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We study the Bell inequality in a holographic model of a casually disconnected Einstein-Podolsky-
Rosen (EPR) pair. The CHSH form of Bell inequality are computed using holographic Schwinger-
Keldysh(SK) correlators. We show that the manifestation of quantum entanglement in Bell inequal-
ity can be reproduced from the classical gravitation theory in the bulk, which lends support to the
ER=EPR conjecture.
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlations in local classical theories are
bounded by the Bell inequality, which can be violated
only by the presence of the non-local entanglement in
quantum theories. The violation of Bell inequality in
the entangled Einstein-Podolsky-Rosen (EPR) pair, indi-
cates that two particles have an “instant interaction”, in
contrast to theories of hidden variables to preserve strict
locality [1–4]. There are also some discussions about Bell
inequality in cosmology, to measure whether the origins
of fluctuations are classical or quantum mechanical [5, 6].

Recently, Maldacena and Susskind proposed the
ER=EPR conjecture [7, 8] which stated that the quan-
tum entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It would be very
interesting to further investigate how Bell inequality is
realized in this paradigm, such as whether the classical
bulk geometry can produce the quantum behavior in Bell
inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed by
Jensen and Karch [9] (see also [10]), based on the Anti-
de Sitter/Conformal Field Theory(AdS/CFT) correspon-
dence [11]. Two particles of the boundary EPR pair are
connected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [12–
16]. The two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM). Thus, they do not change
the AdS geometry. We will use the CHSH formulations
of the Bell inequality [2], and identify the holographic
Schwinger-Keldysh(SK) correlator as the measurement of
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correlation between the two causally disconnected EPR
particles. We discuss the physical interpretation of the
Bell Inequality in both the bulk and the dual boundary
theories.

II. BELL INEQUALITY

The essence of Bell Inequality is captured in the CHSH
correlation parametrizations [2] which is reviewed here
briefly. The entangled states made of a pair of spin 1/2
particles (the generalization to particles of higher spin
is straight forward) are detected by two observers, Al-
ice and Bob, respectively. The operators correspond to
measuring the spin along various axes with outcomes of
eigenvalues ±1. Performing the operations A and A0 on
the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCsi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCsi|  2

p
2 [3] (see also [5]). For

example, if we choose the entanglement state of a spin
singlet

| si =
1p
2

�
|"i ⌦ |#i � |#i ⌦ |"i

�
, (4)
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

A = ~nA·~�, A0 = ~nA0 ·~�, (1)

B = ~nB ·~�, B0 = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCi = hABi+ hAB0i+ hA0Bi � hA0B0i, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)

1] Bell inequality in the holographic EPR pair [Chen, Sun, Zhang,  on  Phys.Lett. B791 (2019) 73-7 ]                     
2] The String Worldsheet as the Holographic Dual of SYK State [Cai, Ruan, Yang, Zhang: 1709.06297]

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:
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A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0
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0
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= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
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j
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rose diagram, corresponding to the boundary of di↵erent
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iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
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The
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� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:
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lation formulation become
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Together with the similar normalization of the operators
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)
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does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y
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where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are
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AB(⌧, x) = hF i
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j
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In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
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Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,
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For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
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which indicates that the spatial correlator Gij
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The
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the entanglement entropy of the entangled pair is of or-
der
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� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
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lation formulation become
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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the system cannot describe the entanglement between
free particles. This is because the particles always expe-
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like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)

3

is identified as the temperature of the dual states on the
AdS boundary r ! 1. In the context of AdS/CFT cor-
respondence [12], the black brane is dual to a thermal
bath on the boundary, and an open string connecting
the horizon and boundary could be interpreted as a dual
particle state, such as the heavy quark [13] or Brownian
particle [14]. In the following we will show that the prop-
erties of the dual “particle” behave as the well studied
SYK state.

Worldsheet Metric. — For an open string that hangs
from the AdS boundary to the horizon of the black brane,
we choose the static gauge (⌧,�) = (t, r) and parametrize
the embedding of the string as Xµ = {t, r,x(t, r)}. Then
the position of the dual particle is given by ✏(t) ⌘ x(t, rc),
where rc ! 1 is an UV cut-o↵. For the static particle in
average h✏(t)i = 0, and the solution of the corresponding
static string is x(t, r) = 0. The induced metric on the
string worldsheet embedded in the black brane (11) is an
AdS2 black hole

ds

2
ws = habd�

ad�b = �r

2
f(r)dt2 +

dr2

r

2
f(r)

, (13)

with the same f(r) in Eq.(12). We will consider the per-
turbations of the static string in the bulk, which also in-
duce the perturbations on top of this worldsheet metric
[11].

String Fluctuations— Now let us consider the string
fluctuations in the Nambu-Goto action (4). For sim-
plicity, we consider the perturbation along one trans-
verse direction, and fix one parameterization through
setting � = r. The fluctuation with such fixed back-
ground breaks the original reparametrization as well as
the SL(2,R) symmetry. Up to the leading quadratic order
of the perturbations x(t, r), it is given by

SNG ' � 1

2⇡↵0

Z

drdt
h

1� 1

2f(r)
(ẋ)2 +

r

4
f(r)

2
(x0)2

i

,

where ẋ ⌘ @x(t, r)/@t, and x

0 ⌘ @x(t, r)/@r. This ac-
tion is divergent because of the constant term in the ac-
tion (14) and the UV asymptotic behavior of x(t, r). The
constant term has no contribution on the dynamic so it
can be neglected. The UV divergent term coming from
x(t, r) can be canceled by following counterterm proposed
in Ref. [15],

Sct :=
1

4⇡↵0

Z

dt
p��r2c (r�x)

2 = � 1

4⇡↵0

Z

dt(rcẋ
2) .

(14)
� is the induced one dimensional metric at the boundary
of the worldsheet r = rc and (r�x)2 = �(ẋ)2/r2c . We
will define the renormalized on-shell action of the world-
sheet as Sren = SNG + Sct. Let us make an periodic
boundary condition in time x(t, r) ⇠ x(t + �0, r), we
extract the following quadric order of the Nambu-Goto

action of the worldsheet

S

(2)
NG

= � 1

4⇡↵0

Z rc

rh

dr

Z

�0
2

�

�0
2

dt



r

4
f(r)(x0)2 � 1

f(r)
(ẋ)2

�

.

(15)
As we work in the Lorentz signature, this period has
nothing to do with the inverse temperature 1/T = �.
The value of �0 will be determined later to match the
quadratic order of the Schwarzian action (7) in Eu-
clidean signature. Let us make a Fourier’s transformation
x(t, r) = 1

p

2⇡

P

1

n=�1

bn(r)ei�nt with �n :=2⇡n/�0,

then the renormalized quadric order action of the string
worldsheet is

S

(2)
ren := S

(2)
NG

+ S

(2)
ct =

1

X

n=�1

sn, (16)

with the n-th induced action,

sn=
1

4⇡↵0

n

Z rc

rh

dr
⇣

�

2
n

f

bnb�n � r

4
fb

0

nb
0

�n

⌘

� �

2
nbnb�n|rc

o

.

(17)

We see that s
�n = sn. Since x(t, r) is real valued, we

see that b

�n(r) = b

⇤

n(r). Thus the induced action (18)
has a global U(1) symmetry with the following conserved
current,

Jn(r) = ir

4
f(bnb

0

�n � b

�nb
0

n). (18)

In order to see what fluctuation of bulk open string
x(t, r) corresponds in the boundary, let us write down
the equation of motion for x(t, r) in terms of bn(r), which
reads,

b

00

n +
(r4f)0

r

4
f

b

0

n +
�

2
nbn

r

4
f

2
= 0. (19)

At the horizon, we impose the in-falling boundary condi-
tion,

bn(r) = �ne
i�nr⇤

, r

⇤

:=

Z

dr

r

2
f

. (20)

�n is a finite constant and determined by x(t, r) at the
horizon. Putting the equation of motion (20) into the
action (18) yields the formula,

(4⇡↵0)sn = � b

�nr
4
fb

0

n

�

�

rc
rh

� rc�
2
nbnb�n|rc , (21)

with the UV cut-o↵ rc � rh.

On the other hand, from equation of motion (20), the
function bn(r) has the following asymptotic solution at
the boundary,

bn(r) = "n

h

�

1 +
�

2
n

2r2
· · · ��  (�n)

3r3
(1 + · · · )

i

. (22)
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Schwarzian action in Euclidean signature [3, 5],

SSch := � 1

g

2
s

Z �

0
d⌧{f(⌧), ⌧} , 1

g

2
s

⌘ ↵SN

J , (2)

with the Schwarzian derivative

{f(⌧), ⌧} :=

...
f

.
f

� 3

2

 ..
f

.
f

!2

. (3)

The coupling constant gs is related to the original SYK
coupling J , the number of Majorana fermions N , and
the coe�cient ↵S is determined by the even number q of
interacting fermions [3]. As its most important property,
Schwarzian derivative is invariant under SL(2,R) trans-
formation: f ! (af + b)/(cf + d) with ad� bc = 1. The
AP model with the near AdS2 geometry as the candidate
duality of SYK model also exhibits the same pattern in
explicit and spontaneous symmetry breaking [4].

Now let us consider an alternative dual description of
SYK model, the open string with a worldsheet horizon.
The dynamics of an open string follows from the Nambu-
Goto action of the worldsheet

SNG = � 1

2⇡↵0

Z

d�d⌧

p

�dethab , (4)

where hab = gµ⌫@aX
µ
@bX

⌫ is the induced metric on
the worldsheet with a, b = �, ⌧ , and X

µ(⌧,�) are the
embedding coordinates into the target spacetime with
metric gµ⌫ . The Nambu-Goto action is invariant under
reparametrization of the worldsheet coordinates which
means

S̃NG = � 1

2⇡↵0

Z

d�̃d⌧̃

q

�det h̃ab, (5)

under (�, ⌧)!(�̃(�, ⌧), ⌧̃(�, ⌧)). This kind of
reparametrization can be apparently considered as
two-copy counterpart of conformal symmetry in SYK
model and includes the SL(2,R) symmetry as the special
case when �̃ = a� + b⌧ , ⌧̃ = c� + d⌧ .

Small Reparametrization. — Let us first consider the
small reparametrization of SYK model. If we make
the reparametrization f(⌧)= tan ⇡⌧

� ! tan ⇡g(⌧)
� , then the

Schwarzian action (2) becomes

SSch =
1

2g2s

Z �

0
d⌧

"

✓ ..
g

.
g

◆2

�
✓

2⇡

�

◆2
� .
g

�2

#

. (6)

Now making the small fluctuation g(⌧) = ⌧ + ✏(⌧) and
expanding in ✏(⌧), we get a quadratic action,

S

(2)
Sch :=

1

2g2s

Z �

0
d⌧

"

�..
✏

�2 �
✓

2⇡

�

◆2
� .
✏

�2

#

. (7)

As we have fixed the fluctuation on the fixed parametriza-
tion g(⌧) = ⌧ , the quadratic action in terms of fluctu-

ation ✏(⌧) loses the SL(2,R) symmetry. However, this
quadratic action has an new scaling symmetry. To see
this, let us first make a rescaling on time ⌧ = ⌧̃µ, then
Eq. (7) reads,

1

2g2sµ
3

Z �/µ

0
d⌧̃

"

�..
✏

�2 �
✓

2⇡

�

◆2

µ

2
� .
✏

�2

#

, (8)

which is di↵erent from its original action in Eq. (7) and
can lead a di↵erent equation of motion. If we apply the
following combinations under the rescaling,

⌧̃ = ⌧/µ, �̃(µ̃) = �/µ, ✏̃(⌧̃) = ✏(⌧)µ�3/2
, (9)

with the new time ⌧̃ and the new variable ✏̃(⌧̃), the action
action (7) becomes

1

2g2s

Z �̃

0
d⌧̃

"

�

..
✏̃

�2 �
✓

2⇡

�̃

◆2
�

.
✏̃

�2

#

. (10)

We see that it is just as the same as the action (7). The
transformation (9) is only the symmetry of quadratic
Schwarzian. This is a new symmetry and is not contained
in the SL(2,R) symmetry. The scaling transformation (9)
shows that the conformal dimension of ✏(⌧) is 3/2. Be-
cause of this scaling symmetry, the quadratic Schwarzian
actions of di↵erent temperatures are equivalent to each
other.
If it is ture as what we proposed, that the open string

worldsheet action is a candidate dual description of SYK
model, then its fluctuation can also give the symmetry
of Eq (9) and the dual boundary theory should be equiv-
alent to Eq. (7). In the following, we will show that
the fluctuation of an open string in AdS black brane is
dual to a one dimensional system which has an asymp-
totic scaling symmetry just like the transformation (9).
This symmetry leads to an IR theory, which is just the
quadratic Schwarzian action of SYK shown in Eq. (7).

III. ACTION OF THE WORLDSHEET

We begin with the black brane solution in 2+1 dimen-
sional Maxwell-Einstein gravity with a negative cosmo-
logical constant. The generalization to higher dimensions
is straightforward. The metric of the charged BTZ black
brane is given by

ds

2 = �r

2
f(r)dt2 +

dr2

r

2
f(r)

+ r

2dx2
, (11)

where

f(r) = 1� r

2
h

r

2



1 + q2 ln

✓

r

rh

◆�

. (12)

The horizon is located at r = rh, and the Hawking

temperature of the black brane is T= 1
�=

(2�q2) rh
4⇡ , which

4

And at the horizon, the ingoing condition implies

b

�nr
4
fb

0

n|rh = ir

2
h�n|�n|2 . (23)

In (23), the constant "n is determined by boundary value
of x(t, r) in the following way,

lim
rc!1

x(t, rc) =
1p
2⇡

1

X

n=�1

"ne
i�nt

. (24)

Since the dual boundary describes a heavy quark oscillat-
ing in the thermal system, so the high frequency modes
will be suppressed by e

��n/T for large n and lower tem-
perature T . This means "n will be suppressed exponen-
tially for large n.

Notice that the renormalized on-shell action (22) reads,

(4⇡↵0)sn = ir

2
h�n|�n|2 � b

�nr
4
fb

0

n

�

�

rc

� rc�
2
nbnb�n|rc .

(25)

The conserved current Jn defined in Eq. (19) im-
plies that Im[b

�nr
4
fb

0

n] is a constant so we see that
Im[b

�nr
4
fb

0

n]r=rc = r

2
h�n|�n|2. Thus, the action (26)

becomes

(4⇡↵0)sn = �"
�nB(�n)"n . (26)

Here B(�n) = Re[ (�n)], and B(�n) has the following
expansion in terms of �n,

B(�n) = c0 + c1�n + c2�
2
n + · · · . (27)

The coe�cients c0, c1, c2, · · · are independent of �n. One
can check that for any given charge q, we always have
c0 = 0. As only 1

2B(�n) +
1
2B(��n) appears in the total

action, while the odd orders in Eq. (28) have no contri-
bution to the total action. Thus, putting (27) and (28)
into (17), we can find that the total renormalized on-shell
action of the worldsheet finally reads,

S

(2)
ren = � 1

4⇡↵0

1

X

n=�1

"

�n

1

X

k=1

c2k�
2k
n "n . (28)

The exponential decline of "n makes the summation to
be well-defined. Using the inverse transformation of
Fourier’s series, which change from "n in phase space to
"(t) in the real space, Eq. (29) then becomes

S

(2)
ren=� 1

2g2s

Z �0

0
dt

"

�M0("̇)
2 + ("̈)2 +

1

X

k=3

c̃2k

✓

dk"

dtk

◆2
#

.

(29)

Here we have defined 1/(2⇡↵0

c4) = 1/g2s in order to com-
pare with the Schwarzian action in Eq.(2), and M0 =
�c2/c4, c̃2k = c2k/c4. We have shifted the time by
t ! t+�0/2. From the “bulk-boundary” correspondence
in holography [14], "(t) is the boundary operator dual to

the bulk field x(t, r). The renormalized action (30) gov-
erns the dynamic of dual operator. Coe�cients c4 and
�c2 are both assumed to be positive here. Later on, we
will give numerical evidence that they are indeed positive
when q 6= 0.

So far, the period �0 for time t has been assumed
to be arbitrary. Now let us make a rescaling such that
t̃ = t/µ, "̃(t̃) = "(t)µ��. Then the action (30) reads,

S

(2)
ren =� 1

2g2s
µ

2��3

Z �0/µ

0
dt̃
h

�M0µ
2
�

˙̃
"

�2
+

�

¨̃
"

�2

+
1

X

k=3

c̃2kµ
3�2k

✓

dk"̃

dt̃k

◆2
i

.

(30)

We see that if

M(µ) = M0µ
2
, �(µ) = �0/µ, � = 3/2, (31)

then the action (31) will has an asymptotic scaling invari-
ance when µ ! 1, which implies the following renormal-
ization equation,

d

dµ
(M�2) = 0 . (32)

Now take the initial value of �0 to satisfy M0�0
2 = 4⇡2,

then at the IR limit (µ ! 1), we can drop the higher
order terms, and the action (31) reads,

S

(2)
ren =� 1

2g2s

Z �

0
dt̃

"

�

¨̃
"

�2 �
✓

2⇡

�

◆2
�

˙̃
"

�2

#

. (33)

In order to compared with the quadratic Schwarzian ac-
tion (7) in Euclidean signature, let’s change (34) into the
Euclidean signature by the replacement t̃ ! �i⌧̃ ,� !
�iß, then we find that the Euclidean IR action reads,

S

(2)
ren =

1

2g2s

Z ß

0
d⌧̃

"

�

¨̃
"

�2 �
✓

2⇡

ß

◆2
�

˙̃
"

�2

#

. (34)

This is nothing but the quadratic Schwarzian action in
(7). The asymptotic symmetry (32) is just the rescal-
ing symmetry (9) if we make an identification about the
boundary operator "̃(⌧̃) and reparametrization variable
✏(⌧). The period ß is not the temperature of balck hole
and may be di↵erent from the period in (7). However, be-
cause of the scaling symmetry, the quadratic Schwarzian
actions are equavilent to each other for all the values of
�.

Finally, we will show the numerical evidence that the
coe�cients �c2 and c4 in (29) are positive. We first
rewrite Eq. (20) by the replacement bn(r) / e

i�nr⇤
Rn(r).

Then the equation of motion for Rn(r) is,

R

00

n(r)+



(r4f)0

r

4
f

+
2i�n
r

2
f

�

R

0

n(r)+
2i�n
r

3
f

Rn(r) = 0 . (35)
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theory, and further support the ER=EPR conjecture.
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

A = ~nA·~�, A0 = ~nA0 ·~�, (1)

B = ~nB ·~�, B0 = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCi = hABi+ hAB0i+ hA0Bi � hA0B0i, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)
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