Signature of quantum chaos in operator entanglement in 2d CFTs

MASAHIRO NOZAKI(iTHEMS Riken and UCB)

ithem.s

MASAHIRO NOZAKI(iTHEMS Riken and UCB)

A postdoc

A faculty

ithem.s

in China

Signature of quantum chaos in operator entanglement in 2d CFTs

MASAHIRO NOZAKI(iTHEMS Riken and UCB)

Based on the collaboration with

Shinsei Ryu, Laimei Nie, Mao Tian Tan, Jonah Kudler-Flam, Eric Mascot, and Masaki Tezuka arXiv:1812.00013 [hep-th] arXiv:19xx.xxxxx [hep-th]

Contents of my talk

- 1. Introduction
- -Thermalization
- -Scrambling
- 2. Operator entanglement
- 3. Motivation
- 4. Brief summary
- 5. Operator mutual information and logarithmic negativity
- Bipartite
- Tripartite
- 6. Random unitary circuit (See Jonah's poster)
- Line tension picture
- 7. Local operator entanglement (work in progress)
- 8. Summary and future direction

$\left|\Psi_{0}^{i}\right\rangle$ are initial states.

 $|\Psi_0^i\rangle$ are initial states.

Local observables in A depend on initial condition.

Ex. dis $(\rho_A(t), \rho_A^{th}) \to 0$ $\langle \Psi(t) | \mathcal{O} | \Psi(t) \rangle \to \operatorname{tr} (\rho^{\operatorname{th}} \mathcal{O})$ States can be approximated by thermal state, locally.

Ex. dis $(\rho_A(t), \rho_A^{th}) \to 0$ $\langle \Psi(t) | \mathcal{O} | \Psi(t) \rangle \to \operatorname{tr} (\rho^{\operatorname{th}} \mathcal{O})$ States can be approximated

by thermal state, locally.

Thermalize!!

Thermalization depends on(1) Initial state,(2)D

Ex. $\operatorname{dis}(\rho_A(t), \rho_A^{th}) \to 0$ $\langle \Psi(t) | \mathcal{O} | \Psi(t) \rangle \to \operatorname{tr}(\rho^{\operatorname{th}}\mathcal{O})$ States can be approximated

by thermal state, locally.

Key point: Locally, states forget the initial conditions.

Scrambling

Ex. dis $(\rho_A(t), \rho_A^{th}) \to 0$ $\langle \Psi(t) | \mathcal{O} | \Psi(t) \rangle \to \operatorname{tr} (\rho^{\operatorname{th}} \mathcal{O})$ States can be approximated

by thermal state, locally.

Key point: Locally, states forget the initial conditions.

Key point: Locally, states forget the initial condition. Scrambling effect $|\Psi(t)\rangle = U(t)|\Psi\rangle$

Scrambling effect depends on time evolution operator.

Key point: Locally, states forget the initial condition. Scrambling effect $|\Psi(t)\rangle = (U(t)|\Psi\rangle$

Scrambling effect depends on time evolution operator.

I would like to know how the scrambling effect depends on the unitary channels.

Key point: Locally, states forget the initial condition. Scrambling effect $|\Psi(t)\rangle = (U(t)|\Psi\rangle$ Scrambling effect depends on time evolution operator.

I would like to quantify scrambling effect.

Key point: Locally, states forget the initial condition. Scrambling effect $|\Psi(t)\rangle = U(t)|\Psi\rangle$

Scrambling effect depends on time evolution operator.

To understand scrambling leads to understanding thermalization.

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a|_{in} \rightarrow |a\rangle_{in}$

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a |_{in} \rightarrow |a \rangle_{in}$

Dual state:

 $|U(t)\rangle = \mathcal{N} \sum e^{-(it+\epsilon)E_a} |a\rangle_{out} |a\rangle_{in} \quad \mathcal{H} \to \mathcal{H}_{in} \otimes \mathcal{H}_{out}$

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a|_{in} \rightarrow |a\rangle_{in}$

Dual state:

$$|U(t)\rangle = \mathcal{N}\sum_{a} e^{-(it+\epsilon)E_a} |a\rangle_{out} |a\rangle_{in}$$

A regulator for normalization.

 $\mathcal{H} \to \mathcal{H}_{in} \otimes \mathcal{H}_{out}$

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a|_{in} \rightarrow |a\rangle_{in}$

Dual state:

$$|U(t)\rangle = \mathcal{N}\sum_{a} e^{-(it+\epsilon)E_a} |a\rangle_{out} |a\rangle_{in}$$

 $\mathcal{H} \to \mathcal{H}_{in} \otimes \mathcal{H}_{out}$

Only this depends on the initial state.

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$
Channel-state dual map: $\langle a|_{in} \rightarrow$
Dual state:
$$|U(t)\rangle = \mathcal{N}\sum_{a} e^{-(it+\epsilon)E_{a}} |a\rangle_{out}$$
Unitial $\langle a|_{in} \rightarrow$

$$|Initial\rangle = \mathcal{N}\sum_{a} C_{a} |a\rangle \approx \mathcal{N}\sum_{a} C_{a} e^{-\epsilon H} |a\rangle$$

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a|_{in} \rightarrow$
Dual state:
 $|U(t)\rangle = \mathcal{N}\sum_{a} e^{-(it+\mathfrak{E}_{a}} |a\rangle_{ou}$
Unitial $\langle a|_{in}$
Initial $\langle a|_{in}$
 $|Initial \rangle = \mathcal{N}\sum_{a} C_{a} |a\rangle \approx \mathcal{N}\sum_{a} C_{a} e^{\mathfrak{E}_{a}} |a\rangle$

Unitary channel:

$$U(t) = e^{-itH} = \sum_{a} e^{-iE_{a}t} |a\rangle_{out} \langle a|_{in}$$

Channel-state dual map: $\langle a|_{in} \rightarrow |a\rangle_{in}$

Dual state:

$$|U(t)\rangle = \mathcal{N}e^{-\frac{it}{2}(H_{in} + H_{out})} |TFD\rangle \quad \mathcal{H} \to \mathcal{H}_{in} \otimes \mathcal{H}_{out}$$

Which CFT (QFT) shows a signature of scrambling ?

Spin system: [Hosur-Qi-Roberts-Yoshida'16]

How much information from A to B are scrambled due to channels in field theory?

Spin system: [Hosur-Qi-Roberts-Yoshida'16]

Results (Main1)

Results (Main1)

Holographic channel

For *disjoint* or *late-time* case, <u>for any B</u>, $I(A,B) = 0, \mathcal{E}(A,B) = 0$

Holographic channel shows a signature of scrambling.

input

B

No correlation between A and any B

Results (Main2)
$$I(A, B) = S_A + S_B - S_{A \cup B}$$

We have computed tri-partite operator mutual information:

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

Results (Main2)

We have computed tri-partite operator logarithmic negativity:

$$\mathcal{E}_3(A, B_1, B_2) \equiv \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

2d free fermion channel

$$I(A, B_1, B_2) = 0, \mathcal{E}_3(A, B_1, B_2) = 0$$

Time

2d free fermion channel

$$I(A, B_1, B_2) = 0, \mathcal{E}_3(A, B_1, B_2) = 0$$

This can be interpreted in terms of

the relativistic propagation of local objects (quasi-particles). Time

2d chaotic channel (holographic channel)

Late time:
$$I(A, B_1, B_2) \rightarrow -2S_A$$

 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$

2d chaotic channel (holographic channel)

Late time:
$$I(A, B_1, B_2) \rightarrow -2S_A$$

 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = \mathcal{E}_A \overline{A}$
B is the whole of output system.
B₁ and B₂ are the halves of output system.
A is subsystem in input system.
 \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A}

2d chaotic channel (holographic channel)
Lower bound
Late time:
$$I(A, B_1, B_2) \rightarrow 2S_A$$

 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = 2\mathcal{E}_{A,\overline{A}}$
B is the whole of output system.
B is the whole of output system.
B is subsystem in input system.
A is subsystem in input system.
 $Input system$
 $Input sys$

2d chaotic channel (holographic channel)
Late time:
$$I(A, B_1, B_2) \rightarrow 2S_A$$

 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = 2\mathcal{E}_{A,\overline{A}}$
B is the whole of output system.
B is the whole of output system.
We expect QFT-channels with strong scrambling ability to satisfy this lower bound, eventually.

2d chaotic channel (holographic channel)

Late time:
$$I(A, B_1, B_2) \rightarrow -2S_A$$

 $\mathcal{E}_3(A, B_1, B_2) \rightarrow -2 \times \frac{3}{4}S_A^{(1/2)} = -2\mathcal{E}_{A,\overline{A}}$
B is the whole of output system.
B is the whole of output system.
B and P are the below of output system.
A This shows all information is scrambled.
A

What we compute is

$$I(A, B) = S_A + S_B - S_{A\cup B} = \lim_{n \to 1} \left[S_A^{(n)} + S_B^{(n)} - S_{A\cup B}^{(n)} \right]$$

$$= \lim_{n \to 1} \frac{1}{1-n} \left[\log tr_A \left(\rho_A\right)^n + \log tr_B \left(\rho_B\right)^n - \log tr_{A\cup B} \left(\rho_{A\cup B}\right)^n \right]$$

State:

 $|U(t)\rangle = \mathcal{N}e^{-\frac{it}{2}(H_{in} + H_{out})} |TFD\rangle$

 $\rho = \left| U(t) \right\rangle \left\langle U(t) \right|$

$$I(A,B) = \lim_{n \to 1} \frac{1}{1-n} \left[\log tr_A (\rho_A)^n + \log tr_B (\rho_B)^n - \log tr_{A \cup B} (\rho_{A \cup B})^n \right]$$

$$\sim \lim_{n \to 1} \frac{1}{1-n} \log \left[\frac{\left\langle \sigma_n^A \bar{\sigma}_n^A \right\rangle_{2\epsilon} \left\langle \sigma_n^B \bar{\sigma}_n^B \right\rangle_{2\epsilon}}{\left\langle \sigma_n^A \bar{\sigma}_n^A \sigma_n^B \bar{\sigma}_n^B \right\rangle_{2\epsilon}} \right]$$

$$\mathcal{E}_{A,B} = \lim_{n_e \to 1} \log \left[\operatorname{tr}_{A \cup B} \left(\rho_{A \cup B}^{T_B} \right)^{n_e} \right]$$

$$\mathcal{E}_{A,B} = \lim_{n_e \to 1} \log \left[\operatorname{tr}_{A \cup B} \left(\rho_{A \cup B}^{T_B} \right)^{n_e} \right]$$

$$T_B$$

$$T_B$$

$$R_{B}$$

$$n_e$$

$$\log \left(\int \int \left(e^{n_e} \right)^{n_e} \right)^{n_e}$$

$$\mathcal{E}_{A,B} = \lim_{n_e \to 1} \log \left[\operatorname{tr}_{A \cup B} \left(\rho_{A \cup B}^{T_B} \right)^{n_e} \right]$$

$$T_B$$

Free fermion channel

We consider the following setups to extract properties of free fermion channel:

Slopes and bumps shows *properties of free fermion channel are interpreted in terms of the relativistic propagation of quasi-particles*.

Tripartite operator mutual information

Tripartite operator mutual information

doesn't depend on the time and the choice for subsystems.

Tripartite operator logarithmic negativity

$$\mathcal{E}_3(A, B_1, B_2) = 0$$

 $I(A, B_1, B_2) = 0$

Relativistic propagation of quasi-particle.

Toy model

The time evolution of operator mutual information (logarithmic negativity) and tripartite operator mutual information (logarithmic negativity) for free fermion channel can be interpreted *in terms of the relativistic propagation of local objects* as follows:

- 1. Each point in the input subsystem **A** has two particles.
 - One of them propagates in the right direction () at speed of light.

 - particle size $\, \sim \epsilon \,$
 - -# of particles in **A** is proportional to **the input subsystem size** *l*

Toy model

2. The particles in the output subsystem **B** contribute to I(A,B) .

- $I(A,B) \propto$ # of particles in **B**.

Purple curve : (l, L, d) = (10, 20, 10)

Purple curve : (l, L, d) = (10, 20, 10)

Purple curve : (l, L, d) = (10, 20, 10)

$$I(A, B_1, B_2) = B_1 B_2$$

$$I(A, B_1) + I(A, B_2) - I(A, B) = 0$$

$$B_1 B_2$$

$$\mathcal{H}_{out}$$

$$\mathcal{H}_{in}$$

For free fermion channel, quantum correlation between input and output subsystems is explained by local object (quasi-particles)!!

 $\propto 4$

 $\propto 2$

Quantum information for free fermion channel is carried by local object (quasiparticles)!!

 $\propto 6$

Comparison

We consider the following setups to extract properties of compact boson and holographic channels by comparing them to free fermion channel:

Comparison

We consider the following setups to extract properties of compact boson and holographic channels by comparing them to free fermion channel:

Quantum information keeps to go out from the left boundary with $\frac{c\pi}{6\epsilon}$ At t=0, right-moving signal appears at the right boundary of A. Its speed is the light's.

$$0 < t \le s \,, s \ge 2l.$$

- Early time:
- Quasi-particle description works well.
- Late time:

A

We need some description (Line tension picture).

10

20

30

40

50

B before the signal arrives at the right boundary. The signal disappears.

et = 0

Here, you can get information locally.

B 🖌

For *disjoint* or *late-time* case, *for any B*

$$I(A,B) = 0$$

Everywhere, you <u>can't</u> get information locally at late time.

(It might be different from usual one... Sorry.)

We cannot mine any information about A locally, but we can mine the information from the whole of output system.

We cannot mine any information about A locally, but we can mine the information from the whole of output system.

 $I(A, B_1) = 0$ $\mathcal{E}(A, B_1) = 0$ $\mathbf{B} \mathbf{B}_1$

We cannot mine any information about A locally, but we can mine the information from the whole of output system.

Tripartite information (Tripartite logarithmic negativity) is useful quantity in order to treat this phenomenon, quantitatively. [Hosur-Qi-Roberts-Yoshida'16]

Tripartite operator mutual information $I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$

B is the whole of output system.

 B_1 and B_2 are the halves of output system.

Tripartite operator mutual information $I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - \underline{I(A, B)}$

the information of A from the whole of output system B.

B is the whole of output system.

 B_1 and B_2 are the halves of output system.

B is the whole of output system.

 B_1 and B_2 are the halves of output system.

B is the whole of output system.

 B_1 and B_2 are the halves of output system.

B is the whole of output system.

 B_1 and B_2 are the halves of output system.

If information mined from subsystems B_1 and B_2 is smaller than the information from whole of output system B,

If information mined from subsystems B_1 and B_2 is smaller than the information from whole of output system B,

 $I(A, B_1) + I(A, B_2)$ $\mathcal{E}(A, B_1) + \mathcal{E}(A, B_2)$

If information mined from subsystems B_1 and B_2 is smaller than the information from whole of output system B,

$$I(A, B_1) + I(A, B_2) - I(A, B) < 0$$

 $\mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B) < 0$

If information mined from subsystems B_1 and B_2 is smaller than the information from whole of output system B,

$I(A, B_1) + I(A, B_2) - I(A, B) < 0$ $\mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B) < 0$

 $I(A, B_1, B_2) < 0, \mathcal{E}_3(A, B_1, B_2) < 0$

If information mined from subsystems B_1 and B_2 is smaller than the information from whole of output system B,

$$I(A, B_1, B_2) < 0, \mathcal{E}_3(A, B_1, B_2) < 0$$

Some information is hidden in whole of output system due to information scrambling effect.

This quantity can quantify the effect of information scrambling.

@ late time,

 $I(A, B_1, B_2) \rightarrow -2S_A \mathcal{E}_3(A, B_1, B_2) \rightarrow -2\mathcal{E}(A, \overline{A})$

At late time,

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

$$\mathcal{E}_3(A, B_1, B_2) = \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

We cannot mine information locally, but we can mine the information about A from the whole of output system B.

At late time,

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

$$\mathcal{E}_3(A, B_1, B_2) = \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

We cannot mine information locally, but we can mine the information about A from the whole of output system B.

At late time,

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

$$\mathcal{E}_3(A, B_1, B_2) = \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

We cannot mine information locally, but we can mine the information about A from the whole of output system B.

At late time,

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

$$\mathcal{E}_3(A, B_1, B_2) = \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

We cannot mine information locally, but we can mine the information about A from the whole of output system B.

All information sent from A is scrambled.

At late time,

$$I(A, B_1, B_2) = I(A, B_1) + I(A, B_2) - I(A, B)$$

$$\mathcal{E}_3(A, B_1, B_2) = \mathcal{E}(A, B_1) + \mathcal{E}(A, B_2) - \mathcal{E}(A, B)$$

We cannot mine information locally, but we can mine the information about A from the whole of output system B.

They measure how much information is scrambled.
Holographic channel

In the low energy limit, these kinks can be negligible.

Summary

Bipartite operator mutual information (logarithmic negativity) Free fermion and Compact boson channels:

$$e t = t_1$$
Here, you can get information locally.

Holographic channel:

Everywhere, you <u>can't</u> get information locally.

 $e t = t_1$

Summary

Tripartite operator mutual information (Tripartite operator logarithmic negativity)

Free fermion channels:

 $I(A, B_1, B_2) = 0$ $\mathcal{E}_3(A, B_1, B_2) = 0$ $B_1 \quad B_2 \quad \mathcal{H}_{out}$

Holographic channel:

All initial information is scrambled.

Quasi-particles

Future directions

- 1. Operator entanglement of local operator
- 2. Complexity
- 3. Operator entanglement of CMERA
- 4. Many-body localization
- 5. Quantum Chaos and thermalization
- 6. Wormhole (double trace deformation)