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Quantum thermodynamics

Superconducting qubit

With the development of quantum control technique,

quantum thermodynamics becomes more important.

Y. Nakamura et al., Nature (1999)

Trapped ion

Application to quantum heat engines and quantum batteries

S. An et al., Nat. Phys. (2015)
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𝑊 𝜌,𝑈 ≔ tr 𝜌𝐻 − tr 𝑈𝜌𝑈†𝐻

Quantum version of the 2nd law

𝜌 is passive ⇔ For any unitary 𝑈, 𝑊 ≤ 0

(No work can be extracted by a cycle.)
Passivity: Quantum version of Kelvin’s principle

Definition

The initial and the final Hamiltonians are the same because we consider a cycle.

Extracted work from a state 𝜌 by a unitary 𝑈 𝑈

𝑊
𝜌

𝜌 =

𝑖

𝑝𝑖| ۧ𝐸𝑖 |𝐸𝑖ۦ (𝐸1 ≤ 𝐸2 ≤ ⋯, 𝑝1 ≥ 𝑝2 ≥ ⋯)
Necessary and sufficient 

condition: 𝐸

𝑝

Setup
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W. Pusz and S. L. Woronowicz, 

Comm. Math. Phys. (1978)



Complete passivity

𝜌 is completely passive ⇔ ∀𝑁 ∈ ℕ, 𝜌⨂𝑁 is passiveDefinition

𝜌 = Τ𝑒−𝛽𝐻 𝑍 Gibbs ensembleNecessary and sufficient condition: 

Let 𝜌 be passive.

𝑈

𝑊
𝜌 𝜌⊗ 𝜌⊗⋯⊗ 𝜌

𝑊

𝑈

W. Pusz and S. L. Woronowicz, Comm. Math. Phys. (1978)

Thermal equilibrium must be completely passive.

𝑊 ≤ 0 𝑊 > 0？

No work can be extracted from multiple thermal equilibriums.

𝐻𝑁
tot ≔ σ𝑘=1

𝑁 𝐼⊗𝑘−1 ⊗𝐻⊗ 𝐼⊗𝑁−𝑘 (with no correlation).

What about multiple copies of 𝜌?
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Symmetry in physics

Non-commutative symmetry

(unique to quantum mechanics)

e.g. Particle number conservation e.g. 𝑥, 𝑦, 𝑧-spin conservation

1. 𝑈(1) symmetry

Symmetry is ubiquitous in physics

and imposes constraints on possible operations.

2. S𝑈(2) symmetry
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All unitaries

Effective thermal equilibrium under symmetry

Symmetry-respecting 

unitaries

Completely passive states

Symmetry

Symmetry-protected 

completely passive states

No symmetry

𝑈,𝑈𝑔 = 0

Allowed operations

exp −𝛽𝐻 /𝑍

？
Strictly larger
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for continuous symmetry



Main theorem

Under continuous symmetry

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

(𝛽 ≥ 0, 𝜇𝑖 ∈ ℝ,𝑄𝑖’s are charges corresponding to symmetry.)

arXiv:2103.06060

(connected compact Lie group),
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Theorem 1.

completely passive ⇔ generalized Gibbs ensemble (GGE)

This holds even for non-commutative charges.

Unconventional extension of the GGE.

The GGE is also investigated in the context of equilibration.
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GGE and thermalization

The GGE has been investigated in the context 

of thermalization of integrable systems
(Systems with an extensive number of charges)

F. Cranzl et al., arXiv:2202.04652.

K. Fukai et al., Phys. Rev. Research (2020).

N. Yunger Halpern et al., Nat. Commun. (2016).

Unconventional extension: non-commutative charges

L. Vidmar and M. Rigol, J. Stat. Mech. (2016).

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

𝑄𝑖’s commute with each other.
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Symmetry-protected passivity

A unitary 𝑈 is symmetry-respecting

∀𝑔 ∈ 𝐺, [𝑈, 𝑈𝑔] = 0

𝜌 is symmetry-protected passive
Definition

⇔ No work can be extracted by any symmetry-respecting unitary 𝑈

𝑈

𝑊

𝜌
Symmetry 𝑈𝑔

⇔ 𝑈 commutes with every unitary representation 𝑈𝑔 of a group 𝐺.
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Symmetry-protected complete passivity

𝑈,𝑈𝑔
⊗𝑁 = 0

A unitary 𝑈 acting on 𝜌⊗𝑁 is symmetry-respecting 

⇔𝑈 commutes with tensor product representation.

𝑈𝑔
⊗𝑁 = exp 𝑖

𝑘=1

𝑁

𝐼⊗𝑘−1⊗𝑄⊗ 𝐼⊗𝑁−𝑘

Conservation of total charges

Conservation of total particle number Conservation of total spin

Total charge

E.g.)
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𝐻′ =

𝑘

𝒔𝑘,1 ∙ 𝒔𝑘,2 +

𝑘

𝒔𝒌+1,1 ∙ 𝒔𝑘,2

Example: Dimer model

→ 𝐻′, 𝑄𝑥,tot = 𝐻′, 𝑄𝑦,tot = 𝐻′, 𝑄𝑧,tot = 0
13/28

Example of total spin conservation: Isotropic Heisenberg-type interaction



Setup of the problem

Hamiltonian 𝐻 is symmetry-respecting

𝑈

𝑊
Symmetry 𝑈𝑔

⊗𝑁

𝜌 ⊗ 𝜌⊗⋯⊗ 𝜌
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𝜌 is symmetry-protected completely passive 

Definition

⇔ ∀𝑁 ∈ ℕ, 𝜌⨂𝑁 is symmetry-protected passive

Every pair of two copies has no correlation.

What is the necessary and sufficient condition?

Assumption: 
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Main theorem

Under continuous symmetry

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

(𝛽 ≥ 0, 𝜇𝑖 ∈ ℝ,𝑄𝑖’s are charges corresponding to symmetry.)

arXiv:2103.06060

(connected compact Lie group),
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Theorem 1.

completely passive ⇔ generalized Gibbs ensemble (GGE)

This holds even for non-commutative charges.

Unconventional extension of the GGE.



Examples

1. Case of 𝑈(1) symmetry

e.g. Conservation of particle number 𝑁

2. Case of 𝑆𝑈(2) symmetry

e.g. Conservation of spins 𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧

Grand canonical ensemble Non-commutative GGE

Τ𝑒−𝛽𝐻−𝜇𝑁 𝑍 Τ𝑒−𝛽𝐻−σ𝑖=𝑥,𝑦,𝑧 𝜇𝑖𝑆𝑖 𝑍
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Proof: GGE ⇒ completely passive

𝜌 is symmetry-protected completely passive.

Key: Positivity of quantum relative entropy 

𝑊 = −𝛽−1𝑆 𝑈𝜌⊗𝑁𝑈†||𝜌⊗𝑁 ≤ 0

Suppose that 𝜌 is the GGE 𝜌 = Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍 .

The extracted work from 𝜌⊗𝑁 by symmetry-respecting unitary 𝑈 is

The converse is far from trivial.

𝑆(𝜌| 𝜎 ≔ tr 𝜌 log 𝜌 − log 𝜎
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Proof: Completely passive ⇒ GGE

48 pages

arXiv:2103.06060
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Proof for the dimer model
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Generalization

𝜌⊗2, 𝐶 ≠ 0

Spin inner product → Casimir operator

𝜌 ≠ Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

𝑈𝑚 = 

𝑘,𝑙∈ 0,1

𝑅𝑘𝑙
⊗𝑚 ⊗ ۧ|Φ𝑘 ൻΦ𝑙|

𝑅𝑘𝑙 = 𝐼 − −1 𝑘𝑇 𝑃𝜔 ⊗ 𝐼 − 𝑃𝜔 𝐼 − −1 𝑙𝑇

ۧ|Φ0 = ۧ|𝑠 ۧ|𝑠 ۧ|𝑠 , ۧ|Φ1 =
1

6
σ𝑖𝑗𝑘 𝜖𝑖𝑗𝑘 ۧ|𝑡𝑖 ൿ|𝑡𝑗 ۧ|𝑡𝑘

We can extract work from 𝜌⊗4𝑚+3 by a unitary

ۧ|𝑠 : Singlet, ۧ|𝑡𝑖 : Triplet

𝑃𝜔: Projection onto an eigenspace of 𝐶

𝐶: Spin inner product between two dimers

𝑇: SWAP of two dimers

Example: Dimer model

Levi decomposition: Connected compact Lie group = Semisimple Lie group ×Abelian Lie group

𝜌 𝜌

𝜌⊗2, 𝑃𝜔 ≠ 0

for sufficiently large 𝑚 ∈ ℕ.

(e.g. 𝑆𝑈(2)) (e.g. 𝑈(1))
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Work storage
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P. Skrzypczyk et al., arXiv:1302.2811 

Quantum-mechanical treatment of work

System with a continuous energy level 

(The Hamiltonian: the position operator)

Setup

𝑥

Energy conservation

Unitary 𝑉

𝑊
𝜌

𝑉,𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝑥 = 0

Assumption: 𝑉, 𝐼 ⊗ 𝑝 = 0

Energy translation symmetry of work storage

Work storage



Complete passivity with work storage
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Definition

𝑥

Conservation of system’s charge

Unitary 𝑉

𝑊

𝜌 ⊗ 𝜌⊗⋯⊗ 𝜌

⇔ 𝑉,𝑈𝑔
⊗𝑁 ⊗ 𝐼 = 0

Even in this setup, 

symmetry-protected completely passive ⇔ GGE

Theorem 2.

Symmetry 𝑈𝑔
⊗𝑁

independently of the initial state of the work storage.

A unitary 𝑉 is symmetry-respecting



Symmetry

Correspondence of unitary operators

𝒞 𝑈 ≔ න
−∞

∞

𝑑𝑞 𝑒𝑖𝑞𝐻𝑈𝑒−𝑖𝑞𝐻 ⊗ ۧ|𝑞 𝑝ۦ𝑞|

Unitary operators on the total system 

including work storage

Energy conserving

Unitary operators on 

the system of interest
Bijection 𝒞

A. Kitaev, et. al., Phys. Rev. A (2004). 

Proved in our work

Symmetry
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Comparison with the previous work 

[1] N. Yunger Halpern et al., Nat. Commun. (2016) 

Our result complements their result by providing a further support 

for the proper form of the non-commutative GGE.
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Charge 

conservation

Local 

(Theorem 2)

Global 

(Ref. [1])

Definition of work

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

Τ𝑒−𝛽 𝐻+σ𝑖 𝜉𝑖𝑄𝑖 𝑍

Change in 𝐻 + σ𝑖 𝜉𝑖𝑄𝑖

Τ𝑒−𝛽𝐻 𝑍

Change in 𝐻

𝜇𝑖’s are freely chosen.

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍

𝜇𝑖’s are freely chosen.



Summary

1. Under continuous symmetry,

Τ𝑒−𝛽𝐻−σ𝑖 𝜇𝑖𝑄𝑖 𝑍Completely passive ⇔ GGE
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2. We also obtained the same result when we explicitly introduce work storage. 

arXiv:2103.06060

These hold even for non-commutative charges.

Unconventional extension of the GGE.

We characterize thermal equilibrium by complete passivity. 



Future perspectives

Flexible design principles of 

quantum heat engines using symmetric systems
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Foundation of quantum thermodynamics under symmetry

We have completely identified thermally stable states under symmetry.

More states behave as thermally stable states under symmetry.


