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Quantum thermodynamics

Superconducting qubit

Y. Nakamura et al., Nature (1999)

Trapped ion

S.An et al., Nat. Phys. (2015)

With the development of quantum control technique,
quantum thermodynamics becomes more important.

= Application to quantum heat engines and quantum batteries
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Quantum version of the 2nd law W Pusz and s, L. Wororowcz,

Comm. Math. Phys. (1978)

Passivity: Quantum version of Kelvin’s principle
(No work can be extracted by a cycle.)

Setup
Extracted work from a state p by a unitary U U _L)) p )
W(p,U) = tr(pH) — tr(UpUTH) w4 J\

The initial and the final Hamiltonians are the same because we consider a cycle.

Definition p Is passive & For any unitary U, W < 0

Necessary and sufficient
condition:
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p = zpilEi><Ei| (Ey SE; <, p1 2D,
:



Complete passivity

W. Pusz and S. L. Woronowicz, Comm. Math. Phys. (1978)

Let p be passive. W <0 What about multiple copiesof p? W > 07
U U
w2 v B
wt ch

No work can be extracted from multiple thermal equilibriums.
=» Thermal equilibrium must be completely passive.

Definition p is completely passive & VN € N, p®" is passive

Necessary and sufficient condition: p = e #H/7Z  Gibbs ensemble

HiPt == YN_ 1®-1 Q@ g & I®N=F (with no correlation). 5/28



Symmetry In physics

Symmetry Is ubiquitous In physics
and Imposes constraints on possible operations.

1. U(1) symmetry 2. SU(2) symmetry
e.g. Particle number conservation e.g. x, y, z-spin conservation

Non-commutative symmetry
(unique to quantum mechanics)
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Effective thermal equilibrium under symmetry

Allowed operations Completely passive states

No symmetry
J J O\ N All unitaries / )

\ I
\ I |
I

Symmetry -
7 < Strictly larger

Symmetry-respecting Symmetry-protected for continuous symmetry
unitaries completely passive states
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Main theorem

Theorem 1. arXiv:2103.06060

Under continuous symmetry (connected compact Lie group),
completely passive < generalized Gibbs ensemble (GGE)

e_IBH_Zi H1iQi {Z

(8 = 0,u; € R, Q;’s are charges corresponding to symmetry.)

«” This holds even for non-commutative charges.
=) Unconventional extension of the GGE.

The GGE is also investigated in the context of equilibration.

8/28



GGE and thermalization

L. Vidmar and M. Rigol, J. Stat. Mech. (2016).

The GGE has been investigated in the context

of thermalization of integrable systems
(Systems with an extensive number of charges)

e_IBH_Zi .uiQi/Z

Q;’s commute with each other. 0 e
—— 10° 10" 10*% 10° 10°

Unconventional extension: non-commutative charges

N. Yunger Halpern et al., Nat. Commun. (2016).
K. Fukai et al., Phys. Rev. Research (2020).

F. Cranzl et al., arXiv:2202.04652.
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Symmetry-protected passivity

A unitary U Is symmetry-respecting
< U commutes with every unitary representation U, of a group G.

VgeG,|UU,;| =0

Definition
p 1S symmetry-protected passive
< No work can be extracted by any symmetry-respecting unitary U

) h)
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Symmetry-protected complete passivity

A unitary U acting on p®" is symmetry-respecting
< U commutes with tensor product representation.

m Uf’” = exp <i i [®k-1 Q0 ® I®N-K

k=

Conservation of total charges Total charge

E.g.) Conservation of total particle number Conservation of total spin

o L~
@ @
/’ /,
/’, /,’
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Example: Dimer model

Example of total spin conservation: Isotropic Heisenberg-type Interaction

P Quench P
S1,1 S1,2 :S'k,1 Sk,% :S'k+1,1 Sk+1,2} \SN,l SN,2)
Y Y Y Y
Q Qx Qr+1 Qn

/I _1%
H = z Sk1°Sk2 T z Sk+11 ° Sk2
X

k
~ [H, Q¥ = [H', Q¥ = [H',Q**"] = 0
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Setup of the problem

Definition
p 1S symmetry-protected completely passive
& VN €N, p®V is symmetry-protected passive

What Is the necessary and sufficient condition?

Assumption: U j /)\p QR R p,)

Hamiltonian H Is symmetry-respecting \ \ Symme:[rry U®N
Every pair of two copies has no correlation. Wt& 9
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Main theorem

Theorem 1. arXiv:2103.06060

Under continuous symmetry (connected compact Lie group),
completely passive < generalized Gibbs ensemble (GGE)

e_IBH_Zi H1iQi {Z

(8 = 0,u; € R, Q;’s are charges corresponding to symmetry.)

«” This holds even for non-commutative charges.
=) Unconventional extension of the GGE.
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Examples

1. Case of U(1) symmetry 2. Case of SU(2) symmetry
e.g. Conservation of particle number N e.g. Conservation of spins S, Sy, S,
Grand canonical ensemble Non-commutative GGE

1
L
- 0““
P - -
@ @
ﬂ" l"
(’ /'
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Proof: GGE = completely passive

Key: Positivity of quantum relative entropy
S(pllo) = tr (p(log(p) — log(a)))

Suppose that p is the GGE (p = e AH~2i#iQi /7).

The extracted work from p®¥ by symmetry-respecting unitary U is
W =—p71S(Up®NUT||p®Y) < 0
= p is symmetry-protected completely passive.

The converse Is far from trivial.
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Proof: Completely passive = GGE

AV is In addition, if [p®™,P] # 0, then W(p@3mM+L g2mM+L) (£ 4,:1)) > 0 for some .
Lie group symmetry Finite group symmetry Time reversal symmetry N arx IV - 2 103 06060
------------------------------------------------- . .

Proof. First, we prove that O({A4,;}) is unitary. From Lemma S9, it is sufficient to prove that {A,;} satisfy

Propertics of operators -
A= Ay, AyAdy=0,4, (S20)

Propositons 5, 6, Lemmas -6 Proposition 9, Lemmas 4-6 Lemma 4 X ) X . ar
for all 4,7,k 1 € {0,1}. For 4,5 € {0,1}, we define R;; € B(H®*M) as
- L a R I I = (-1)yT|[P&e (I - P)|[I - (-1pT (S21)
Proposition 7 Propaosition 10 Proposition 12 : 4 8
p satisfies Conditions Al, A2 p satisfies Conditions A1, A2 p satisfies Conditions B1, B2 Then, A;; = R®" W) (W), Since R, = R,, and (10,} (¥,))! W) pag eS
1 1 1
= —e=BH=f(X) = p=—p FH = p==—e FH . .
=T =z =g 1!, = (R]) (1) () = RE W) (W] = A, (522)
-~ _l_ _______________ |- _____________________________ Since ;[ —(—1)'T] is the antisymmetrizer for i = 0 and the symmetrizer for i = 1,
| Work extraction without a quantum work storage system I Lemma 9 1 1 1
| | s —(=1)T]- s[I = (-1)'T] = &;; 51 1) (523)

Propositions 3,4 3 a projection operator Ps.t. [P, H]=0,[p,P] =0 From a property of the swapping operator T
or 3 virtual inverse temperatures 8,8's.t. f < Qor § =

= aINEMNU e U(HEY) st [UTHNU, HM] =0, w(p®, HM,U) >0

From Eqs. (523) and (524), for i, j.
Lemma 7 lLummu 8 l
l Ri;Ru

P I-P)TP®(l-P) Pa(I-P)ll-P)aPIT=0 (S24)

k{0, 1},

Proposition 8 Proposition 11 Proposition 13 1 I — (VTP (T — PV — (—1VT 1 I DETIP @ (1 — PV — (— 1T
1 . 1 1 2 2
- = p—-BH=[(X) + —g-BH # = FH 1 ) - -
(=g =g =z (1 — (1) TI[P & (I - Pl — (—1VT][P& (I - P — (~1)'T
= IN e N,U € U, on(H®V) = 3N e N, U € U, qon(3®Y) = 3N € N, U € U (X ®V) 2
o v 5 1)'T)[P & (I — P)||1 1)'7
st [UtH™Y, HW] = 0, st [UtH®y, H®)] =0, st [UtH™y, H™] =0, : ' :
W(p@;""ﬂ'”)‘uj>u W[p@"'.H{"'].U]>U w(p@".u‘-'”.u}>u S525)
l l l Since (W) (W;)(| W) (Wy]) = & | ;) (|, we obtain
Ay Ay =(RS" W (W WRE™ @ By ) (3])
Theorem 3 Theorem 4 Theorem 5 DORL RATID R TR
pis (G, F)-CP pis (G,F)-CP pis T-CP WY (0|
5. A, (S26
c:op:zig-ﬁﬂ-f(-’(] c»p:zl—e-ﬁ”f c:p:zire'ﬁ”f i °)
. {Ai; } satisfies Eq. (S20). From Lemma 59, O({A;;}) is unitary.
e ___ e . we calculate the extracted work from p@2mM+L b O({A,,}). We define AE := & — £(> 0). Sinc
H™M P] = 0 and [H?M) T) = 0, we obtain [H*™) R;;] = 0 and thus
| Work extraction with a quantum work storage system | - .
I [ HEm ML) A ] =[HE™M @ [+ T o HY RE™ @ W) (¥
ImM) e L pEn L
I Proposition 17 [UTHU, H] = 0 = WWS(p,H, py, C(U)) =W (p, H,U) i R; W) (W51 + R AT, 1) (0
R AE(i — 5) |9 (P
il’mpus]lmn 15, Lemma 12 ll‘rupusmun 15, Lemma 12 J’Frupusmun 16, Lemma 13 AL(i — j) A S27)
Theorem 8 Theorem 9 T'heorem 10 From Lemma S9
p is WS-(G, F, pyw)-CP pis WS-(G, F, py)-CP pis WS-(T, pw)-CP W(pB2mM+L [2mM+L) O({ A, }))

1

e 1 £itp{ pE2mM+L { E2mM L
c,p:Ee-aH—r(x] ‘:,p=z_e-;m .:,p:EE—ﬁH AE(tr(p 411) = tr(p 400)) 19/28
AE [(tr(p®™ Ryy )™ (W |p= |y e P M Roa) )™ (Wo| p® |0y (S28)




Proof for the dimer model

Example: Dimer model

®2 ®2 C: Spin inner product between two dimers
p+ e_ﬁH_ZiuiQi/Z = [,D ! C] =0 = [,0 ’P‘U] # 0 P, Projection onto an eigenspace of C

=) \We can extract work from p®4™+3 py a unitary p p

Un = z Ry®™ ® |0 NP,

k,1e{0,1}
for sufficiently large m € N.

Ry =1[I—-(D*T][P, ® U —P)]II — (=1)!T] T: SWAP of two dimers
|Do) = [S)s)]s), |[P1) = \/igzijk €ijk |ti)|tj)|tk) |s): Singlet, |¢t;): Triplet
Generalization

Spin inner product — Casimir operator (e.g. SU(2)) (e.g. U(1))
Levi decomposition: Connected compact Lie group = Semisimple Lie group x Abelian Lie group
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Work storage

P. Skrzypczyk et al., arXiv:1302.2811

Setup P Unitary V
4 A \
A 4 / p <~ Quantum-mechanical treatment of work
W% \ <~ Energy conservation
W HRI+IR®x|=0
Work storage

System with a continuous energy level
(The Hamiltonian: the position operator)

Assumption: [V, ] @ p] =0

Energy translation symmetry of work storage
22/28



Complete passivity with work storage

L P Unitary V
Definition A

A unitary V is symmetry-respecting x j /)) PRPR & p>

< [vu" @1 =0 W& : =
Conservation of system’s charge >

Theorem 2. Even in this setup,
symmetry-protected completely passive & GGE

Symmetry

Independently of the initial state of the work storage.
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Correspondence of unitary operators

00

C(U) = f dq e' " Ue " ® |q),(q] A. Kitaev, et. al., Phys. Rev. A (2004).

— 00

Unitary operators on the total system

Unitary operators on _——  —~_including work storage

: Bijection C :
the system of interest J / Energy conserving

e —

Symmetry

Symmetry

Proved In our work
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Comparison with the previous work

[1] N. Yunger Halpern et al., Nat. Commun. (2016)

Definition of work

Change in (H)

Change in (H + ¥; &;0;)

Charge
conservation

e_:BH_Zi .uiQi/Z

Local e PH-LimQi /7

(Theorem 2) u;’s are freely chosen. u;’s are freely chosen.
Global —BH —B\H+); $iQ;
(Ref. [1]) ¢ /2 e Pl ELQL)/Z

Our result complements their result by providing a further support
for the proper form of the non-commutative GGE.
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Summary

We characterize thermal equilibrium by complete passivity. arXiv:2103.06060

1. Under continuous symmetry,

Completely passive © GGE e FH-2ikQi /7

2. We also obtained the same result when we explicitly introduce work storage.

«~ These hold even for non-commutative charges.
=) Unconventional extension of the GGE.
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Future perspectives

We have completely identified thermally stable states under symmetry.
=) Foundation of quantum thermodynamics under symmetry

More states behave as thermally stable states under symmetry.

=) Flexible design principles of
guantum heat engines using symmetric systems

L 5@ PRIRY:
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