ANALYTIC BOOTSTRAP IN 2D BOUNDARY CFT

Caltech Yuya Kusuki

Based on [arXiv:2112.10984]

Conformal Field Theory

Invariant under

- translations
- rotations
- dilatations

Helpful: Correlation function is almost fixed by symmetry

special conformal transformations
CFT appears in, for example,
critical points in condensed matter theory.

• dual of quantum gravity

What can we do by CFT? One example is

• answer why critical exponents are rational.

2D Ising model

Boundary breaks conformal symmetry...

Conformal Symmetry of BCFT is part of conformal symmetry preserving the bdy. position.

Why do BCFTs attract attention recently?

Big Goal

boundary

asymptotic boundary

CFT coupled to gravity in AdS_2

Big Goal

Big Goal

Comment: Entropy of radiation from BH can be detected by EE between CFT_2 & AdS_2

Why interesting? EE can be defined on flat space, not on curved space

BCF

Point: More tractable to understand Quantum Gravity

11 **Problem**: NOT so explored, NO knowledge

Purpose: New method to explore

Small Goal

BCFT is now very interesting for the big goal.

Q What is known in (irrational) BCFT?

A. Many unexplored parts!

On this background, we will provide one technique to explore BCFT.

Small Goal

BCFT is now very interesting for the big goal.

• What is known in (irrational) BCFT?

A Many unexplored parts!

In particular, very limited information even in asymptotic regime

This motivates us to develop **conformal bootstrap** in BCFTs

Useful to identify unknown information (DoF & OPE) in CFT

Review

or equivalently, using bulk-bulk-bulk OPE $\phi_i(0)\phi_j(x)\sim \sum C_{ijp} \left|x^{h_p-h_i-h_j}\right|^2 \phi_p+\cdots$

How to evaluate co

Review of CFT

How to evaluate correlation function in CFT

Review of CFT

How to evaluate correlation function in CFT

Review of BCFT [Lewellen] $\sum_{p} c_{p0} c_{ijp} \mathcal{F}_{ji}^{ji}(p|z)$

Note:

 $\mathcal{F}_{\overline{\mu}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

Review of BCFT [Lewellen] $\sum_{p} c_{p0} c_{ijp} \mathcal{F}_{ji}^{ji}(p|z)$

Note:

 $\mathcal{F}_{\overline{n}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

$$\sum_{p,\bar{p},N,\bar{N}} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} L_{-\bar{N}} \phi_{p,\bar{p}} \rangle_{disk}$$

$$= \sum_{p,\bar{p},N,\bar{N}} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} \phi_p | L_{-\bar{N}} \phi_{\bar{p}} \rangle$$

$$= \sum_{p,N} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-N} \phi_p \rangle$$

Review

As the first step, it would be interesting to give the asymptotic formula, which may have the potential to understand the braneworld holography.

Ingredients in BCFT

Same method with no boundary [Kusuki] [Collier, Gobeil, Maxfield, Perlmutter] [Collier, Maloney, Maxfield, Tsiares] etc.

$$\int \mathrm{d}\alpha_P \ \rho^{bdy}(\alpha_P)\chi_P(\tau) = g^2 \int \mathrm{d}\alpha_p \ \rho(\alpha_p) \overline{\left(C_{p0}\right)^2}\chi_p\left(-\frac{1}{\tau}\right)$$

I

i

$$\int \mathrm{d}\alpha_P \ \rho^{bdy}(\alpha_P) \overline{(C_{iP})^2} \mathcal{F}_{ii}^{ii}(P|z) = \int \mathrm{d}\alpha_p \ \rho(\alpha_p) \overline{C_{iip}C_{p0}} \mathcal{F}_{ii}^{ii}(p|1-z)$$

X

where

$$c = 1 + 6Q^2$$
, $Q = b + \frac{1}{b}$, $h_i = \alpha_i (Q - \alpha_i)$.

$$\int \mathrm{d}\alpha_P \ \rho^{bdy}(\alpha_P) \overline{(C_{iP})^2} \mathcal{F}_{ii}^{ii}(P|z) = \int \mathrm{d}\alpha_p \ \rho(\alpha_p) \overline{C_{iip}C_{p0}} \mathcal{F}_{ii}^{ii}(p|1-z)$$

Step 1. vacuum approximation in $z \to 1$ $\int d\alpha_P \ \rho^{bdy}(\alpha_P) \overline{(C_{iP})^2} \mathcal{F}_{ii}^{ii}(P|z) \simeq \mathcal{F}_{ii}^{ii}(0|1-z)$

Step 2. fusion transformation $\mathcal{F}_{ii}^{ii}(0|1-z) = \int d\alpha_P F_{0P} \begin{bmatrix} i & i \\ i & i \end{bmatrix} \mathcal{F}_{ii}^{ii}(P|z)$

Step3. coefficient comparison

$$\overline{(C_{iP})^2} \simeq g^{-2} S_{0P}^{-1} F_{0\alpha_P} \begin{bmatrix} \alpha_i & \alpha_i \\ \alpha_i & \alpha_i \end{bmatrix} \qquad (h_P \to \infty)$$

Bulk-boundary OPE coefficient

• Light-Heavy

Note: How to find the bootstrap equation?

- We can extract information about a heavy state *P* from a sum over *P* (by out method or inverse Laplace transformation)
- Bootstrap equation should have sums over states corresponding to heavy

Comments

Assume HKS sparse condition, $\rho^{bdy}(h_P), \rho^{bulk}(h_P) \leq e^{2\pi h_P},$

 $h_P \leq \frac{c}{24}$

• ρ^{bdy} follows Cardy formula

$$\rho^{bdy}(h_P) \simeq e^{2\pi \sqrt{\frac{c}{6} \left(h_P - \frac{c}{24}\right)}}, \qquad h_P \ge \frac{c}{12}$$

• H-H-L OPE coef. follows ETH

$$C_{PQI} \simeq e^{-\frac{1}{2}S\left(\frac{E_P + E_Q}{2}\right)}, \quad h_P \to \infty \text{ with } |h_P - h_Q| \text{ fixed}$$

where $S(E) = 2\pi \sqrt{\frac{c}{6}E}$ and $E_I = h_I - \frac{c}{24}$

Discussion

As the next step, we hope to understand a relation between braneworld (island model, ...) & BCFT (moving mirror, ...) from boundary bootstrap results!

Application of new techniques developed in CFT

Appendix

Review of BCFT

New ingredient (boundary primary)

Primary operator living on boundary, which can change boundary condition. Same transformation law under conformal mapping.

Review of BCFT

= Energy corresponding to the state on the strip

Lightcone Bootstrap in BCFT

 $\int \mathrm{d}\alpha_p \int \mathrm{d}\overline{\alpha}_p \int \mathrm{d}\alpha_Q \,\rho(\alpha_p,\overline{\alpha}_p)\rho^{bdy}(\alpha_Q) \overline{(C_{pQ})^2} \quad \phi_{\overline{p}}$

 $\int \mathrm{d}\alpha_p \int \mathrm{d}\alpha_q \int \mathrm{d}\overline{\alpha}_q \,\rho(\alpha_p)\rho(\alpha_q,\overline{\alpha}_q)\overline{C_{pqq}C_{p0}}$

Reminder

$$\mathcal{F}_{kl}^{ji}(h_p|z) \equiv \sum_{a} \frac{1}{\langle \phi_p^a | \phi_p^a \rangle} \frac{\langle \phi_l(\infty)\phi_k(1)\phi_p^a(0) \rangle \langle \phi_p^a(\infty)\phi_j(z)\phi_i(0) \rangle}{C_{ijp}C_{klp}}$$