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Non-locality

Recent work of P. Phillips and the author (see Philip’s talk and
Comm. Math. Phys. xxx,2019 Colloq. RMP, xxx 2019) non-local
EM

the strange metal

holography and the symmetry breaking mechanism

L = Dγ,Aφ(Dγ,Aφ)∗ −m2φ∗φ− Fµνγ Fµνγ , (1)

where Dγ,Aφ =
(
∂µ + ie�(1−γ)/2Aµ

)
�(1−γ)/2φ and

Fµνγ = ∂µ�(γ−1)/2Aν − ∂ν�(γ−1)/2Aµ and can be interpreted as
the commutator [DA,Dγ,A].
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Goal

Entropy non-locality

Hilbert space non-locality

Their connection in examples

Holography?
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Entropy

Rd−1 = {t = const}, Rd−1 = A ∪ Ā andΣ = ∂A. ρA= reduced
density matrix

S = −TrρA log ρA. (2)

Eq. 2 is hard to compute with. Better use geometric entropy a la
Callan Wilczek and use the replica trick

SN = −(∂N − 1) log TrρNA (3)
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Replica trick

Formally, assume existence of a unique analytic continuation of to
non-integer N before letting N → 1 and get entanglement entropy.

Then we calculate TrρNA (thought as partition function defined on
the N-cover with a branch along A as well as conical singularities
on Σ)
For a Gaussian theory on Rd , get flat cone, Cδ with deficit angle
δ = 2π(1− N).
The quantity of interest is then (not-normalized)

Sδ = −(2π∂δ + 1) logZδ (4)

and the limit to obtain the entanglement entropy is δ → 0.
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Entropy and locality

In fact, local quantum field theories (with a UV fixed point) EE S
scales as the area of the entangling surface: for a local d
dimensional field theory the leading UV divergence

S ∼ κd−2

(
1

ε

)d−2

+ ... (5)

where 1/ε is a characteristic length scale of the entangling surface
and κd−2 is a function defined on the entangling surface (cf Casini
and Huerta arxiv:0905.2562).

So we can formulate

Criterion of nonlocality- Entropy method

We say that a QFT is Entropy non-local if the ground state
entropy does NOT satisfy an area Law
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Holographic Entanglement Entropy and non-locality

In Li and Takayanagi (arxiv:1010.3700) holographic theory for flat
space might look like on the sphere at ∞.

SA ∝ Volume (6)

proportional to the volume, NOT to the Area of A. The boundary
theory must be non-local.

Given by

Sboundary =

∫
dΩd φf (−∆)φ (7)

with f of the form f (x) = ex
γ

, and NOT of the form f (x) = xγ

(which obeys an area law)
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Entanglement Entropy and non-locality

In Arxiv:1311.1643, by Shiba and Takayanagi ground state
entanglement entropy (EE) for a slightly different theory

H =

∫
dd−1x

(
1

2
(∂tφ)2 + B0φe

A0(−∆)γφ

)
(8)
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They compactify the space Rd−2 into a torus with radius Ra (a the
lattice constant and R is the size of torus in the lattice space.)
With Ω =

{
−La

2 ≤ x1 ≤ La
2 , xi ∈ [0,Ra], for i ≥ 2

}
they show

SΩ =

{
C1ALR

d−2 L << A(volume law)

C2A2Rd−2 L >> A(area law)
(9)

with A = e−2γA0.

Using c-MERA they propose that this should be holographic dual
to

ds2 = A2
0

dz2

z2(2γ+1)
+

1

z2

d−1∑
i=1

dx2
i + gttdt

2 (10)
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The fake non-local theory

Back to Li-Takayanagi

Z [J] =

∫
Dφ e i

∫
ddx [ 1

2
φ(−∆+m2)γφ+Jφ]

We calculate

Z [J] =
1

det(−∆)γ
e−i

∫
R2n ddxddy J(x)Gγ(x−y)J(y) =

1

det(−∆)γ
e iW (J)

(11)
where

W (J) = −1

2

∫
R2n

ddxddy J(x)Gγ(x − y)J(y)

and Gγ(x − y) is the fractional propagator

(−∆ + m2)γGγ(x − y) = δd(x − y)
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Local or nonlocal?

Can see this theory is not truly non-local: after the field
redefinition

ψ = (−∆ + m2)
1−γ

2 φ

this is consistent with the Area law result of Li-Takayanagi
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A Truely non-local theory

New model of non-local theory, which we dub the true non-local
theory (in contrast with f (x) = x2γ + m2)

Zγ [J] =

∫
Dφ e i

∫
ddx [ 1

2
φ(−∆)γφ+m2φ+Jφ]

one has

Zγ [J] =
1

det ((−∆)γ + m2)
e iWγ(J) (12)

where

Wγ(J) = −1

2

∫
R2n

ddxddy J(x)Dγ(x − y)J(y)

with (
(−∆)γ + m2

)
Dγ(x − y) = δd(x − y)
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True non-local theory continued

An easy expansion (for m 6= 0) reveals

1

2
J(x)Dγ(x − y)J(y) =

1

2

∞∑
k=0

m2kJ(x)Gγk(x − y)J(y) (13)

where
(−∆)γkGγk(x − y) = δd(x − y)

at least up to (possibvly) a finite dimensional vector space of the
Hilbert space The propagators Gγk(x − y) have a local behavior as
seen previously
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First test of non-locality

Criterion of nonlocality:

Criterion of nonlocality- Hilbert space method

We say that a QFT is truly non-local if there is no transformation
of Hilbert spaces (even possibly defined away from a finite
dimensional vector space) which manifest the theory as a finite
sum of local theories
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Checking the Entropy of the Fake non-local theory

The calculation of Li and Takayanagi
if effective action

F =

∫ ∞
ε2γ

ds

s
Tres∆γ

. (14)

A = d − 1-dim. slab of length L. Then, the cutoff scale is given by
ε = 1/L.

The get Area Law

SA ∼ κd−2

∫ ∞
L−2γ

ds

s
s−

d−2
2γ

∼ κd−2L
d−2.

(15)
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Entropy of the true non local theory

By contrast,

I =

∫
Rd

ddxφ(−∆γ + m2)φ. (16)

its entropy does not obey an area law, if d > 2.
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The leading order divergence: non-area law

For small ε (and d > 2) the leading order divergence is (for m 6= 0)
1

S = κd−2

∫ ∞
ε2γ

ds

s
s−

d−2+2γ
2γ e−sm

2

∼ κd−2m
d−2+2γ

γ Γ

(
−2γ + d − 2

2γ
,m2ε2γ

)
∼ κd−2

(
1

ε

)d−2+2γ

+ ...

(17)

keep only terms with ε for small ε, corresponding to the UV limit.
One can now immediately notice the volume law when γ = 1/2.
Furthermore, the non-local theory never follows an area law
since 0 < γ < 1.

1Recall the incomplete Gamma function Γ(s, x) :=
∫ +∞
x

dt ts−1e−t is
asymptotic to − 1

s
x s as x → 0 for Re(s) < 0
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Conclusions

We have discussed two notions of non locality

The Hilbert space one

The entanglement entropy one

We conjecture them to be equivalent under reasonable conditions
(e.g. theories admitting a UV fixed point) We therefore put forth
that theories like our fractional EM theory subject to a Higgs
mechanism gives rise to truly non-local theory (in both the Hilbert
space sense and Entropy sense) which could appear as a non-local
holographic dual.
In current work with our student Cunwei Fan we are studying
transition from Area to non-Area law for Lovelock theories near the
vacuum AdS
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