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How I learned to stop worrying and love EE

I Entanglement entropy (EE) is a basic measure of how much
information about a quantum state is contained in a subsystem

I In QFT, the state is usually thermal (⇒ ground state at T = 0),
and the subsystem is usually a spatial subregion

I In this setup, EE probes the UV and diverges in the continuum limit.
This is OK! For many purposes, the UV must be taken seriously

I One such purpose is to understand how EE maps under dualities.
This question can be reliably answered for exact dualities, which
hold in the far UV too. This will be explained in this talk
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� What are exact dualities?

I ”Duality” has different meanings in different contexts, but it
generally refers to a map between some set of operators or
correlation functions in two different theories
E.g. spins = fermions in 2D, particles = vortices in 3D, AdS = CFT

I A duality is exact if it holds at all energy scales, so that every
operator/state/correlation function is mapped, all cutoffs are physical

I An exact duality is naturally presented as a change of generating
basis of a single operator algebra. The dual generating sets mainly
contain local operators (on potentially different geometric spaces)
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Why study exact dualities?

I Most dualities in QFT are not exact:
I Two theories may only be dual at low energies (e.g. Seiberg duality)
I One (or both) of the dual theories need not even have a

nonperturbative definition on its own (e.g. AdS/CFT)

From this point of view, dualities may seem miraculous!

I Exact dualities are less miraculous. They can be rigorously proven,
and sometimes they may explain more mysterious dualities

I Familiar examples of exact dualities: 2D bosonization,
3D particle-vortex, Abelian S-duality. . . and maybe level-rank
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This talk

I Review and derive exact dualities in the following scope:
I Hamiltonian framework (spatial lattice and continuous time)
I Arbitrary lattices (even nontrivial homologies, Stiefel-Whitney classes)
I Discrete group structure of the target space (Abelian d.o.f. only)

I Many exact dualities fit into the following systematization:
1. Start from local dualities that map local generators to each other
2. Twist these dualities by coupling them to background gauge fields
3. Make these background fields dynamical, get dualities involving the

nonlocal “disorder operators”
4. Note obstructions along the way: nontrivial SW classes, anomalies

I The behavior of EE under dualities will now become transparent:
EE is invariant if boundary conditions are allowed to dualize
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Local exact dualities

I Local dualities can be formulated after specifying the following:
I Spatial lattice (d-dimensional, with branching structure)
I Target space (Z2 for Ising spins and spinless fermions, ZK for

parafermions and clock models, U(1) for compact scalars)
I D.o.f. locations (sites, links, plaquettes, etc)1
I Statistics (a c-number element of the target space)

I It is not necessary to pick a Hamiltonian to define an exact duality!
Dualities are not necessarily strong-weak (although that’s when
they’re the most useful)

1A gauge constraint is assumed whenever d.o.f. live on chains of nonzero dimension.
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Local exact dualities: details on the data needed

I A d-dimensional lattice M with a global ordering of vertices

I ZK d.o.f. with local generators Φ, Π such that ΦK = ΠK = 1.
These are canonical position/momentum operators if ΠΦ = e

2πi
K ΦΠ

For Z2, Φ = X and Π = Z; for U(1), Φ = eiφ and Π = e−dφ ∂
∂φ

I D.o.f. on sites: matter models like Ising or compact scalar.
D.o.f. on links: gauge theories,

∏
u Π(v,u) = 1 on each site v

I Statistics of matter d.o.f. is captured by σ ∈ ZK such that
e.g. ΦvΦu = σθ(v,u)ΦuΦv, where θ(v, u) = −θ(u, v) = 1 if v > u.
For K = 2, σ = −1, let e.g. Φ→ χ, Π→ χ′ (Majorana fermions)
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Local exact dualities: Z2 bosonic matter

I This is the local version of Kramers-Wannier duality

I On one side, the theory has generators Xv, Zv on all sites v ∈M

I The dual is a rank-(d− 1) Z2 gauge theory on the dual lattice M∨.
Not all generators map under the local duality:

XvXu = X∨(u,v), Zv = W∨v =
∏
s⊂v

Z∨s

v ∈M dualizes to a d-dim. cell in M∨, and a link (v, u) dualizes to the
(d− 1)-dim. cell shared by the d-dim. cells u and v in M∨

I Simplification in d = 1: XvXv+1 = Z∨
v+ 1

2

, Zv = X∨
v− 1

2

X∨
v+ 1

2
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Local exact dualities: Z2 bosonic matter

XvXv+1 = Z∨
v+ 1

2

, Zv = X∨
v− 1

2

X∨
v+ 1

2

I Assume the d = 1 lattice is periodic (a discretized circle)

I The local KW duality implies the global singlet constraints∏
v Zv =

∏
v Z
∨
v+ 1

2

= 1. Generally, local exact dualities are

“singlet-singlet.” In this case,

Ising spins

Z2
=

Ising spins∨

Z2
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Global exact dualities: Z2 bosonic matter

I Background gauge fields change which sectors are mapped:

ηv+ 1
2
XvXv+1 = Z∨

v+ 1
2

, Zv = X∨
v− 1

2

X∨
v+ 1

2

, ηv+ 1
2
∈ Z2

I Twisted constraints:
∏
v Zv = 1,

∏
v Z
∨
v+ 1

2

=
∏
v ηv+ 1

2

I Make background gauge fields dynamical, add map Xv+ 1
2

= X∨
v+ 1

2

Ising spins

Z2
× Z2 gauge theory = Ising spins∨

Gauge-fixing⇒ X∨
v+ 1

2

as a “disorder operator” (string of spin operators Zv)
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Other local/global dualities of bosons

I Larger target spaces, e.g. ZK
K→∞−→ U(1) in d = 1:

compact scalar

U(1)
=

compact scalar∨

U(1)
(a.k.a. T-duality)

I Higher dimensions, e.g. in d = 2

Ising spins

Z2
=

Z2 gauge theory∨

Z2 one-form

I All of them can be twisted, e.g. in d = 2

compact scalar

U(1)
× U(1) topo. gauge theory = U(1) gauge theory∨
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Exact dualities with fermionic matter

I In d = 1, one local bosonization (Jordan-Wigner) duality is

Zv = iχ′vχv, XvXv+1 = −iχ′vχv+1

I This duality can be twisted, e.g. via ηv+ 1
2
XvXv+1 = −iχ′vχv+1

I Making η dynamical in the usual way does not give a global duality.
It is necessary to change the Gauss law:

Xv− 1
2
ZvXv+ 1

2
= 1 −→ Xv− 1

2
ZvXv+ 1

2
= (−W )δ1,v

I This is 1d flux attachment. Gauge-fixing gives full Jordan-Wigner

Z1 · · ·Zv−1Xv = χv, Z1 · · ·Zv−1Yv = χ′v
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Exact dualities with fermionic matter

I In d > 1, local bosonization rules can be written on any lattice with a
trivial second Stiefel-Whitney class [Chen, Kapustin, ÐR; Chen, Kapustin]

I Main lessons:
I There is always flux attachment on the bosonic side
I Depending on the lattice, a nontrivial Z2 background gauge field may

need to be coupled to the fermions: the twists are “built in”
I These background Z2 fields are spin structures
I The higher-form symmetry is anomalous and can be twisted but not

gauged. The zero-form Z2 symmetry can be gauged to give a global
exact duality with dynamical spin structures, e.g. in d = 2:

fermions

Z2
× Z2 topo. gauge theory = flux-attached Z2 gauge theory

All this generalizes to bosonization of parafermions: their dual gauge theories
have multiple units of ZK flux attached to each charge, in the general case
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~ Back to EE

I Now that we know how all operators dualize, we can understand how
a given reduced density matrix dualizes

I Operator approach to EE: specify a subalgebra, not just a region
[Zanardi, Lidar, Lloyd; Casini, Huerta + collaborators; ÐR; many others]

I The reduced density matrix is the unique element ρA of the
subalgebra AA that reproduces expectations of all O ∈ AA via

〈O〉 = TrA(ρAO)

I Given a region, there are many choices of subalgebras that do not
live on any smaller region. Among them are the subalgebras that
correspond to different boundary conditions at the region edge
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Example: boundary conditions of a spin chain

• • • • • • • •Open BCs •
Z

X
•
Z

X
•
Z

X
•
Z

X
•
Z

X
•
Z

X
•
Z

X
•
Z

X

• • • • • • • •
Z Z Z Z Z Z Z

Dirichlet-open •
X

•
X

•
X

•
X

•
X

•
X

•
X

•
X

•

• • • • • • • •Neumann-open
X X X X X X

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

XX
••

• • • • • • • •
Z Z Z Z Z Z Z

Mixed Dirichlet •
X

•
X

•
X

•
X

•
X

•
X

•
X

• •
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Example: local Kramers-Wannier duality

Dirichlet BCs • • • • • • • •
XX XX XX XX XX

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

Neumann BCs ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Z∨ Z∨ Z∨ Z∨ Z∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

X
∨ X
∨

I Two dual subalgebras, neither of them maximal on their regions
I Same reduced density matrices, different entropies (different dimH)
I This difference is canonical! (log 2 in the above case)
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Example: global Kramers-Wannier duality

Open BCs • • • • • • • •
X X X X X X X X
•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

•
Z

Open BCs ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
X∨g X∨g X∨g X∨g X∨g X∨g X∨g X∨g

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

X
∨ Z

∨
g
X
∨

(X∨g and Z∨g denote operators of the Z2 gauge theory)

I This extends to all exact dualities presented here
I Analogous in the continuum =⇒ BCs are important in replica trick
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Concluding remarks

I Well-known exact dualities are all within the same systematization

I Connections between dualities and anomalous kinematic symmetries,
nontrivial topologies, and boundaries can all be transparently
understood using Hamiltonian methods

I What QFT dualities can be deduced from these lattice constructs?

I Can we calculate EEs with nontrivial boundary conditions, in CFT or
AdS? Lessons for bulk reconstruction?

Thank you!
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