature} \\ Q: \text{ heat transferred from heat bath} \end{array} \right\}$

Total entropy increase of system + heat bath

Stochastic thermodynamics Intensively studied in last 20 years

- Small systems
- Nonequilibrium state

Molecule (RNA)

Trapped-ion

C. Bustamante et al., Physics Today **58**, 7, 43-48 (2005)

S. An. et. al., Nature Physics **11**, 193–199 (2015)

Thermodynamic laws in small systems?

The SL in stochastic thermodynamics

In small systems…

Different trajectories for each trial (fluctuation)

Stochastic thermodynamic quantities

Characterization at the trajectory level? The fluctuation theorem

The fluctuation theorem (FT)

tegral FT
$$\langle e^{-\sigma} \rangle = 1$$

- Implies the SL $:: e^{-\langle \sigma \rangle} \le \langle e^{-\sigma} \rangle = 1 = e^0 \to \langle \sigma \rangle \ge 0$
- Generalize this form of FT in our research

- Universal relation at the trajectory level
- **Rich implication** •

 - The SL
 Linear response theory
 Include nonlinear nonequilibrium region

Gives unified understanding Plays the central role

in stochastic thermodynamics

Information thermodynamics

Ordinary thermodynamic laws are violated under information processing (measurement & feedback)

Szilard engine

Work extraction from a single heat bath \rightarrow **Violate the conventional SL**

The generalized thermodynamic laws

X: molecule's position *Y*: measurement outcome Violation of thermodynamics Work extraction: $W = k_B T \ln 2$ Entropy change in $(1 \rightarrow 3)$: $\Delta S = \ln 2$

The ordinary SL $\langle W \rangle + \langle \Delta F \rangle \leq 0$ The generalized SL $\langle W \rangle + \langle \Delta F \rangle \leq k_B T \langle i \rangle$ *i*: Relevant information

 $^{1}/_{2}$

Right

0

The information gain quantifies the violation of thermodynamic law.

Outline

1. Introduction

Stochastic thermodynamics Information thermodynamics

2. Summary of our research

Motivation Comparison with the previous research

3. Details of our research

Setup Derivation of the main result Numerical demonstration

Quantum continuous feedback control

- Target of our research
- Prospective quantum control method

The previous research and our work

The generalized SL: $\langle \sigma \rangle \ge -\langle i \rangle$ *i*: Information obtained The generalized FT: $\langle e^{-\sigma-i} \rangle = 1$ by measurement

Summary of our main results (analytically derived)

The generalized SL
$$\langle \sigma \rangle \geq -\langle i_{\rm QC} \rangle$$

The generalized FT
$$\langle e^{-\sigma - i_{\rm QC}} \rangle = 1$$

Reveal the relationship between thermodynamics and information at ensemble level and trajectory level

(i_{QC}) : QC-transfer entropy

- Newly introduced
- Total information obtained by continuous measurement
- Related with other information measures

Transfer entropy

Classical systems under continuous measurement and feedback

$$\langle \sigma
angle \geq - \langle i_{\mathrm{TE}}
angle, \left\langle e^{-\sigma - i_{\mathrm{TE}}}
ight
angle = 1$$

- Conditional mutual information $I(x_n, y_{n+1}|Y_n) \equiv H(x_n|Y_n) + H(y_{n+1}|Y_n) - H(x_n, y_{n+1}|Y_n)$
- Conditional Shannon entropy $H(X|Y) \equiv \sum_{X,Y} -p(X,Y) \ln p(X|Y)$

• Conditioned on the past measurements \rightarrow Newly obtained information in $[t_n, t_{n+1})$

13

QC-mutual information

Quantum systems under single measurement and feedback

$$\langle \sigma
angle \geq - \langle I_{
m QC}
angle, \left\langle e^{-\sigma - I_{
m QC}}
ight
angle = 1$$

 $\langle I_{\rm QC} \rangle \equiv \mathcal{I}_{\rm QC}$: QC-mutual information

 $\frac{\text{QC-mutual information}}{(\text{Quantum-classical-mutual information})}$ $\mathcal{J}_{\text{QC}}(\rho_{t_n}: y) \equiv S(\rho_{t_n}) - \sum_{y=1}^{m} p_y S(\rho_{t_{n+1}}^y)$ von Neumann entropy: $S(\rho) \equiv -\text{tr}[\rho \ln \rho]$ • Quantum counterpart of Shannon entropy

QC-transfer entropy

$$\left\langle i_{\rm QC} \right\rangle \equiv \sum_{n=0}^{N-1} \sum_{\mathbf{Y}_n} P[\mathbf{Y}_n] \mathcal{I}_{\rm QC}(\rho_{t_n}^{\mathbf{Y}_n} : y_{n+1})$$

- **QC-mutual information** quantifies the information obtained by the measurement in $[t_n, t_{n+1})$
- Conditioned on the past measurement outcomes Y_n

cf. transfer entropy
$$\langle i_{\text{TE}} \rangle \equiv \sum_{n=1}^{N} I(x_n, y_{n+1} | Y_n)$$

$$\frac{1}{V_{n-1}} \frac{1}{V_n} \frac{1}{V_{n+1}}$$

Outline

1. Introduction

Stochastic thermodynamics Information thermodynamics

2. Summary of our research Motivation Comparison with the previous researc

3. Details of our research

Setup Derivation of the main result Numerical demonstration

Setup for our research

Time discretization $t_n \equiv n \cdot \Delta t$ Take continuous time limit $\Delta t \rightarrow 0, \tau$ const.

$$\frac{\text{Stochastic master equation}}{\rho_{t_{n+1}}^{Y_{n+1}} = \rho_{t_n}^{Y_n} + \Delta t \left\{ -i[H_{t_n} + h_{t_n}, \rho_{t_n}^{Y_n}] + \sum_d \mathcal{D}[L_d]\rho_{t_n}^{Y_n} \right\} \\ + \sum_y -\frac{1}{2} \{ M_y^{\dagger} M_y, \rho_{t_n}^{Y_n} \} + \text{Tr}[M_y \rho_{t_n}^{Y_n} M_y^{\dagger}]\rho_{t_n}^{Y_n} \right\} + \sum_y \Delta N_y \mathcal{G}[M_y]\rho_{t_n}^{Y_n}$$

$$\mathcal{D}[c]
ho \equiv c
ho c^{\dagger} - rac{1}{2}\{c^{\dagger}c,
ho\}, \ \mathcal{G}[c]
ho \equiv rac{c
ho c^{\dagger}}{\mathrm{Tr}[c
ho c^{\dagger}]} -
ho$$

Measurement outcome y_n : Measurement result at t_n Y_n : Result until t_n (i.e., $(y_1, y_2, ..., y_n)$)

Continuous feedback Change Hamiltonian $H_{t_n} + h_{t_n}$ according to Y_n H_{t_n} : System Hamiltonian h_{t_n} : External driving

Details of the derivation of the main result

The goal
$$\langle e^{-\sigma - i_{\rm QC}} \rangle = 1$$

- Entropy production σ ٠
- Information gain $i_{\rm OC}$ ٠

We need to…

- **Properly unravel into trajectories** •
- Define stochastic quantities σ , i_{OC} •

The standard unraveling Monitor heat-bath dissipation jump d_n

y_{n-1} y_n

- Trajectory ψ_{τ} is designated by Measurement jump

 - **Dissipation** jump

Stochastic quantities

O Entropy production $\sigma[\psi_{\tau}] \equiv \Delta S[\psi_{\tau}] - \beta Q[\psi_{\tau}]$

Heat $Q[\psi_{\tau}]$ is determined from d_n

 \times Information gain (QC-transfer entropy) $i_{\rm QC}[\psi_{\tau}]$

Cannot derive the generalized FT under standard unraveling

Details of the derivation of the main result

The fine unraveling reproduces original dynamics, by taking the average over $\{b_n\}_{n=1}^N$, $\{c_n\}_{n=1}^N$ and $\{d_n\}_{n=1}^N$.

Detail of the derivation of the main result

The fine unraveling

The generalized FT $\langle e^{-\sigma-i_{
m QC}}
angle=1$ can be derived.

Monitor heat-bath dissipation jump Insert additional non-demolition PMs

Trajectory (ψ_{τ}, π_{τ}) is designated by

- Measurement jump
- dissipation jump
- Inserted PMs $\pi_{\tau} \equiv \{b_n, c_n\}_{n=1}^N$

Stochastic quantities

- **O** Entropy production $\sigma[\psi_{\tau}]$
- **O** Information gain (QC-transfer entropy) $i_{\rm QC}[\psi_{\tau}]$

Defined in use of b_n, c_n $i_{\text{QC}}[\psi_{\tau}] \equiv \sum_{n=1}^N -\ln p^{Y_{n-1}}(b_n) + \ln p^{Y_n}(c_n)$

Numerical demonstration

Setting

- Two level system at inverse temperature β
- Calculate the dynamics in $0 \leq t \leq \tau$
- Hamiltonian $H_t = \omega \sigma_z$, $h_t = \epsilon \cos \nu t \sigma_x$
- Heat-bath interaction $L_{\pm} = \sqrt{\gamma_{\pm}}\sigma_{\pm}$
- Continuous measurement

$$M_1 = \sqrt{\gamma_+ + \gamma_-} \begin{pmatrix} 1 & \delta \\ \delta & \delta \end{pmatrix}$$

• Feedback

Apply $U_{FB} = \sigma_x$ right after the detection of M_1 (Sudden pulse)

$$\begin{cases} \text{constants} & \omega = 0.3, \epsilon = 0.04, \nu = 0.1\pi, \delta = 0.2, \\ & \beta = 1, \gamma_{\pm} = 0.015\omega \left\{ \coth\left(\frac{\beta\omega}{2}\right) \mp 1 \right\} \end{cases}$$

Feedback protocol

By the measurement and feedback \cdots

Reduce excited state population

Randomly sampled 1.0×10^5 fine trajectories in this setting (Monte Carlo method)

Numerical demonstration

Result

Summary

In quantum systems under continuous measurement and feedback, we

- generalize the SL and FT
- introduce the QC-transfer entropy
- perform numerical demonstration

$$\langle \sigma \rangle \ge -\langle i_{\rm QC} \rangle \qquad \left\langle e^{-\sigma - i_{\rm QC}} \right\rangle = 1$$

