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  Motivation

• Entanglement entropy is not convenient to capture quantum 
entanglement of  mixed states.

• Entanglement entropy of  mixed state contains classical correlations, 
so in particular is nonzero for unentangled mixed states.

• One idea to do better job, is to consider entanglement entropy of  
purifications, and minimize E.E over certain set C of  purifications.
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  Motivation

• When C contains all possible purifications, this quantity is called 
Entanglement of  Purification.
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• Proposal for gravity dual of  EoP: Entanglement wedge cross section. 
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  Motivation & Main Results

• Computing EoP is extremely hard, therefore proving this equality is 
also difficult. 

• In this work, we will consider a particular preparation of  purification 
of  the given mixed state, using continuous tensor network.

⇢AB = TrHE | ih |
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• We can associate entanglement entropy                   for each factorization 
of  auxiliary Hilbert space HE.
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  Motivation & Main Results

• We consider all such (allowed) factorizations, and minimize the associated 
entanglement entropy, defining EC.

• It turns out that, for 2d CFT ground state, when A & B are adjacent 
intervals, EC gives Entanglement wedge cross section.
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  Tensor Network
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• Tensor Network: Efficient representation of  ground state wave 
function.

• Entanglement structure of  CFT state is encoded in the geometry, in a 
very similar manner as that of  AdS/CFT, or Ryu-Takayanagi formula.

[White][Vidal]

• Tensor network = Timeslice of  bulk spacetime in AdS/CFT 
[Swingle]



  Continuous Tensor Network from Weyl Transformation
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• We apply Weyl transformation to CFT ground state wave function.

• Such Weyl transformation makes the effective lattice spacing position 
dependent, introducing tensor network structure in the path integral.

[M.M, Takayanagi, Watanabe] [Caputa, Kundu, M.M, Takayanagi, Watanabe]



  Continuous Tensor Network from Weyl Transformation
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Liouville action: [Polyakov]

• Because of  the conformal invariance, the wave function remains 
unchanged, up to overall constant; Liouville action.

• Such Liouville action corresponds to number of  tensors of  tensor 
network[Czech], which is to be minimized.

Weyl factor satisfies Liouville equation (+ sources), when the 
path-integral is “optimized”.



  Continuous Tensor Network for Mixed State

• We consider wave function reduced density matrix of  CFT ground 
state.

• We apply Weyl transformation to this wave 
function, keeping metric on subregions A & B fixed.

• The state at         gives a purification of         .
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  Entanglement Entropy of  Purification

• We consider arbitrary partition of  auxiliary system, and consider 
entanglement entropy of  AA’.
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[Caputa, M.M, Takayanagi, Umemoto]

Original subsystems

Auxiliary subsystems

• We consider 2d CFT and A and B are 
adjacent intervals.

• Using twist field, entanglement entropy of  AA’ is



  Entanglement Entropy of  Purification
[Caputa, M.M, Takayanagi, Umemoto]
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• Minimizing the entanglement entropy over all partitions, resulting 
entanglement entropy gives entanglement wedge cross section!

SAÃ =
c

6
log

h2(p� a)(b� p)

✏(b� a)

i
=

Area(�EWCS)

4GN

• This implies,

• A field theory calculation of  EWCS.

• Optimized path-integral geometry corresponds to the 
entanglement wedge.



  Discussions

• The result so far is general, independent from large c and field 
theory content.

• Can we identify the optimized metric as timeslice of  
entanglement wedge?

• This is O.K as long as we are considering adjacent intervals, but 
how about non-adjacent intervals?

• Relation to canonical purification?

• Higher dimensions etc.

[Dutta, Faulkner]


