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Spectral Form Factor

• The spectral form factor (SFF) is

g2(β, t) ≡ R2(β, t)

R2(β, 0)
, (1)

where

R2(β, t) ≡ |Tr
(
Z (β, t)

)
|2 (2)

is the unnormalized two-point SFF, β is the inverse

temperature, H is the Hamiltonian of the system, and

Z (β, t) ≡ exp(−βH − iHt). (3)
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Motivation

• The motivation for the SFF has rooted in the random matrix

theory and information loss.

• It was conjectured that a generic quantized system with a

classical chaotic limit should exhibit the spectral statistics of a

random matrix ensemble. This was confirmed from Sinai’s

billiard.

• The Sachdev-Ye-Kitaev (SYK) model provides the consistent

universal dynamical form with the random matrix theory.

• The issue of information loss can be probed by the late time

study in the SFF from the violation of bound.
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OTOC

• The out-of-time ordered correlation function (OTOC) is

defined by the square of commutator of two operators in a

bosonic system

C4(t) ≡
Tr
(
ρW (t)V (0)W (t)V (0)

)
Trρ

, (4)

where ρ ≡ exp(−βH).
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Reference of the OTOC
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Regularization

• It has been shown that the unregularized OTOC does not

share the universal Lyapunov exponent with the regularized

OTOC due to the sensitivity of the infrared regulator. In the

SYK model at the large-q limit, the universal Lyapunov

exponent can be captured by the regularized OTOC. Hence

the regularized OTOC should be better for the universal

meaning. The regularized OTOC is

Cr4(t) ≡
Tr
(
ρ1/4W (t)ρ1/4V (0)ρ1/4W (t)ρ1/4V (0)

)
Trρ

. (5)
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SFF and OTOC in Qubit Models

• Consider a quantum system in an L-dimensional Hilbert space.

Recall the average over L× L unitary matrices with the Haar

measure is ∫
dA Aj

kA
† l
m =

1

L
δjmδ

l
k . (6)

The integral over A is over all possible unitary operators on

the Hilbert space.

• In terms of the regularized two-point OTOC

O(t) ≡ Tr
(
A(0)
√
ρA†(t)

√
ρ
)
/L, it is clear that∫

dA O(t) =
1

L

∫
dA Tr(A

√
ρe−iHtA†e iHt

√
ρ)

= R2(β/2, t) . (7)
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Heisenberg Group Averaging

• A general element of the Heisenberg group is specified by the

variables, q1, q2, as follows U(q1, q2) ≡ exp(iq1X + iq2P). By

direct computation, we find∫ ∞
−∞

dq1

2π

∫ ∞
−∞

dq2 〈x1|U(q1, q2)|x2〉〈y1|U†(q1, q2)|y2〉

= δ(x2 − y1) δ(x1 − y2) . (8)

What we obtained precisely follows the properties:

exp(iqX )|x〉 = exp(iqx)|x〉 and exp(iqP)|x〉 = |x − q〉.

• This already implies∫ ∞
−∞

dq1

∫ ∞
−∞

dq2

2π

∫ ∞
−∞

dx O(x , t, q1, q2)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx1 〈x1|e−iHt |x1〉〈x |e iHt |x〉 . (9)
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Non-Interacting Scalar Field Theory

• Rewrite this computation in terms of oscillators since this

generalizes easily to non-interacting scalar field theory, which

is an assembly of non-interacting oscillators. Using

a =
(P − iωX )√

2ω
, a† =

(P + iωX )√
2ω

, (10)

the unitary operators that we have considered are given by

U(q1, q2) = e
a
(
iq2

√
ω
2
− q1√

2ω

)
e
a†

(
iq2

√
ω
2

+
q1√
2ω

)
e

q2
1

4ω
+

q2
2ω

4 .
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Non-Interacting Scalar Field Theory

Now consider a non-interacting scalar field theory, in a box (with

the periodic boundary condition), so that momenta ~k are discrete,

with an oscillator for every ~k .

The Hamiltonian is

HNS =
1

V

∑
~k

1

2
ã†(~k)ã(~k), (11)

where V is the volume of the box. The ã† and ã are the usual

creation and annihilation operators in the box, and they satisfy the

commutation relation [ã(~k1), ã†(~k2)] = 2Vω~k1
δ~k1

~k2
, where

ω2
~k1
≡ |~k1|2 + m2 with m the mass of the non-interacting scalar

field. Hence we can perform the field redefinition

ã(~k) ≡
√

2Vω(~k)a(~k) and apply the result of the harmonic

oscillator to the non-interacting scalar field theory.
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creation and annihilation operators in the box, and they satisfy the

commutation relation [ã(~k1), ã†(~k2)] = 2Vω~k1
δ~k1

~k2
, where

ω2
~k1
≡ |~k1|2 + m2 with m the mass of the non-interacting scalar

field. Hence we can perform the field redefinition
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Coherent State

• We consider the exactly solvable model from the two-photon

non-degenerate Jaynes-Cummings (JC) model with the

rotating wave approximation, which ignores the oscillating fast

term.
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Coherent State

• The effective Hamiltonian is

HJC ≡ N1 + N2 + M, (12)

where

Nj = ωj

(
a†j aj +

(σz + 1)

2

)
(13)

and

M ≡ ∆(σz + 1)

2
+ ga(a1a2σ

+ + a†1a
†
2σ
−), (14)

where

σ+ ≡ σx + iσy
2

, σ− ≡ σx − iσy
2

. (15)
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Coherent State

• The coherent states that we use are:

a1|α1α2〉 = α1|α1α2〉, a2|α1α2〉 = α2|α1α2〉,

and

|α1α2〉 = exp
(
− (|α1|2 + |α2|2)/2

)
exp

(
α1a

†
1 + α2a

†
2

)
|0, 0〉.

Completeness of the coherent states is∫
d2α1

π

∫
d2α2

π
|α1α2〉〈α1α2| = 1 . (16)
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Coherent State

• In terms of the unitary operator

U(q1, q2, r1, r2) = exp(iq1X1 + iq2P1 + ir1X2 + ir2P2), (17)

we compute the regularized two-point OTOC (repeated

indices a, b are summed over 1,2)

C (t)

= 〈α1α2|U(q1, q2, r1, r2)[e−βHJC/2−iHJCt ]aaU(q1, q2, r1, r2)†

×[e−βHJC/2+iHJCt ]bb|α1α2〉 ,

(18)

where [· · · ]aa is the matrix element of the row-a and the

column-a with the repeated summation.
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Coherent State

• Direct computation gives

〈α1α2|U(q1, q2, r1, r2)|γ1
1γ

1
2〉

= e
ᾱ1

(
iq2

√
ω1
2

+
q1√
2ω1

)
e
ᾱ2

(
ir2

√
ω2
2

+
r1√
2ω2

)

×e
γ1

1

(
iq2

√
ω1
2
− q1√

2ω1

)
+γ1

2

(
ir2

√
ω2
2
− r1√

2ω2

)

×e−
|α1|

2+|α2|
2+|γ1

1 |
2+|γ1

2 |
2

2
+ᾱ1γ

1
1 +ᾱ2γ

1
2 e
− q2

1
4ω1
− q2

2ω1
4
− r2

1
4ω2
− r2

2ω2
4 .

This matrix element is common for any two-particle problem - it is

the coherent state expectation value of an element of the

two-particle Heisenberg group. The integrations that we need to

perform over coherent state parameters are Gaussian integrals,

which is a nice simplification that will always be present.
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Coherent State

In general, we will not be able to carry things out exactly.

Nevertheless, given that t is a large parameter, the final integration

naturally lends themselves to saddle point evaluations.
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Large-N Matrix QM

Concretely, consider the model

HQMN =
P jP j

2
+ µ2X

jX j

2
+ g

(X jX j)2

4
, (19)

where j = 1, 2, · · · ,N, and g is the coupling constant.

Using the

simplifications of the large-N, we replace this Hamiltonian with the

approximate form (σ is a constant.)

HQMNM =
P jP j

2
+ µ2X

jX j

2
+ λσ

X jX j

2
. (20)

The ’t Hooft coupling constant λ ≡ gN is fixed as we scale

N →∞, and we determine σ =
∑N

j=1〈X jX j〉/N from the

two-point function. The large-N theory is harmonic oscillators but

now with a modified frequency.
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Large-N Matrix QM

The SFF is

g2(β, t) =

(
1 + e−2

√
µ2+λσβ − 2e−

√
µ2+λσβ

1 + e−2
√
µ2+λσβ − 2 cos(

√
µ2 + λσt)e−

√
µ2+λσβ

)N

.
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Large-N Matrix QM
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Figure: We fix the inverse temperature β = 1 while choosing the ’t Hooft

coupling constant λ=gN=2. The lattice sizes are 8 in N=1 and 4 in

N=2, 3. The numbers of lattice points are 128 in N=1 and 32 in N=2,

3. We compute the two-point spectral form factor g2(t) from 16

low-lying eigenenergy modes for N=1, 2, and 3 in the left, middle, and

right figures respectively. The numerical solution in N=3 matches the

large-N perturbation quantitatively.
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Conclusion

• We link the spectral statistics to the OTOC through the

Heisenberg group averaging in bosonic QM and QFT.

• The late time limit is also the classical limit. Therefore, we

apply our study to coherent state, which is a quantum state

closest to a classical regime, and large-N matrix QM. It is

useful for understanding the late time behavior of the SFF.

• Because the uncertainty principle forbids the infinitesimal

perturbation, the OTOC cannot have the late time chaos.

The link between the spectral statistics and OTOC gives the

late time chaos to the OTOC.
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