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Cutting to the chase...

• Since I only have twenty minutes, let me just go straight to
the point already.

• Point 1: The concept of entanglement entropy is ill-defined
for two-dimensional QFTs with a gravitational anomaly.

• Point 2: For non-anomolous theories, even when the concept
of entanglement entropy exists, modular Hamiltonians are
generically non-unique. It is also often not possible to choose
the canonical one out of them choices.

• Audience: Excuse me? I have not the faintest idea....

• Audience: Have you gone mad?

• Okay fine. Let me give you a five-minute version of the proof
of the first no-go theorem for you to understand.
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No-go theorem on tensor factorization

• I am going to prove that there are no notion of tensor
factorization of Hilbert space commonly assumed in quantum
information theory.

• Tensor factoirzation is the Hilbert space structure

HΣ = HA ⊗HB ,

where the spatial slice Σ is a disjoint union of two spatial
regions A and B.

• Side comment: I allow for any ultraviolet modifications of the
theory attempting to make the factorization happen, like
adding a heavy scalar field to the pure QED so that Wilson
lines factorize [Casini, Huerta, Rosanbal 2013, Harlow 2015].
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Step 1: Boundary Hamiltonian

• Let us first assume there exists a tensor product structure of
Hilbert space mentioned earlier.

• One can therefore define an operation of taking a partial trace.

• Also, I will denote the (fully renormalised) Hamiltonian of the
system as H. We demand the Hamiltonian be local, in the
sense that H is a sum of local operators H(x).

• In other words,

[H,O(x)] = Ȯ(x),

where Ȯ denotes the time derivative of O.
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Step 1: Boundary Hamiltonian

• Now we define the following quantity,

H
[ε]
A ≡ −

1
ε

log
(

trB

[
e−εH

])
.

This is called the modular Hamiltonian at temperature ε−1.

• Equivalently, one can work also with the following physically
intuitive definition,

H
[ε]
A ≡

trB
[
He−εH

]
trB [e−εH ]

= − d

dε
log
(

trB

[
e−εH

])
.

where it is easy to see that ε−1 serves as the UV cutoff.

• Up to multiplicative constants at each order in ε, these two
definitions are the same. Especially check for yourself they
match for ε→ 0.
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Step 1: Boundary Hamiltonian

• By taking the partial trace, because such a procedure is local,
the Euclidean time evolution e−εH is never modified at more
than ε distance away from the boundary x = 0 of A and B.

• Remark: We are heavily using the physical requirement that
this partial trace does not introduce any correlations that
weren’t there in the original Hamiltonian. In other words, we
only consider local tensor factorizations.

• Therefore we have H
[ε]
A (x) = H(x) for x > ε.
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Step 1: Boundary Hamiltonian

• Taking ε→ 0, we recover

HA(x) ≡ lim
ε→0

H
[ε]
A (x) = H(x)

for x > 0.

• On the boundary, in order to properly take the limit ε→ 0,
one also needs to consider boundary relevant operators, whose
coefficients scaling as ε∆−1. For example, boundary
cosmological constant will scale as ε−1.

• The boundary renormalisation procedure ensures that the limit
can be taken properly, and HA now becomes a conformal
invariant Hamiltonian defined on a space with boundary
having finite boundary entropy [Affleck, Ludwig 1991, Friedan,

Konechny 2003].
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Step 2: CFT on a space with a boundary

• We now have a CFT on spatial slice R+ with Hamiltonian
density H(x).

• The conformal Ward identity on a space with boundary now
becomes the following

T (z)− T̄ (z̄) = ∂0Oboundary,

which dictates that the flow of energy never gets dissipated
outside the spatial slice.
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Step 2: CFT on a space with a boundary

• It is a standard procedure to change boundary conditions into
boundary states |B〉, by exchanging the role of space and time.

• The conformal Ward identity are then translated into the
following equation (

Ln − L̄−n
)
|B〉 = 0

• Playing with the Virasoro algebra, we get

cL = cR ,

where cL,R are the left- and right- central charges. In other
words, BCFTs always have a vanishing gravitational anomaly,
cL − cR .
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Step 3: Taking the contrapositive

• You can now take the contrapositive of the whole process.

existence of tensor factorization

consistent boundary condition

vanishing gravitational anomaly

• A theory with a non-vanishing gravitational anomaly cannot
have a unitary boundary condition, and hence is not
compatible with the existence of the partial trace.
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Generalised Nielsen-Ninomiya theorem

• One can prove the generalised Nielsen-Ninomiya theorem as a
corollary.

• Because any theory with a lattice realisation can be trivially
tensor factorized (by taking a free boundary condition), this
means that a theory with a non-vanishing gravitational
anomaly cannot be put onto a lattice.

• This includes the original two-dimensional Nielsen-Ninomiya
theorem that one chiral fermion cannot be realised on a
lattice, because now we have cL = 1/2 while cR = 0
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FAQs

• I expect lots of question marks inside your head now.

• This is partly your fault partly mine.

• Your fault is that you are too contaminated by a lattice
intuition.

• While mine is that I didn’t give an explicit definition of tensor
factorization without using such an intuition.
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FAQs

• Question 1: The Hilbert space of gauge theories are in general
non-factorizable in the literal mathematical sense, but this can
be amended by modifying the theory in the UV. Doesn’t the
same thing happen here?

• Answer: No you can’t. The anomaly is an RG invariant
object. You cannot remove an anomaly by modifying the
theory in the UV, as long as you wish that theory to flow to
the same fixed point as the original theory.
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FAQs

• Question 2: What exactly do you mean by tensor factorization
and partial traces in continuum theories? There shouldn’t
exist tensor factorization at all in continuum field theories.

• Answer: It is a common misconception that tensor
factorization doesn’t make sense at all in continuum theories.
It is neither true that AQFT helps make the definition more
rigorous.

• There certainly are theories with tensor factorizations in
suitably regulated sense of the word.
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FAQs

• What is correct, is that there just are multiple ways in which
to relate the total Hilbert space H with the tensor factorized
Hilbert space HA ⊗HB . The number of such choices are
roughly the number of boundary universality classes of the
theory [Ohmori, Tachikawa 2014].

• So rather than an equality like H = HA ⊗HB , we should be
thinking about a mapM

M : H → HA ⊗HB

• This has a physical effect on the computation of modular
Hamiltonians!

14



FAQs

• This means when you are computing ρA ≡ trB (ρ), what you
actually mean is the following

ρA ≡ trB

(
MρM†

)
= trB

(
M†Mρ

)
.

So in other words the F [M] ≡M†M : H → H modifies the
density matrix itself!
• The effect of F [M] should be as local as possible. In order to

capture the physics of the original density matrix using e.g.,
the entanglement entropy, we do not want to introduce
correlations about the size of spatial slice itself.
• This rules out the non-local definition of the partial trace used

in [Holzhey, Larsen, Wilczek 1994]. One can compute the
entanglement entropy even for gravitational anomalous
theories using it, but it won’t reflect the correct physical
correlation of the original theory. 15



FAQs

• They better not be exactly local though. In order for the
tracing operation to not diverge, we want to smear it a bit
using a small scale εf . And this is exactly why you have to
introduce a scale in computing the entanglement entropy.
• I will not tell you the most general way to define such

(almost)-local maps, as it can be not very intuitive.
• One construction of such a map F [M] is to use the path

integral on a strip with a hole of size εf cut out with a certain
boundary condition [Ohmori, Tachikawa 2014].

x
region Aregion B

boundary condition

0 εf−εf
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FAQs

• Question 3: Why can’t we just use the Cardy-Calabrese
formalism? Wouldn’t that give a canonical way to define the
entanglement spectrum?

• Surprisingly we can’t. The CC formalism doesn’t define a
consistent entanglement spectrum which can be seen at large
Renyi indices.

• It never ever corresponds to a consistent spectrum of unitary
matrices while that of reduced density matrices should. The
CC operator should be supplemented by infinite numbers of
bulk/boundary irrelevant operators [Cardy, Calabrese 2010].

• Boundary relevant operators also contribute, which even leads
the theory into different boundary universal classes [Ohmori,

Tachikawa 2014].
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FAQs

• Question 4: Can you add to the theory a spectator sector to
cancel the gravitational anomaly that decouples in the IR?

• It for sure works for lattice factorizations, but not for the
entanglement entropy.

• Even though such degrees of freedom are decoupled away
from the boundary, they are not on the boundary. They are
always coupled to the original degrees of freedom by an O(1)

amount at the entangling surface.
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FAQs

• Question 5: Can you use AQFT to define the (relative)
modular Hamiltonian even for the anomalous case?

• No. AQFT requires that the Hilbert space be approximated by
a finite dimensional one.

• This assumption is tantamount to assuming a lattice
realisation of the theory.

• Also, AQFT makes it look as if there is one and the only
modular Hamiltonian for each state, but as I have explained,
that is missing out an important point.

• My take on such a construction is that they only define the
bare modular Hamiltonian, in which they do not care about
the behaviour of the boundary degrees of freedom.
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Take-home messages

• One cannot have a tensor factorization of the Hilbert space in
two-dimensional QFTs with a gravitational anomaly.

• This cannot be cured by any procedures which do not modify
the infrared physics nor correlations of the original theory.

• Higher-dimensional generalizations are possible.

• It is also related to the lattice realisability of continuum
theories.

• Even when modular Hamiltonians exist, one should also be
careful about their non-uniqueness coming from what
boundary universality classes are realised.
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Take-home messages

• The generalisation of Nielsen-Ninomiya theorem towards three
dimensions (or in general odd dimensions) could be interesting
regarding various discrete anomalies.

• Holographic implications are still not clear. There are indeed
explicit constructions of holographic CFTs with non-vanishing
gravitational anomaly. What does (quantum corrections to)
the Ryu-Takayanagi formula compute in such cases?

• At least it is plausible that any holographic two-dimensional
CFTs must have |cL − cR |/ (cL + cR)� 1 to make sense of
the Ryu-Takayanagi formula at a classical level. How do we
prove this?
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