QIEP (March 23, 2022)

Characterizing symmetry-protected thermal equilibrium by work extraction

Yosuke Mitsuhashi The University of Tokyo, Japan

Y. M., K. Kaneko, T. Sagawa, arXiv:2103.06060, to appear in PRX

Outline of this talk

1. Introduction

- 2. Setup of the problem
- 3. Main result
- 4. Result for the setup with work storage
- 5. Summary and discussion

Quantum thermodynamics

Superconducting qubit Y. Nakamura *et al.*, Nature (1999)

dc gate probe box 1 μm pulse gate Trapped ion S. An *et al.*, Nat. Phys. (2015)

With the development of quantum control technique, quantum thermodynamics becomes more important.

Application to quantum heat engines and quantum batteries

Quantum version of the 2nd law

Passivity: Quantum version of Kelvin's principle (No work can be extracted by a cycle.)

<u>Setup</u>

Extracted work from a state ρ by a unitary U $W(\rho, U) \coloneqq \operatorname{tr}(\rho H) - \operatorname{tr}(U\rho U^{\dagger}H)$

The initial and the final Hamiltonians are the same because we consider a cycle.

<u>Definition</u> ρ is passive \Leftrightarrow For any unitary $U, W \leq 0$ Necessary and sufficient condition: $\rho = \sum_{i} p_i |E_i\rangle \langle E_i| \quad (E_1 \leq E_2 \leq \cdots, p_1 \geq p_2 \geq \cdots)$

Complete passivity

Let ρ be passive. $W \leq 0$

What about multiple copies of
$$\rho$$
? $W > 0$?

$$W \stackrel{U \longrightarrow}{\longrightarrow} \rho \otimes \rho \otimes \cdots \otimes \rho$$

No work can be extracted from multiple thermal equilibriums. Thermal equilibrium must be completely passive.

<u>Definition</u> ρ is completely passive $\Leftrightarrow \forall N \in \mathbb{N}, \rho^{\otimes N}$ is passive Necessary and sufficient condition: $\rho = \frac{e^{-\beta H}}{Z}$ Gibbs ensemble

$$H_N^{\text{tot}} \coloneqq \sum_{k=1}^N I^{\bigotimes k-1} \bigotimes H \bigotimes I^{\bigotimes N-k}$$
 (with no correlation)

Symmetry in physics

Symmetry is ubiquitous in physics and imposes constraints on possible operations.

U(1) symmetry
 e.g. Particle number conservation

2. SU(2) symmetrye.g. *x*, *y*, *z*-spin conservation

Non-commutative symmetry (unique to quantum mechanics)

Effective thermal equilibrium under symmetry

Main theorem

Theorem 1.

arXiv:2103.06060

Under continuous symmetry (connected compact Lie group),

completely passive \Leftrightarrow generalized Gibbs ensemble (GGE) $e^{-\beta H - \sum_{i} \mu_{i} Q_{i}}/Z$

 $(\beta \ge 0, \mu_i \in \mathbb{R}, Q_i$'s are charges corresponding to symmetry.)

This holds even for non-commutative charges.

→ Unconventional extension of the GGE.

The GGE is also investigated in the context of equilibration.

GGE and thermalization

The GGE has been investigated in the context of thermalization of integrable systems

(Systems with an extensive number of charges)

 $e^{-\beta H - \sum_i \mu_i Q_i}/Z$

 Q_i 's commute with each other.

Unconventional extension: non-commutative charges

N. Yunger Halpern et al., Nat. Commun. (2016).

- K. Fukai et al., Phys. Rev. Research (2020).
- F. Cranzl *et al.*, arXiv:2202.04652.

Outline of this talk

- 1. Introduction
- 2. Setup of the problem
- 3. Main result
- 4. Result for the setup with work storage
- 5. Summary and discussion

Symmetry-protected passivity

A unitary U is symmetry-respecting

 \Leftrightarrow U commutes with every unitary representation U_g of a group G.

 $\forall g \in G, [U, U_g] = 0$

Definition

 ρ is symmetry-protected passive \Leftrightarrow No work can be extracted by any symmetry-respecting unitary *U*

Symmetry-protected complete passivity

A unitary *U* acting on $\rho^{\otimes N}$ is symmetry-respecting $\Leftrightarrow U$ commutes with tensor product representation.

$$\left[U, U_g^{\bigotimes N}\right] = 0$$

Conservation of total charges

$$U_g^{\otimes N} = \exp\left(i\sum_{k=1}^N I^{\otimes k-1} \otimes Q \otimes I^{\otimes N-k}\right)$$

Total charge

E.g.) Conservation of total particle number Conservation of total spin

Example: Dimer model

Example of total spin conservation: Isotropic Heisenberg-type interaction

Setup of the problem

Definition

 ρ is symmetry-protected completely passive $\Leftrightarrow \forall N \in \mathbb{N}, \rho^{\otimes N}$ is symmetry-protected passive

What is the necessary and sufficient condition?

Assumption:

Hamiltonian *H* is symmetry-respecting Every pair of two copies has no correlation.

Outline of this talk

- 1. Introduction
- 2. Setup of the problem
- 3. Main result

4. Result for the setup with work storage

5. Summary and discussion

Main theorem

Theorem 1.

arXiv:2103.06060

Under continuous symmetry (connected compact Lie group),

completely passive \Leftrightarrow generalized Gibbs ensemble (GGE) $e^{-\beta H - \sum_{i} \mu_{i} Q_{i}}/Z$

 $(\beta \ge 0, \mu_i \in \mathbb{R}, Q_i$'s are charges corresponding to symmetry.)

This holds even for non-commutative charges.

Unconventional extension of the GGE.

Case of U(1) symmetry
 e.g. Conservation of particle number N

 $e^{-\beta H-\mu N}/Z$

Grand canonical ensemble

2. Case of SU(2) symmetry e.g. Conservation of spins S_x, S_y, S_z $e^{-\beta H - \sum_{i=x,y,z} \mu_i S_i}/Z$

Non-commutative GGE

Proof: GGE \Rightarrow completely passive

Key: Positivity of quantum relative entropy $S(\rho||\sigma) \coloneqq \operatorname{tr} \left(\rho(\log(\rho) - \log(\sigma))\right)$

Suppose that ρ is the GGE ($\rho = e^{-\beta H - \sum_i \mu_i Q_i}/Z$). The extracted work from $\rho^{\otimes N}$ by symmetry-respecting unitary *U* is

$$W = -\beta^{-1}S(U\rho^{\otimes N}U^{\dagger}||\rho^{\otimes N}) \le 0$$

 $\rightarrow \rho$ is symmetry-protected completely passive.

The converse is far from trivial.

Proof: Completely passive \Rightarrow GGE

Then, $\mathcal{O}(\{A_{ij}\})$ is unitary. In addition, if $[\rho^{\otimes M}, P] \neq 0$, then $W(\rho^{\otimes 2mM+L}, H^{(2mM+L)}, \mathcal{O}(\{A_{ij}\})) > 0$ for some $m \in \mathbb{N}$.				
Proof. First, we prove that $O(\{A_{ij}\})$ is unitary. From Lemma S9, it is sufficient to prove that $\{A_{ij}\}$ satisfy				
$A_{ij}^{\dagger}=A_{ji},\ A_{ij}A_{kl}=\delta_{jk}A_{il}$	(S20)			
for all $i,j,k,l\in\{0,1\}.$ For $i,j\in\{0,1\},$ we define $R_{ij}\in\mathcal{B}(\mathcal{H}^{\otimes 2M})$ as				
$R_{ij} := \frac{1}{2} [I - (-1)^i T] [P \otimes (I - P)] [I - (-1)^j T].$	(S21)			
Then, $A_{ij} = R_{ij}^{\otimes m} \otimes \Psi_i\rangle \langle \Psi_j $. Since $R_{ij}^{\dagger} = R_{ji}$ and $(\Psi_i\rangle \langle \Psi_j)^{\dagger} = \Psi_j\rangle \langle \Psi_i $,				
$A_{ij}^{\dagger} = (R_{ij}^{\dagger})^{\otimes m} \otimes (\Psi_i\rangle \langle \Psi_j)^{\dagger} = R_{ji}^{\otimes m} \otimes \Psi_j\rangle \langle \Psi_i = A_{ji}.$	(S22)			
Since $\frac{1}{2}[I - (-1)^i T]$ is the antisymmetrizer for $i = 0$ and the symmetrizer for $i = 1$,				
$\frac{1}{2}[I - (-1)^{i}T] \cdot \frac{1}{2}[I - (-1)^{j}T] = \delta_{ij}\frac{1}{2}[I - (-1)^{i}T].$	(S23)			
From a property of the swapping operator T ,				
$[P \otimes (I - P)]T[P \otimes (I - P)] = [P \otimes (I - P)][(I - P) \otimes P]T = 0.$	(S24)			
From Eqs. (S23) and (S24), for $i, j, k, l \in \{0, 1\}$,				
$R_{ij}R_{kl}$				
$=\frac{1}{2}[I-(-1)^{i}T][P\otimes (I-P)][I-(-1)^{j}T]\frac{1}{2}[I-(-1)^{k}T][P\otimes (I-P)][I-(-1)^{l}T]$				
$= \frac{1}{2} [I - (-1)^{i}T] [P \otimes (I - P)] \delta_{jk} [I - (-1)^{j}T] [P \otimes (I - P)] [I - (-1)^{l}T]$				
$= \delta_{jk} \frac{1}{2} [I - (-1)^{i}T] [P \otimes (I - P)] [I - (-1)^{l}T]$				
$=\delta_{jk}R_{il}.$	(S25)			
Since $(\Psi_i\rangle \langle \Psi_j)(\Psi_k\rangle \langle \Psi_l) = \delta_{jk} \Psi_i\rangle \langle \Psi_l $, we obtain				
$A_{ij}A_{kl} = (R_{ij}^{\otimes m} \otimes \Psi_i\rangle \langle \Psi_j)(R_{kl}^{\otimes m} \otimes \Psi_k\rangle \langle \Psi_l)$				
$= (R_{ij}R_{kl})^{\otimes m} \otimes (\ket{\Psi_i}ra{\Psi_j})(\ket{\Psi_k}ra{\Psi_l})$				
$=\delta_{jk}(R_{il}^{\otimes m}\otimes \Psi_i\rangle\langle\Psi_l)$	(20.0.0)			
$=\delta_{jk}A_{il}.$	(S26)			
Therefore, $\{A_{ij}\}$ satisfies Eq. (S20). From Lemma S9, $\mathcal{O}(\{A_{ij}\})$ is unitary. Next, we calculate the extracted work from $\rho^{\otimes 2mM+L}$ by $\mathcal{O}(\{A_{ij}\})$. We define $\Delta \mathcal{E} := \mathcal{E}_1 - \mathcal{E}_0(> 0)$. $[H^{(M)}, P] = 0$ and $[H^{(2M)}, T] = 0$, we obtain $[H^{(2M)}, R_{ij}] = 0$ and thus	Since			
$[H^{(2mM+L)}, A_{ij}] = [H^{(2mM)} \otimes I + I \otimes H^{(L)}, R_{ij}^{\otimes m} \otimes \Psi_i\rangle \langle \Psi_j]$				
$= [H^{(2mM)}, R_{ij}^{\otimes m}] \otimes \Psi_i\rangle \langle \Psi_j + R_{ij}^{\otimes m} \otimes [H^{(L)}, \Psi_i\rangle \langle \Psi_j]$				
$=R_{ij}^{\otimes m}\otimes\Delta\mathcal{E}(i-j)\left \Psi_{i} ight angle\left\langle\Psi_{j} ight $				
$=\Delta \mathcal{E}(i-j)A_{ij}.$	(S27)			
From Lemma S9,				
$W(\rho^{\otimes 2mM+L}, H^{(2mM+L)}, \mathcal{O}(\{A_{ij}\}))$				

 $=\Delta \mathcal{E}(\operatorname{tr}(\rho^{\otimes 2mM+L}A_{11}) - \operatorname{tr}(\rho^{\otimes 2mM+L}A_{00}))$

 $=\Delta \mathcal{E}\left[\left(\operatorname{tr}(\rho^{\otimes 2M}R_{11})\right)^m \langle \Psi_1 | \rho^{\otimes L} | \Psi_1 \rangle - \left(\operatorname{tr}(\rho^{\otimes 2M}R_{00})\right)^m \langle \Psi_0 | \rho^{\otimes L} | \Psi_0 \rangle\right].$

arXiv:2103.06060

48 pages

(S28)

19/28

Proof for the dimer model

Example: Dimer model

$$\rho \neq e^{-\beta H - \sum_{i} \mu_{i} Q_{i}} / Z \implies \left[\rho^{\otimes 2}, C \right] \neq 0 \implies \left[\rho^{\otimes 2}, P_{\omega} \right] \neq 0$$

C: Spin inner product between two dimers P_{ω} : Projection onto an eigenspace of C

 \Rightarrow We can extract work from $\rho^{\otimes 4m+3}$ by a unitary

$$U_m = \sum_{k,l \in \{0,1\}} R_{kl}^{\otimes m} \otimes |\Phi_k\rangle \langle \Phi_l|$$

for sufficiently large $m \in \mathbb{N}$.

 $R_{kl} = [I - (-1)^k T] [P_{\omega} \otimes (I - P_{\omega})] [I - (-1)^l T] \qquad T: \text{SWAP of two dimers}$ $|\Phi_0\rangle = |s\rangle|s\rangle|s\rangle, |\Phi_1\rangle = \frac{1}{\sqrt{6}} \sum_{ijk} \epsilon_{ijk} |t_i\rangle|t_j\rangle|t_k\rangle \quad |s\rangle: \text{Singlet}, |t_i\rangle: \text{Triplet}$

Generalization

Spin inner product \rightarrow Casimir operator(e.g. SU(2))(e.g. U(1))Levi decomposition: Connected compact Lie group = Semisimple Lie group × Abelian Lie group20/28

Outline of this talk

- 1. Introduction
- 2. Setup of the problem
- 3. Main result

4. Result for the setup with work storage

5. Summary and discussion

(The Hamiltonian: the position operator)

Assumption: $[V, I \otimes p] = 0$

Energy translation symmetry of work storage

Quantum-mechanical treatment of work Energy conservation $[V, H \otimes I + I \otimes x] = 0$

Complete passivity with work storage

Definition

A unitary V is symmetry-respecting $\Leftrightarrow \left[V, U_g^{\otimes N} \otimes I\right] = 0$

Conservation of system's charge

Theorem 2.Even in this setup,symmetry-protected completely passive \Leftrightarrow GGEindependently of the initial state of the work storage.

Correspondence of unitary operators

$$\mathcal{C}(U) \coloneqq \int_{-\infty}^{\infty} dq \ e^{iqH} U e^{-iqH} \otimes |q\rangle_p \langle q| \qquad \text{A. Kitaev, et. al., Phys. Rev. A (2004).}$$

Outline of this talk

- 1. Introduction
- 2. Setup of the problem
- 3. Main result
- 4. Result for the setup with work storage
- 5. Summary and discussion

Comparison with the previous work

[1] N. Yunger Halpern *et al.*, Nat. Commun. (2016)

		Definition of work	
		Change in $\langle H \rangle$	Change in $\langle H + \sum_i \xi_i Q_i \rangle$
Charge conservation	Local (Theorem 2)	$e^{-\beta H - \sum_{i} \mu_{i} Q_{i}}/Z$ μ_{i} 's are freely chosen.	$e^{-\beta H - \sum_i \mu_i Q_i}/Z$ μ_i 's are freely chosen.
	Global (Ref. [1])	$e^{-\beta H}/Z$	$e^{-\beta(H+\sum_i\xi_iQ_i)}/Z$

Our result complements their result by providing a further support for the proper form of the non-commutative GGE.

We characterize thermal equilibrium by complete passivity.

arXiv:2103.06060

1. Under continuous symmetry,

Completely passive \Leftrightarrow GGE $e^{-\beta H - \sum_i \mu_i Q_i}/Z$

2. We also obtained the same result when we explicitly introduce work storage.

These hold even for non-commutative charges.

➡ Unconventional extension of the GGE.

Future perspectives

We have completely identified thermally stable states under symmetry.
 Foundation of quantum thermodynamics under symmetry

More states behave as thermally stable states under symmetry.

Flexible design principles of quantum heat engines using symmetric systems

