
Typicality and thermality  
in 2d CFT

Shouvik Datta



This talk is based on work with  
Mert Besken, Per Kraus and Ben Michel. 

arXiv:1904.00668 + ongoing work



Statistical mechanics & thermodynamics

Statistical mechanics provides a successful framework  
to describe thermodynamic behaviour.

However, precise relation of  the  
macroscopic quantities/phenomena to  

microscopic details is often subtle.

For instance, at the microscopic level a number of  physical laws 
are reversible while thermodynamic laws aren’t.

These issues are important while trying to understand  
thermalization microscopically. 



Microstates & thermodynamics
There are a number of  possible approaches to understand  

the emergence of  macroscopic behaviour from microscopics.

The most conventional way invokes 
the ergodic hypothesis. 

This states that ensemble averages  
approximate long-time averages.
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FIG. 2. A two dimensional projection of phase space with
8 canonically conjugate variables q1 . . . q4, p1 . . . p4. The black
line corresponds to the path of the system over some time
interval. The sphere corresponds to the points allowed by
energy conservation. The red closed path corresponds to a
periodic trajectory.

(a) (b)

FIG. 3. (a) Example of Sinai billiards: Two hard core spheres
move in free space with periodic boundary conditions. (b)
Bunimovich Stadium. A point particle moves in free space
confined to a stadium with hard walls. The stadium has semi-
circular sides and a straight mid-section.

then say [21]

⟨O⟩t =
∫S O(Γ)dΓ
∫S dΓ

(1)

where we are integrating over a surface S of constant en-
ergy. And this is precisely how averages are described
in the classical “microcanonical ensemble”. It is also im-
portant to note that there other invariants, for example
total system momentum, that might also be conserved.
In these cases, the surface must also include these other
invariants.
In order for this to work, it would seem as if the sys-

tem should be ergodic or at least close to it. There have

been a few examples where it has been possible to prove
ergodicity, most notably, a gas of an arbitrary number of
hard spheres in some volume [22–25], often called “Sinai
Billiards” as illustrated in Fig. 3(a). The proofs are
quite involved1, but the result tells us that time aver-
ages are calculable through the microcanonical ensemble
formula. Another such system that has been proved to
be ergodic [26] is the “Bunimovich Stadium”, which de-
scribes the motion of a free particle inside a stadium with
hard walls that are circular on the sides, and straight in
the middle, see Fig. 3(b).
But there are also other systems, the are “integrable”

where there are N other invariants, meaning that these
are constants of motion. Such a closed trajectory is
schematically represented by the red curve in Fig. 2. Ref-
erencing our phonon example, the fact that the crystal
does not thermalize is because of these extra invariants.
In that case, each of these invariants is the energy of a sin-
gle normal mode. A typical trajectory of such a system
is therefore described by the combined motion of the nor-
mal modes, and will in general be quasi-periodic. How-
ever, integrable systems are unusual, and not expected
generically. For example, any anharmonic term added,
will make this problem non-integrable, or “generic”.
But in general, we do not expect that a generic classi-

cal system, for example a gas with Van-der Waals inter-
actions, or a model of phonons with anharmonic terms,
will be, strictly speaking, ergodic. For finite N , there
has been a great deal of work on what happens in such
systems. The Kolmogorov - Arnold - Moser (KAM) the-
orem tells us that for a weak anharmonic perturbation of
order ϵ, most phase space trajectories will continue to be
quasi-periodic as in the integrable case. However as the
strength of the anharmonicity is increased, the fraction
of such quasiperiodic trajectories is expected to decrease.
In real situations however we do not necessarily have very
strong nonlinear terms in the Hamiltonian, so why does
statistical mechanics work in these cases?
What is generally believed is that as N →∞, the range

of ϵ’s where a significant fraction of quasiperiodic orbits
survives becomes vanishingly small [27]. Thus for an iso-
lated system, for statistical mechanics to work, one needs
to have large N . In most experimental situations this
is usually not an problem, because N is normally very
large and therefore there will be a vanishingly small sets
of initial condition where the trajectories are quasiperi-
odic, and therefore the system can be considered to be
ergodic.
Related to ergodicity, is the idea of chaos. The idea is

that two systems with slightly different initial conditions
will evolve into systems that are have very different co-
ordinates, Γ1(t) and Γ2(t). The rate of divergence can

1 To be more precise, ergodicity has only been proven rigorously
in some special cases that limit the number of spheres, or for
systems where all of the masses are arbitrary, and then with the
caveat that the proof will not hold for a zero measure set of mass
ratios[23–25].

review by J. Deutsch — 1805.01616
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Microstates & thermodynamics

Another approach is to consider typicality of  states.  
An overwhelmingly large number of  microstates  

reproduce the same macroscopic behaviour. 

A single typical state may be good enough  
to reproduce thermodynamics. 



Eigenstate thermalization
The eigenstate thermalization hypothesis (ETH) states that 

thermal expectation values can be reproduced by  
a single typical microstate of  finite energy density. 

There are of  course violations of  ETH.

A stronger version of  ETH states that all finite energy 
microstates reproduce thermal expectation values. 

h |O| i = tr[e��H
O]

tr[e��H ]
[Deutsch; Srednicki]



Eigenstate thermalization

The notion of  temperature arises when the operator     is 
chosen to be the Hamiltonian H.

⟨m|O|n⟩ = gO(Em)δmn + e−S(Ē)/2fO(Ē,ω)Rmn.

h |O| i = tr[e��H
O]

tr[e��H ]

ETH proposes an ansatz for all matrix elements of the operator 

O

[Srednicki; …]



Eigenstate thermalization

We can pose these questions in 2d CFTs  
which offers an arena of  analytic tractability.

Does a typical high-energy microstate appear thermal?

What do we mean by ‘typical’?

Is the ETH ansatz for matrix elements obeyed?

What is the microscopic/CFT realisation of   
the BTZ black hole?



ETH for primaries?
Quasi-primary expectation values in  

a heavy primary state disagree with thermal ones.

need to be refined in this context, for instance by passing to a generalized Gibbs ensemble

with an infinite number of chemical potentials.

We focus here on universal aspects of this question. Namely, suppose we are handed a

typical energy eigenstate1 of the CFT: do correlation functions of stress tensors and conserved

currents appear thermal in such a state, at least in some regime of parameters? We can

answer this question without committing to a specific CFT, and if this fails to hold then

there will be no e↵ective thermal description of the CFT microstates.

Previous work with similar aims includes [5,6]. These papers considered specific theories,

namely N = 4 super Yang-Mills and the D1-D5 CFT, and considered simplifying features,

such as focussing on BPS states or free fields. Typical microstates were shown to behave

approximately “thermally”,2 with small deviations encoding the specific state. In bulk lan-

guage, this provides evidence that a black hole serves as a coarse grained description of

collections of microstates. As noted above, we proceed here without assuming supersymme-

try or making reference to a specific CFT, although we do restrict to two-dimensions and

to specific universal probes. Also relevant is [7], which considers states that are random

superpositions of energy eigenstates in a small window, concluding that physically accessible

observables have values that are close to thermal, with an error that is exponentially small in

the entropy. It was also noted that the nonthermal features can be enhanced to be of order

unity by considering imaginary time correlators. Additional work and reviews include [8,9].

One motivation for this work is to resolve an apparent puzzle regarding a mismatch in

the expectation values of KdV charges in microstates versus the thermal ensemble. The

simplest example of this mismatch will su�ce here. We consider the stress tensor T (w)

along with the conformal normal ordered product :TT :, obtained by subtracting power law

divergences in the OPE and then taking the coincident limit. The zero modes of these two

operators mutually commute, and define the lowest two members of the infinite tower of

mutually commuting KdV charges. We first consider the CFT on an infinite line at inverse

temperature �, and compute

hT i� = �⇡
2
c

6�2
,

h:TT :i� =

✓
⇡
2
c

6�2

◆2

+
11

90

⇡
4
c

�4
. (1.1)

We next consider the CFT on a spatial circle of circumference L. Let |hpi denote a Vira-

1
States that are not energy eigenstates are also of interest, in particular for studying time evolution

towards thermal equilibrium. We make a few comments on such states in Section 5.
2
Thermality here refers not to a physical temperature but to a Boltzmann type factor governing the

distribution of states.

2

soro primary state of dimension hp,3 hence obeying L0|hpi = hp|hpi, Ln>0|hpi = 0. The

expectation values in this state are

hhp|T |hpi = �
✓
2⇡

L

◆2 ⇣
hp �

c

24

⌘
,

hhp| :TT : |hpi =

✓
2⇡

L

◆4 ⇣
hp �

c

24

⌘2

�
✓
2⇡

L

◆4 ✓
hp

6
� 11c

1440

◆
. (1.2)

To compare, we should take L ! 1 with hp/L
2 fixed so as to maintain a finite energy

density in the limit. Demanding hT i� = hhp|T |hpi fixes the relation between hp/L
2 and � as

hp

L2
=

c

24�2
. (1.3)

This gives, in the limit,

hhp| :TT : |hpi =
✓
⇡
2
c

6�2

◆2

. (1.4)

Comparing to (1.1) we note a discrepancy, which is subleading at large c. In this work we

consider arbitrary c, not necessarily large, in which case the discrepancy is in no sense small.

The same type of discrepancy persists for quasi-primaries and the higher KdV charges [10,11].

One possible response to this discrepancy is that expectation values computed in the

primary state should be compared with those in the generalized Gibbs ensemble rather

than the usual canonical ensemble, with the infinite number of chemical potentials adjusted

to yield equality for the KdV expectation values. This avenue has been explored in [12–

16]. Here we take another point of view: we regard the discrepancy as a reflection of the

fact that primary states are atypical, and we should not expect the canonical ensemble to

accurately reproduce results in such atypical states. Indeed, in any system which has a

thermal description there will exist atypical states which appear highly nonthermal.

As we discuss, a typical state of dimension h is not primary but rather a typical level
h
c descendant of a dimension hp = c�1

c h primary. These states have the form | hi ⌘
Q

n(L�n)Nn |hpi,
P

n Nnn = h
c , with the Nn being non-negative integers drawn from a Boltz-

mann distribution, such that hNni agree with the Bose-Einstein distribution. We show

that if one chooses a typical state of this form, then the above discrepancy is resolved:

hT i� = h h|T | hi and h:TT :i� = h h| :TT : | hi, where � is given by (1.3) but with hp

replaced by h.

We will actually establish a much more general result (4.20), namely agreement between

3
Here and below we are suppressing dependence on the anti-holomorphic sector of the theory, which for

our considerations simply goes along for the ride.
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hhp|⇤(4)|hpi

⇤(4) =: TT : � 3

10
@2TFor the level-4 quasi-primary, 

There is a disagreement beyond the leading order 
in a large central charge limit.

[Basu-Das-SD-Pal;…]



ETH for primaries?
One possible resolution to this may be  

offered by the generalised Gibbs ensemble.

⇢(hp) ' exp

"
2⇡

r
c� 1

6
hp

#

⇢(h) ' exp


2⇡

r
c

6
h

�

For fixed central charge, the growth of  the number of  
primaries is exponentially smaller than the growth of  all states. 

But the reason behind this discrepancy is that primaries 
are not typical states.

[Cardy; Kraus-Maloney]

[Maloney-Ng-Ross-Tsiares; Dymarsky-Pavlenko; Brehm-Das]



Typical states
Consider a descendant at level (h-hp)  

of  a primary with conformal dimension hp.

⇢(hp) ' exp

"
2⇡

r
c� 1

6
hp

#

Growth of  primaries
[Cardy; Kraus-Maloney]

Growth of  descendants ⇢(h� hp) ' exp

"
2⇡

r
h� hp

6

#

[Hardy-Ramanujan]

Typical states maximize                        with respect to hp.⇢(hp)⇢(h� hp)

h =
c

c− 1
hp = hp +

hp

c− 1
descendant 
contribution



The punchline
We focus on stress tensor correlators in c>1 CFTs 

with Virasoro symmetry. 

Typical states which reproduce stress tensor correlators are

States in the CFT Hilbert space are

hp = (c� 1)
L2

24�2

 are Boltzmann distributed with a Bose-Einstein mean.

M =
L2

24�2
hNji =

1

e
2⇡�j

L � 1

{Nj}

primary  
conformal dim

descendant 
level

partitions of  
the integer M.

|hp,M, {Nj}i ⌘ LN1
�1L

N2
�2L

N3
�3 · · · |hpi

primary  
state

action of  
Virasoro generators



The punchline

hp = (c� 1)
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|hp,M, {Nj}i

M =
L2

24�2

hNji =
1

e
2⇡�j

L � 1

[SD-Kraus-Michel]



Current correlators



Thermal current correlators in 2d CFT
The 2-point function is a meromorphic function on the torus with a single pole �1

(w1�w2)2
.

This, along with the modular property, determines the 2-point function up to a position

independent constant. The constant is determined in terms of the generalized partition

function with a chemical potential, Z(q, y) = Tr[qL0� c
24y

Q], where Q denotes the charge

corresponding to the current J . This structure arises from Ward identities, and explicit

formulas are provided in [17]. In the case of a free scalar we have

hJ(w1)J(w2)iL,� = � 1

L2

✓
}(w/L, ⌧) +

⇡
2

3
E2(⌧)�

⇡

Im(⌧)

◆
, (2.5)

where

}(w, ⌧) =
1

w2
+

X

(m,n) 6=(0,0)


1

(w +m+ n⌧)2
� 1

(m+ n⌧)2

�
(2.6)

is the Weierstrass function and the Eisenstein series is E2(⌧) = 1 � 24
P1

n=1
nqn

1�qn with

q = e
2⇡i⌧ . We will use this free boson result in the following, keeping in mind that the

general correlator just di↵ers from this by a position independent constant.

For what follows, it will be useful to reexpress the correlator as a mode sum in the free

boson theory. The mode expansion on the cylinder is

J(w) = �2⇡

L

X

n

↵ne
2⇡inw

L , (2.7)

with

[↵m,↵n] = m�m+n,0 . (2.8)

The thermal correlator is

hJ(w1)J(w2)iL,� =
1

Z(⌧)
Tr

h
q
L0� 1

24 q
L̃0� 1

24J(w1)J(w2)
i
, q = e

2⇡i⌧
, (2.9)

with Z(⌧) = Tr
h
q
L0� 1

24 q
L̃0� 1

24

i
and

L0 =
1

2
↵
2
0 +

1X

n=1

↵�n↵n , L̃0 =
1

2
↵
2
0 +

1X

n=1
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Here we have used h↵2
0iL,� = L

4⇡� , as derived in Appendix A.

An important point for what follows is that the sum in (2.13) converges in the strip

|Im(w)| < �, due to the competition between the cosine in the numerator and the Bose-

Einstein exponential in the denominator, but diverges outside the strip. Inside the strip the

correlator is periodic under w ! w + i�, and we use this relation to analytically continue

the correlator to the full w-plane.

The equivalence of (2.5) and (2.13) is shown in Appendix A.1.

2.2 Microstate correlator

In a microstate, | i, the current two-point function takes a similar form,
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

4
Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For

Im(w) < 0 the sign of w should be flipped in the formulas below. This ends up being immaterial as the final

result is invariant under w ! �w.
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Here we have used h↵2
0iL,� = L

4⇡� , as derived in Appendix A.

An important point for what follows is that the sum in (2.13) converges in the strip
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The equivalence of (2.5) and (2.13) is shown in Appendix A.1.
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

4
Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For

Im(w) < 0 the sign of w should be flipped in the formulas below. This ends up being immaterial as the final

result is invariant under w ! �w.
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The mean is given by a Bose-Einstein function. 
⌧ = i�/L

Thermal current correlators
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
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An important point for what follows is that the sum in (2.13) converges in the strip

|Im(w)| < �, due to the competition between the cosine in the numerator and the Bose-

Einstein exponential in the denominator, but diverges outside the strip. Inside the strip the
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The equivalence of (2.5) and (2.13) is shown in Appendix A.1.
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
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We now ask to what extent the correlator evaluated in a typical microstate agrees with
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The details of  this computation gives  
insight into what might be the typical microstates 

which reproduce this thermal result.

and this agrees with

The 2-point function is a meromorphic function on the torus with a single pole �1
(w1�w2)2

.

This, along with the modular property, determines the 2-point function up to a position

independent constant. The constant is determined in terms of the generalized partition

function with a chemical potential, Z(q, y) = Tr[qL0� c
24y

Q], where Q denotes the charge

corresponding to the current J . This structure arises from Ward identities, and explicit

formulas are provided in [17]. In the case of a free scalar we have
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(m,n) 6=(0,0)
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� 1

(m+ n⌧)2
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(2.6)

is the Weierstrass function and the Eisenstein series is E2(⌧) = 1 � 24
P1

n=1
nqn

1�qn with

q = e
2⇡i⌧ . We will use this free boson result in the following, keeping in mind that the

general correlator just di↵ers from this by a position independent constant.

For what follows, it will be useful to reexpress the correlator as a mode sum in the free

boson theory. The mode expansion on the cylinder is
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The thermal correlator is
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i
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We work in a basis of eigenstates of ↵�n↵n with eigenvalues Nnn, Nn being the occupation

number. In the canonical ensemble, the probability distribution over occupation numbers is
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Using the mode expansion for the current again,  
the correlator in a microstate is given by
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Here we have used h↵2
0iL,� = L

4⇡� , as derived in Appendix A.

An important point for what follows is that the sum in (2.13) converges in the strip

|Im(w)| < �, due to the competition between the cosine in the numerator and the Bose-

Einstein exponential in the denominator, but diverges outside the strip. Inside the strip the

correlator is periodic under w ! w + i�, and we use this relation to analytically continue

the correlator to the full w-plane.

The equivalence of (2.5) and (2.13) is shown in Appendix A.1.

2.2 Microstate correlator

In a microstate, | i, the current two-point function takes a similar form,
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

4
Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For

Im(w) < 0 the sign of w should be flipped in the formulas below. This ends up being immaterial as the final

result is invariant under w ! �w.
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Analogy with partitions of  integers
E =
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L
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n

NnnThe total energy is given by

The situation here is similar to partitioning a integer M.

Partitions can be conveniently represented by Young diagrams.

M =
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n=1

nNn
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Here we have used h↵2
0iL,� = L

4⇡� , as derived in Appendix A.

An important point for what follows is that the sum in (2.13) converges in the strip

|Im(w)| < �, due to the competition between the cosine in the numerator and the Bose-

Einstein exponential in the denominator, but diverges outside the strip. Inside the strip the

correlator is periodic under w ! w + i�, and we use this relation to analytically continue

the correlator to the full w-plane.

The equivalence of (2.5) and (2.13) is shown in Appendix A.1.
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

4
Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For

Im(w) < 0 the sign of w should be flipped in the formulas below. This ends up being immaterial as the final

result is invariant under w ! �w.
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An important point for what follows is that the sum in (2.13) converges in the strip
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The equivalence of (2.5) and (2.13) is shown in Appendix A.1.
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We have assumed that | i is an eigenstate of the number operator, ↵�n↵n| i = Nnn| i (for
n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

4
Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For
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result is invariant under w ! �w.
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If  states having the above properties are chosen at 
random, then the occupation number is again chosen 

from a Boltzmann distribution.

Typicality ~ randomly choosing Nn from P(Nn).



Occupation numbers

replace the sum by an integral, yielding, �K(w) =
q

2⇡3

3L�3 . On the other hand, if �w/L is

kept nonzero and fixed in the limit, where �w denotes the distance to the nearest multiple of

L/2, then the cosine factor is rapidly varying compared to the rest of the summand, and can

be replaced by its average, namely 1/2, yielding �K(w) =
q

⇡3

3L�3 . All that really concerns

us is that, as above, �K ⇠ 1p
L
, and so the fluctuations in the correlator are once again

suppressed in the large L limit.

These arguments are readily verified by numerical analysis. To implement this we gener-

ate a list of occupation numbers, (N1, N2, . . .) by drawing numbers according to the probabil-

ity distribution P (Nn). We then insert these occupation numbers in the microstate correlator

(2.14) and plot the result.

Figure 1: [Left] Random values of Nn distributed according to P (Nn) in (2.11) with
� = 1, L = 3 ⇥ 106. [Right] Comparison of the term that di↵ers between the thermal
and microstate correlators (i.e. the third terms in (2.13) and (2.14) respectively). The mi-
crostate on the plot is defined by the partition Nn from the left panel.

For |w| ⌧ L the correlators decay exponentially in |w|. However, they must eventually

increase to respect the periodicity w ⇠= w+L. The minimal value is reached for w ⇡ L/2, and

as shown in Appendix A.2, hJ(L2 )J(0)iL,� ⇠ � ⇡
�L , which vanishes as L ! 1 as expected.

It is worth commenting on some related plots that appear in [5] (see their fig. 1). That

paper considers the free CFT corresponding to the D1-D5 system at the symmetric orbifold

point. At large N , this theory has a large degeneracy of Ramond-Ramond ground states,

which are chiral primaries. The coarse grained description of these ground states is dual to

the M = 0 BTZ black hole, as was verified by comparison of a two-point function computed

10

A sample of  Boltzmann distributed 
occupation numbers. The mean is  

given by the Bose-Einstein function.
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We first note that by using the first line and taking L ! 1 we find that (2.14) correctly
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f(w/�) (2.19)
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L

as L ! 1, which is just the standard magnitude of finite
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. (2.20)

For w = 0, or any multiple of L/2, the cosine factor becomes unity, which allows us to

6
We relax the condition on w below.
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replace the sum by an integral, yielding, �K(w) =
q

2⇡3

3L�3 . On the other hand, if �w/L is

kept nonzero and fixed in the limit, where �w denotes the distance to the nearest multiple of

L/2, then the cosine factor is rapidly varying compared to the rest of the summand, and can

be replaced by its average, namely 1/2, yielding �K(w) =
q

⇡3

3L�3 . All that really concerns

us is that, as above, �K ⇠ 1p
L
, and so the fluctuations in the correlator are once again

suppressed in the large L limit.

These arguments are readily verified by numerical analysis. To implement this we gener-

ate a list of occupation numbers, (N1, N2, . . .) by drawing numbers according to the probabil-

ity distribution P (Nn). We then insert these occupation numbers in the microstate correlator

(2.14) and plot the result.

Figure 1: [Left] Random values of Nn distributed according to P (Nn) in (2.11) with
� = 1, L = 3 ⇥ 106. [Right] Comparison of the term that di↵ers between the thermal
and microstate correlators (i.e. the third terms in (2.13) and (2.14) respectively). The mi-
crostate on the plot is defined by the partition Nn from the left panel.
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increase to respect the periodicity w ⇠= w+L. The minimal value is reached for w ⇡ L/2, and

as shown in Appendix A.2, hJ(L2 )J(0)iL,� ⇠ � ⇡
�L , which vanishes as L ! 1 as expected.

It is worth commenting on some related plots that appear in [5] (see their fig. 1). That

paper considers the free CFT corresponding to the D1-D5 system at the symmetric orbifold

point. At large N , this theory has a large degeneracy of Ramond-Ramond ground states,

which are chiral primaries. The coarse grained description of these ground states is dual to

the M = 0 BTZ black hole, as was verified by comparison of a two-point function computed

10

replace the sum by an integral, yielding, �K(w) =
q

2⇡3

3L�3 . On the other hand, if �w/L is

kept nonzero and fixed in the limit, where �w denotes the distance to the nearest multiple of

L/2, then the cosine factor is rapidly varying compared to the rest of the summand, and can

be replaced by its average, namely 1/2, yielding �K(w) =
q

⇡3

3L�3 . All that really concerns

us is that, as above, �K ⇠ 1p
L
, and so the fluctuations in the correlator are once again

suppressed in the large L limit.

These arguments are readily verified by numerical analysis. To implement this we gener-

ate a list of occupation numbers, (N1, N2, . . .) by drawing numbers according to the probabil-

ity distribution P (Nn). We then insert these occupation numbers in the microstate correlator

(2.14) and plot the result.

Figure 1: [Left] Random values of Nn distributed according to P (Nn) in (2.11) with
� = 1, L = 3 ⇥ 106. [Right] Comparison of the term that di↵ers between the thermal
and microstate correlators (i.e. the third terms in (2.13) and (2.14) respectively). The mi-
crostate on the plot is defined by the partition Nn from the left panel.

For |w| ⌧ L the correlators decay exponentially in |w|. However, they must eventually

increase to respect the periodicity w ⇠= w+L. The minimal value is reached for w ⇡ L/2, and

as shown in Appendix A.2, hJ(L2 )J(0)iL,� ⇠ � ⇡
�L , which vanishes as L ! 1 as expected.

It is worth commenting on some related plots that appear in [5] (see their fig. 1). That

paper considers the free CFT corresponding to the D1-D5 system at the symmetric orbifold

point. At large N , this theory has a large degeneracy of Ramond-Ramond ground states,

which are chiral primaries. The coarse grained description of these ground states is dual to

the M = 0 BTZ black hole, as was verified by comparison of a two-point function computed

10



Stress-tensor correlators



Stress tensor correlators
A similar analysis can be performed  

for stress tensor correlators. 

We wish to establish that
htyp|T (w)T (0)|typi = hT (w)T (0)i�

in the two descriptions. At large N the typical ground state correlator is well approximated

by the coarse grained correlator for time separation t < O(
p
N). For larger t the correlator

displays an erratic behavior that depends sensitively on the microstate. The common feature

in the two examples is the appearance of a coarse grained description, but the details di↵er.

3 Stress tensor correlators

We now turn to the case of stress tensor correlators. The general approach follows the

previous discussion of current correlators, although the details are a bit more involved. The

conclusion is the same: correlators computed in typical microstates look thermal in the

appropriate regime of parameters.

3.1 Two-point functions

Stress tensor correlators are highly constrained by conformal invariance; in this section we

collect a few results. On the plane we have

hT (z0)T (z)i = c/2

(z0 � z)4
. (3.1)

We transform to new coordinates w(z) using

T (w) = (@wz)
2
T (z) +

c

12

 
@
3
wz@wz

@wz@wz
� 3

2

✓
@
2
wz

@wz

◆2
!

. (3.2)

The correlator on the line at inverse temperature � is generated by z = e
2⇡
� w, yielding

hT (w0)T (w)i� =

✓
⇡
2
c

6�2

◆2

+
c

32

✓
2⇡

�

◆4 1

sinh4(⇡� (w
0 � w))

. (3.3)

The thermal expectation value of the normal ordered product :TT :, obtained by taking the

coincident limit w0 ! w after removing singular terms in the Laurent expansion, is

h:TT :i� =

✓
⇡
2
c

6�2

◆2

+
11

90

⇡
4
c

�4
. (3.4)

The stress tensor two-point function on the torus is fixed by a combination of conformal

invariance and knowledge of the torus partition function, the latter quantity depending on

the specific CFT. The two-point function is meromorphic, and so determined up to a constant

by its singularities, which are in turn fixed by the OPE, T (w)T (0) ⇠ c/2
w4 +

2
w2T (0)+

1
w@T (0).
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Microstate stress tensor correlators

Once again we use the mode expansion

These imply the asymptotic degeneracy of primaries [19]

d(hp) ⇡ e
2⇡
p

c�1
6 hp , (3.14)

which takes the same form as the Cardy density of states [20], except with the replacement

c ! c� 1.

Next, for a given primary state of weight hp, we need to count up the number of descen-

dant states at level h� hp. This corresponds to the number of partitions of h� hp, which is

given by the Hardy-Ramanujan formula, e2⇡
q

h�hp
6 . Altogether, the number of states which

are level h� hp descendants of weight hp primaries are

d(h;hp) ⇡ e
2⇡
p

c�1
6 hp+2⇡

q
h�hp

6 . (3.15)

Maximizing with respect to hp gives

hp =
c� 1

c
h . (3.16)

At large c, the typical state is nearly primary in the sense that hp ⇡ h. However, we will

not be making any such large c assumption here. At finite c, the typical states with weight

h are level h/c descendants of a weight hp primary.7

3.3 Typical state two-point function

On the Euclidean cylinder with a spatial circle, w ⇠= w+L, the mode expansion of the stress

tensor is

T (w) = �
✓
2⇡

L

◆2 ⇣
L0 �

c

24

⌘
�
✓
2⇡

L

◆2 X

n 6=0

Lne
2⇡inw

L , (3.17)

where the generators obey the Virasoro algebra

[Lm, Ln] = (m� n)Lm+n +
c

12
(m3 �m)�m+n,0 . (3.18)

Let | hi be an eigenstate of L0, L0| hi = h| hi. Using the mode expansion and the com-

mutation relations it is straightforward to derive the following expression for the two-point

7
We still need to specify how the descendant level is partitioned; as in section 2, not all partitions are

typical. Thermal and microstate correlators in descendent states have recently been compared in [21], but

the partitions of the descendent level considered there are atypical according to the notion of typicality that

we use.
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function in such a state,

h h|T (w)T (0)| hi =

✓
2⇡

L

◆4 ⇣
h� c

24

⌘2

�
✓
2⇡

L

◆4 ✓
h

2 sin2(⇡wL )
� c

32 sin4(⇡wL )

◆

+2

✓
2⇡

L

◆4 X

n>0

h h|L�nLn| hi cos
✓
2⇡nw

L

◆
. (3.19)

For example, suppose that | hi is primary, so that Ln>0| hi = 0 and the second line vanishes.

We then recover (3.6).

We wish to evaluate this for a typical state. As discussed in the previous section, a typical

state with weight h is a level h
c Virasoro descendant of a primary state |hpi whose dimension

hp = c�1
c h. The expectation value of L�nLn depends on which particular descendant state

we choose. However, we will show in section 4 that in the thermodynamic limit the variance

of (3.19) over the ensemble of such states is small. Therefore, the expectation value in

such states can be approximated by an average weighted by a Boltzmann factor, with the

temperature chosen so as to yield the desired average weight. Let hXihp,� denote the average

of X defined in this sense,

hXihp,� =
1

Zhp(q)
Trhp [q

L0� c
24X] . (3.20)

Here q = e
� 2⇡�

L as before. � is fixed by demanding hL0ihp,� = h, which can be written as

� L

2⇡
@� lnZhp(q) = h . (3.21)

Using (3.12), valid in the relevant thermodyamic limit, along with hp =
c�1
c h, we find

� =

r
c

24h
L . (3.22)

Next, we need hL�nLnihp,� in the thermodynamic limit. As derived in the next section, the

result is

hL�nLnihp,� =
1

e
2⇡�n

L � 1


c

12
n
3 +

✓
hp +

L
2

24�2

◆
2n

�

=
1

e
2⇡�n

L � 1

h
c

12
n
3 + 2hn

i
. (3.23)

As argued above, provided L � �, in a typical state we can make the following replacement
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n>0
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✓
2⇡nw

L

◆
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� L
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@� lnZhp(q) = h . (3.21)
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c�1
c h, we find

� =
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24h
L . (3.22)

Next, we need hL�nLnihp,� in the thermodynamic limit. As derived in the next section, the

result is

hL�nLnihp,� =
1

e
2⇡�n

L � 1


c

12
n
3 +

✓
hp +

L
2

24�2

◆
2n

�

=
1

e
2⇡�n

L � 1

h
c

12
n
3 + 2hn

i
. (3.23)

As argued above, provided L � �, in a typical state we can make the following replacement
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result is
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As argued above, provided L � �, in a typical state we can make the following replacement
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Next, we need hL�nLnihp,� in the thermodynamic limit. As derived in the next section, the

result is
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As argued above, provided L � �, in a typical state we can make the following replacement
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Next, we need hL�nLnihp,� in the thermodynamic limit. As derived in the next section, the
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As argued above, provided L � �, in a typical state we can make the following replacement
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2

✓
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◆4 X
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h h|L�nLn| hi cos
✓
2⇡nw

L

◆
! 2

✓
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L

◆4 X

n>0

hL�nLnihp,� cos

✓
2⇡nw

L

◆
.

(3.24)

Using (3.23), converting the sum to an integral at large L, and using

Z 1

0

x
3 + 4⇡2

x

ex � 1
cos(ax)dx = � 3

a4
+

2⇡2

a2
+

3⇡4

sinh4(⇡a)
(3.25)

we find

h h|T (w)T (0)| hi =
✓
⇡
2
c

6�2

◆2

+

✓
⇡
4
c

2�4

◆
1

sinh4(⇡w� )
. (3.26)

This reproduces the thermal correlator in (3.3), thus verifying that the stress two-point

function in a typical state appears thermal, provided L � �. It immediately follows that

h h| :TT : | hi = h:TT :i�.
The key step in obtaining this result was the replacement (3.24), whose validity depends

on the microstate expectation value being sharply peaked over the ensemble of states. Ob-

taining analogous results for higher point correlators of the stress tensor will similarly depend

on establishing that operators built out of sums of more Ln are similarly sharply peaked.

We turn to these questions in the next section.

4 Statistics of Virasoro generator expectation values

We shall now consider the following quantity
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The replacement (3.24) is valid if X(w) is sharply peaked over the thermal ensemble. In

order to verify this, we will study its fluctuations

�X
2 = hX2i � hXi2. (4.2)

Given the form of the two-point function in (3.19), we can make the replacement (3.24)

in typical states provided �X ! 0 as L ! 1. In this section averages are computed by

summing over states in a single conformal family, h. . .i = 1
Zhp

Trhp [q
L0� c

24 . . .], although all

16

is allowed only if  the variance of  the following operator is small
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Small variance

It can be shown by using the Virasoro algebra that 
the dominant modes contributing to the sum have
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hL�mLmL�nLnihp,� ⇡ hL�mLmihp,�hL�nLnihp,�

which implies

�X2 = hX2i � hXi2 ⇠ 1

L



Sample computation

Tr[L�nLnq
L0 ] = qn Tr[L�nq

L0Ln] = qnTr[LnL�nq
L0 ]

= qnTr[ [Ln, L�n] q
L0 ] + qnTr[L�nLnq

L0 ]

Tr[L0q
L0 ] = q@qTr[q

L0 ]

Tr[L�nLnq
L0 ] =

qn

1� qn

h
2nq@qZ +

c

12
n3Z

i

[Maloney-Ng-Ross-Tsiares]

Lnq
L0 = qL0+nLn

2nL0 +
c

12
(n3 � n)



Sample computation

Similarly, to compute hXnXmi we write

hL�nLnL�mLmi =
q
n

1� qn
(hLnL�m[Lm, L�n]i+ hLn[L�m, L�n]Lmi
+ h[Ln, L�n]L�mLmi) . (4.9)

We now show that for m 6= n the first two terms are subleading compared to the third

in the thermodynamic limit. After evaluating the commutators, each of the three terms is

proportional to an expectation value of the form hLmLnLpi with m+n+ p = 0. In the third

term one of (m,n, p) equals 0, unlike for the first two terms. If none of (m,n, p) equals 0

then we compute

hLmLnLpi =
1

1� qp
[(p� n)hLmL�mi+ (p�m)hL�nLni] . (4.10)

This implies the leading behavior hLmLnLpi ⇠
⇣

L
�

⌘4

for this case. On the other hand if

m = 0 (say), then we have

hL0L�pLpi =
h
q@q + (q@q lnZhp) +

c

24

i
hL�pLpi , (4.11)

where we have assumed n = �p < 0, the other case leading to the same conclusion. Using

our results above, we see that the middle term dominates and implies hL0L�pLpi ⇠
⇣

L
�

⌘5

.

Hence we see that the appearance of an L0 insertion in the third term of (4.9) leads to an

L/� enhancement compared to the first two terms. The same enhancement arises from the

[Ln, L�n] ⇠ n
3 contribution in the third term. Therefore,

hL�nLnL�mLmi ⇡ hL�mLmi ·
q
n

1� qn

⇣
2n(q@q +

c

24
) lnZ +

c

12
(n3 � n)

⌘

⇡ hL�mLmihL�nLni, (4.12)

or

hXmXni ⇡ hXmihXni(1 +O (�/L)) (4.13)

for m 6= n in this regime.

Returning to (4.4), using (4.8) and accounting for the two extra powers of L/� that come

from replacing the sums by integrals, we have

�X
2
o↵-diag ⇠

1

L
, (4.14)

for all w at high temperatures.

To compute �X
2
diag, we need to evaluate (4.9) when m = n. In this case, the first and
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Higher point functions

This analysis can be extended to higher point correlators

=
1

4

1X

n=�1

1

sinh2(⇡(�n�iw)
L )

, (A.7)

we arrive at (A.3).

A.2 Minimal size of thermal correlator

We are interested in taking L ! 1 with w = L/2 at fixed �. This gives the minimal size

of the thermal correlator, since periodicity under w ⇠= w + L implies symmetry around this

point.

We proceed by first performing the over n in (2.5), which yields

hJ(w)J(0)iL,� = � ⇡
2

3L2
E2(⌧) +

⇡

�L
� ⇡

2

3�2
+

2⇡2

�2

1X

m=1

1

sinh2(Lm� )
� ⇡

2

�2

X

m

1

sinh2(w+mL
� )

.(A.8)

We have the modular transformation

E2(�1/⌧) = ⌧
2
E2(⌧) +

6⌧

i⇡
. (A.9)

From this we deduce

E2(⌧) ⇡ �L
2

�2
+

L

⇡�
+ . . . , � ! 0 (A.10)

where . . . are exponentially suppressed. This gives

hJ(L/2)J(0)iL,� ⇡ � ⇡

�L
+ . . . . (A.11)

B Technical results

B.1 Higher point functions of the stress tensor

The higher-point functions of the stress tensor in the microstate take the form

h h|T (w1) . . . T (wn) | hi = (�1)n
✓
2⇡

L

◆2n X

i1...inP
ik=0

h h|Li1 . . . Lin | hi e
2⇡i
L

P
p ipwp , (B.1)

analogous to (3.19) for the 2-point case. At finite h each L0 should be replaced with L0 �
c/24, but the di↵erence is subleading in the thermodynamic limit. In order to demonstrate

approximate equality between the microstate and thermal correlators (4.20) we must show

23

The fluctuations can again be shown to be 1/L .

This is true when the number of  stress tensors in the correlator 
is held fixed as                .L/� ! 1



Thank you


