QIST 2019 June 6th, 2019

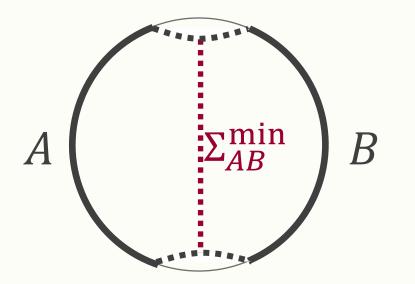
Entanglement of Purification in Many Body Systems and Symmetry Breaking

Koji Umemoto (YITP)

Based on Arpan Bhattacharyya (YITP), Alexander Jahn (Freie U.) Tadashi Takayanagi (YITP) and KU [1902.02369]

$E_W = E_P$ conjecture

Takayanagi-KU '17, Nguyen-Devakul-Halbasch-Zaletel-Swingle '17

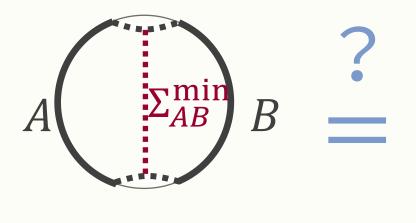


Entanglement wedge cross section

$$E_W(\rho_{AB}) \coloneqq \min_{\Sigma_{AB}} \frac{\operatorname{Area}(\Sigma_{AB})}{4G_N}$$

$E_W = E_P$ conjecture

Takayanagi-KU '17, Nguyen-Devakul-Halbasch-Zaletel-Swingle '17



 $E_W(\rho_{AB})$

 $E_P(\rho_{AB}) \coloneqq \min_{|\psi\rangle_{AA'BB'}} S_{AA'}$

Entanglement of purification

Kudler-Flam and Ryu '18 $\mathcal{E}_{N}(\rho_{AB}) \coloneqq \log \left| \rho_{AB}^{T_{A}} \right|_{1}$ Logarithmic negativity $\left(\frac{3}{2} E_{W} \right)$ Tamaoka '18 $S_{o}(\rho_{AB}) \coloneqq \lim_{n_{o}:odd \to 1} \frac{\left[\operatorname{Tr}(\rho_{AB}^{T_{A}})^{n_{o}} - 1 \right]}{1 - n_{o}}$ Odd entanglement entropy $(E_{W} + S_{AB})$ Dutta and Faulkner '19 $S_{R}(\rho_{AB}) \coloneqq S(AA^{*})_{\sqrt{\rho_{AB}}}$ Reflected entropy $(2E_{W})$

Entanglement of Purification (EoP)

Definition:

$$E_P(\rho_{AB}) \coloneqq \min_{|\psi\rangle_{AA'BB'}} S(\rho_{AA'}) \qquad \begin{array}{l} (\rho_{AA'} \coloneqq \\ \operatorname{Tr}_{BB'}[|\psi\rangle\langle\psi|_{AA'BB'}]) \end{array}$$

Entanglement of Purification (EoP)

Definition:

$$E_P(\rho_{AB}) \coloneqq \min_{|\psi\rangle_{AA'BB'}} S(\rho_{AA'})$$

$$\begin{array}{l} (\rho_{AA'} \coloneqq \\ \mathrm{Tr}_{BB'}[|\psi\rangle\langle\psi|_{AA'BB'}]) \end{array}$$

- In practice, hard to compute
- Thus we still don't know much about EoP in physical many body systems e.g. CFTs

Related papers: Terhal-Horodecki-Leung-DiVincenzo '02, Chen-Winter '12 Nguyen-Devakul-Halbasch-Zaletel-Swingle '17, ...

$$E_P(\rho_{AB}) \coloneqq \min_{|\psi\rangle_{AA'BB'}} S(\rho_{AA'})$$

To compute EoP in many body systems (on a lattice) by numerically performing the minimization

Our Targets

- 2d (massless) free scalar field theory on a lattice Method: Minimal Gaussian purification ansatz Ground state reduced matrix ρ_{AB} is Gaussian Purifications $|\Psi\rangle_{AA'BB'}$ is assumed to be Gaussian with $|A'B'| \coloneqq |AB|$
- 2d transverse-field (critical) Ising model Method: Full minimization without ansatz

A theorem [lbinson-Linden-Winter '06] guarantees that it is sufficient to search $\dim \mathcal{H}_{A'} \leq \operatorname{rank} \rho_{AB}, \ \dim \mathcal{H}_{B'} \leq \operatorname{rank} \rho_{AB}$ for minimizing $S_{AA'}$

E.g. 2 qubits

$$A \bullet B \qquad A \cup B \bullet \bullet \bullet \bullet A' \cup B'$$

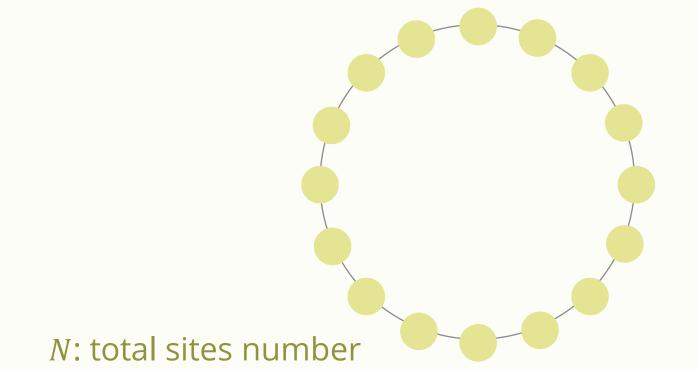
rank $\rho_{AB} = 4$
$$\dim \mathcal{H}_{A'} = \dim \mathcal{H}_{B'} = 4$$

EoP behaves similarly in both models.

Common results

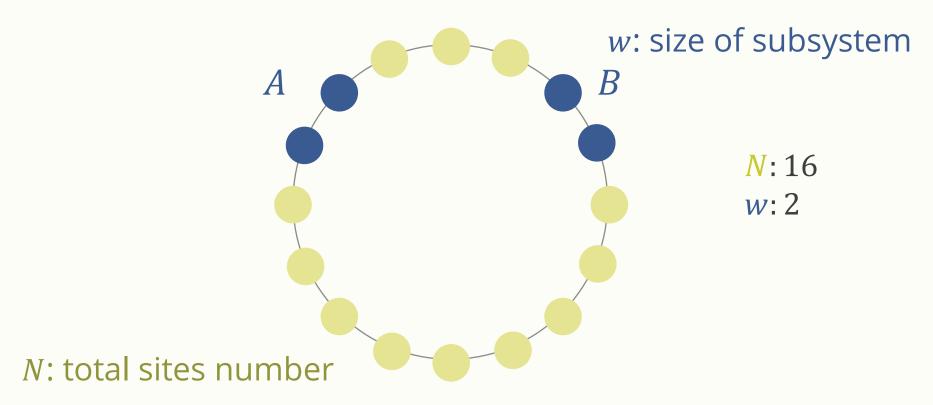
EoP can increase with the physical distance.

Even if $\rho_{AB} = \rho_{BA}$, the optimal purification can break its symmetry i.e. $|\psi^*\rangle_{AA'BB'} \neq |\psi^*\rangle_{BB'AA'}$.



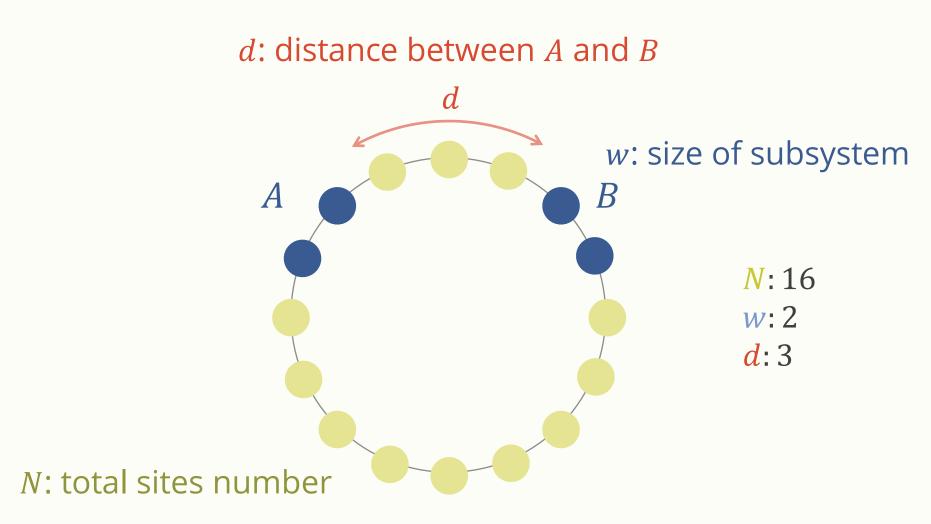
N:16

[1+1d, vacuum, periodic boundary condition]



[1+1d, vacuum, periodic boundary condition]

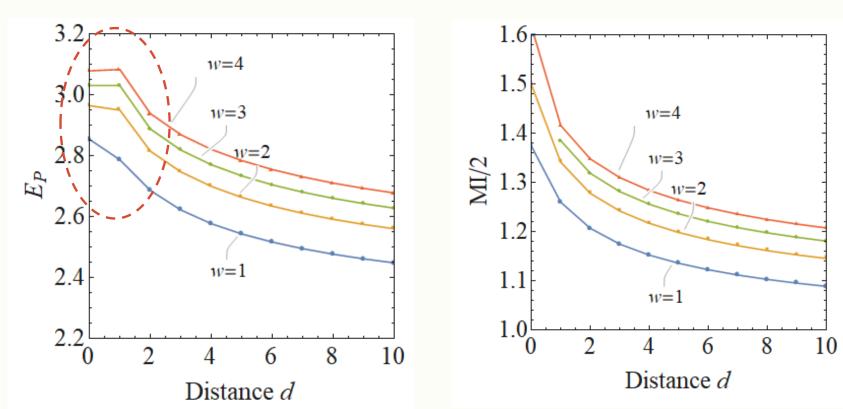
Setup



[1+1d, vacuum, periodic boundary condition]

E.g. N = 60 free scalar

Plateau-like behavior EoP

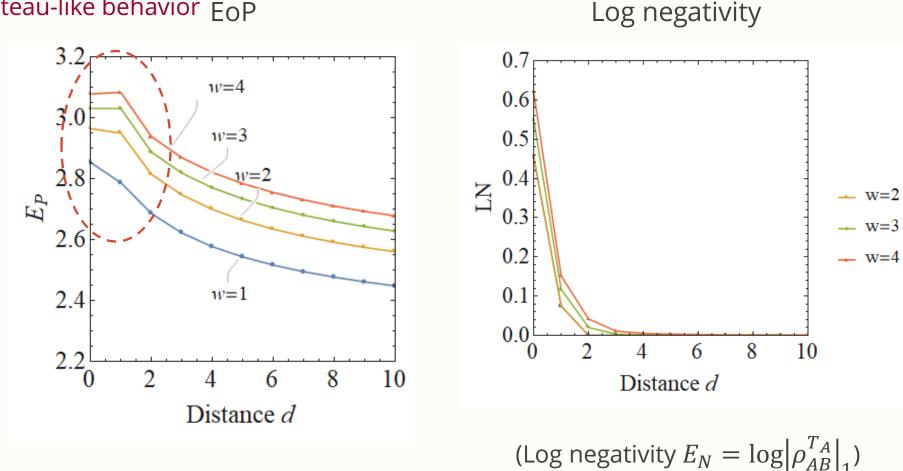


(Mutual information $I(A:B) = S_A + S_B - S_{AB}$)

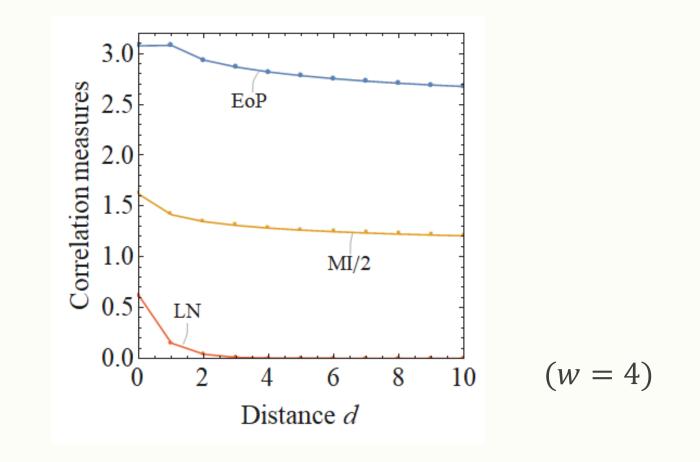
Half of mutual information

E.g. N = 60 free scalar

Plateau-like behavior EoP

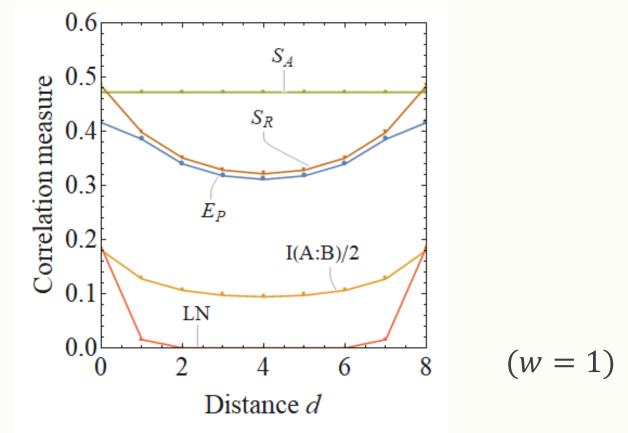


E.g. N = 60 free scalar

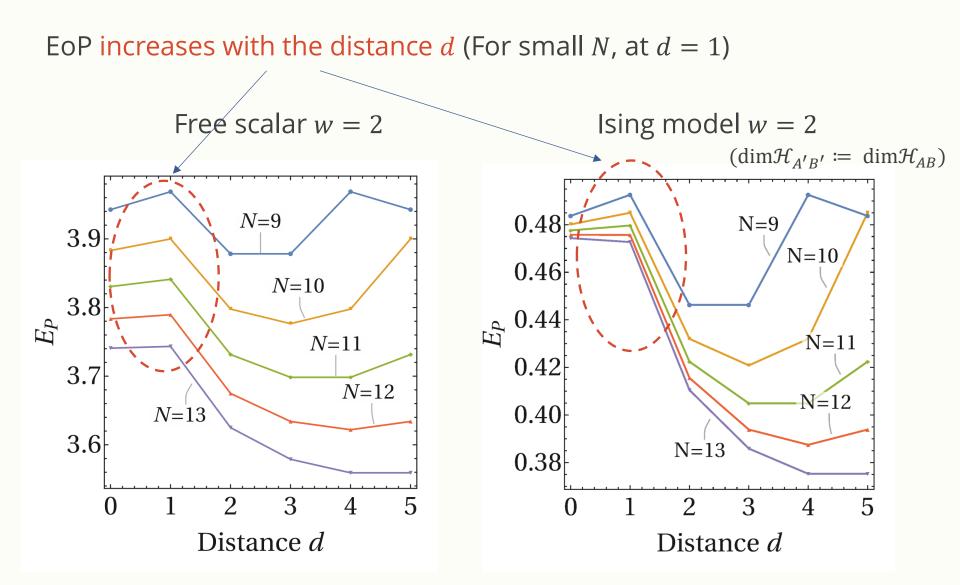


E.g. N = 10 lsing

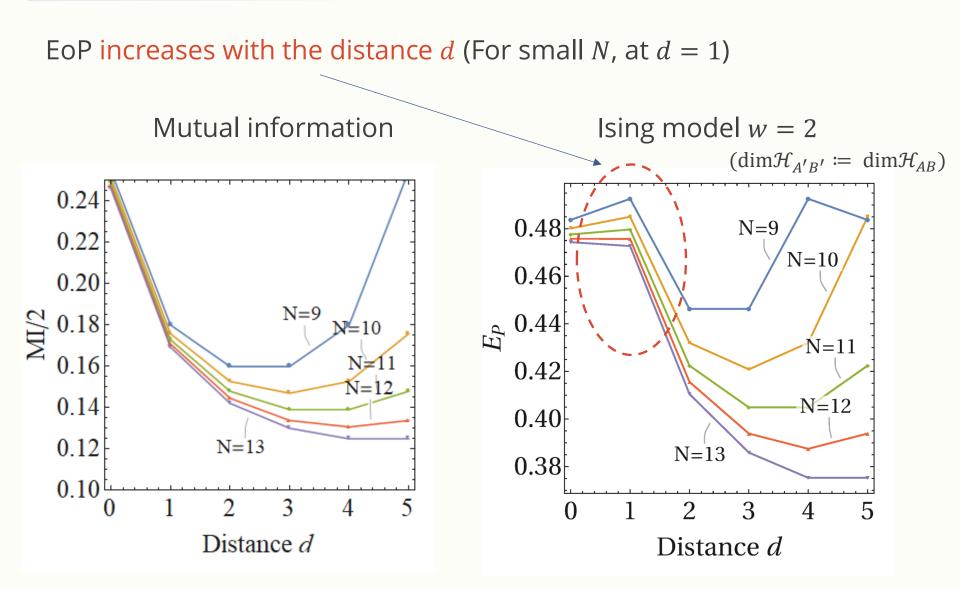
(periodic b.c.)



Non-monotonicity



Non-monotonicity

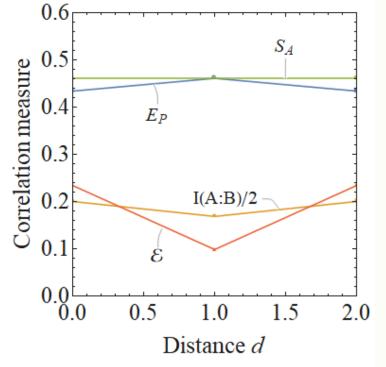


Non-monotonicity

It's so weird... Perhaps the minimization does not work well? 😰

• We can show this behavior analytically in some cases

E.g) in N = 4 Ising model

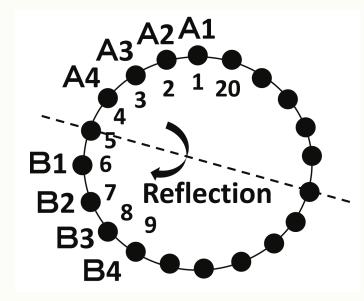


We can show $E_P(d = 1) = S_A = S_B$ by a thm. and $E_P(d = 0) < S_A$ by numerics

<u>Theorem</u> Christandl-Winter '05 If ρ_{AB} has support only on the (anti-) symmetric subspace of $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$, then $E_P(A:B) = S_A = S_B$.

Z2 symmetry breaking

The optimal purifications do not necessarily have the exchange symmetry $(AA' \leftrightarrow BB')$

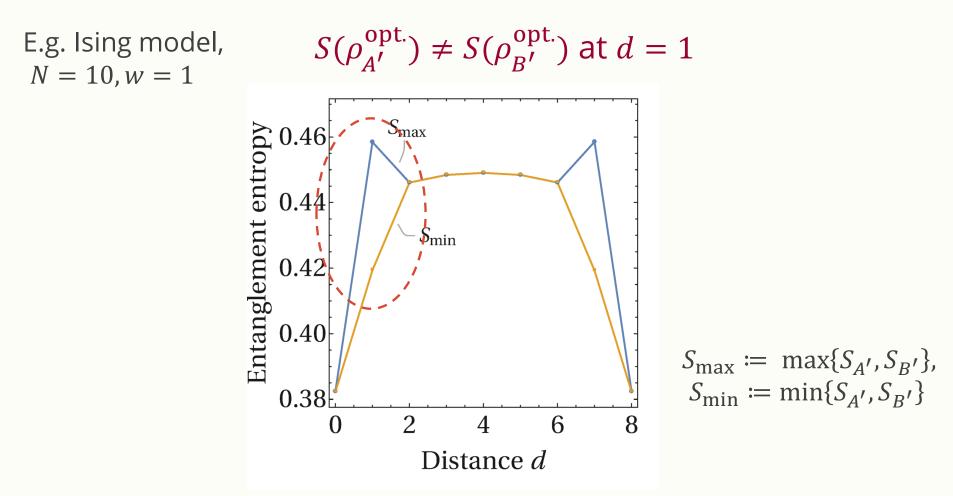


But In some cases, $|\psi^{\text{opt.}}\rangle_{AA'BB'} \neq |\psi^{\text{opt.}}\rangle_{BB'AA'}$ **Optimal purification**

 $\rho_{AB} = \rho_{BA}$

Z2 symmetry breaking

The optimal purifications do not necessarily have the exchange symmetry $(AA' \leftrightarrow BB')$



Try to understand the **qualitative** aspects of results

Interplay between quantum entanglement and classical correlations
 Classical correlations: typically in separable states

$$\rho_{AB} = \sum_{i} p_i \, \rho_A^i \otimes \rho_B^i$$

Suppose that total correlation, half of MI, is just a sum of them (Of course not precise)

$$\frac{I(A:B)}{2} \sim E(A:B) + C(A:B)$$
Remainings ($C \coloneqq \frac{1}{2} - E_{sq}$)

Squashed entanglement E_{sq} will be a good candidate (: $E_{sq} \leq I/2$)

Q. What is the coefficients for EoP?

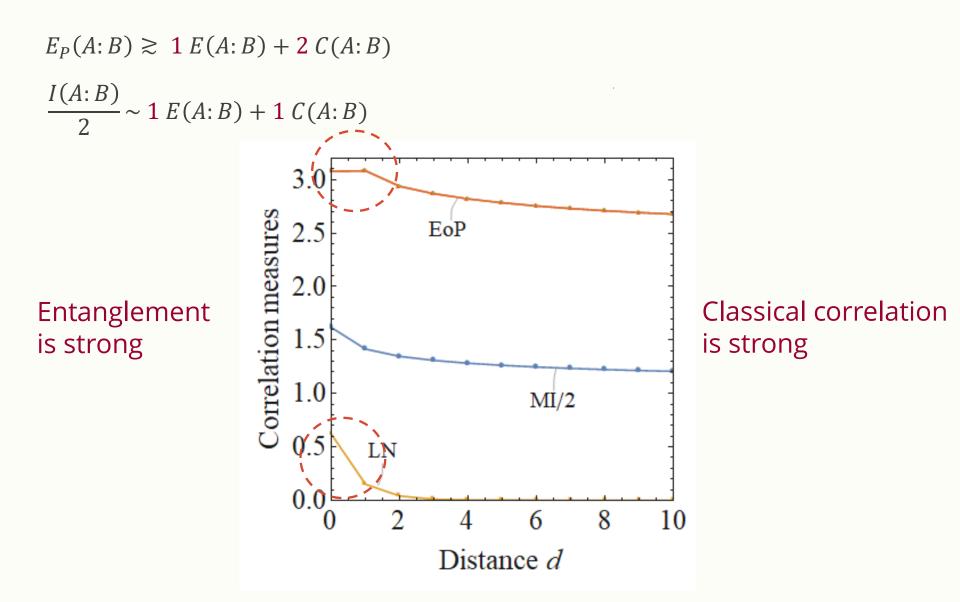
 $E_P(A:B) \sim \boldsymbol{a} E(A:B) + \boldsymbol{b} C(A:B)$

1) EoP coincides with S_A for pure states When C(A:B) = 0, $E_P(A:B) = S_A = E(A:B)$ $\therefore a = 1$

2) EoP is at least as large as *I*(*A*: *B*) for separable states

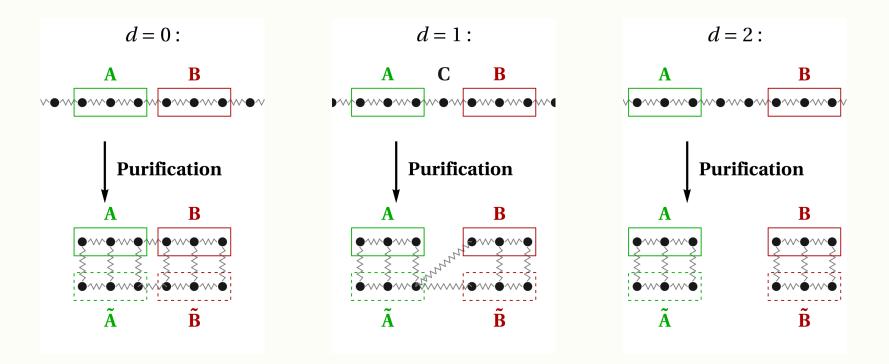
When E(A:B) = 0, $E_P(A:B) \ge I(A:B) = 2C(A:B)$ Terhal-Horodecki-Leung-DiVincenzo '02 $\therefore b \ge 2$

Claim: $E_P(A:B) \gtrsim \mathbf{1} E(A:B) + \mathbf{2} C(A:B)$



A toy model explaining why Z_2 symmetry is broken only at d = 1: Focus on the nearest neighbor entanglement

EoP converts classical correlation into entanglement in the purified system



- We computed entanglement of purification in 2d free scalar field and 2d Ising model by numerically performing the minimization.
- We found that EoP can increase with the physical distance. It is quite different from other measures such as mutual information.
- The optimal purifications are not necessarily symmetric under exchange $AA' \leftrightarrow BB'$ even if the original state satisfies $\rho_{AB} = \rho_{BA}$
- Both can be interpreted as an interplay between entanglement and classical correlation

Appendices

Entanglement of Purification (EoP)

Definition Terhal-Horodecki-Leung-DiVincenzo '02

$$E_P(\rho_{AB}) \coloneqq \min_{|\psi\rangle_{AA'BB'}} S(\rho_{AA'}) \qquad \begin{array}{l} (\rho_{AA'} \coloneqq \\ \operatorname{Tr}_{BB'}[|\psi\rangle\langle\psi|_{AA'BB'}]) \end{array}$$

- It monotonically decreases under local operations
- $E_P \ge 0$ and $E_P = 0$ if and only if $\rho_{AB} = \rho_A \otimes \rho_B$
- .: A measure of total correlation (not just entanglement)

Cf. mutual information $I(A:B) \coloneqq S_A + S_B - S_{AB}$

EoP for free scalar field

• Vacuum is Gaussian state

d.o.f. on the sites

$$\Psi_{\text{total}}^{0}(\vec{\phi}) \propto \exp\left(-\frac{1}{2}\vec{\phi}^{T}W\vec{\phi}\right) \qquad \text{Lattice cutoff} = 1$$
where $W_{nn'} = \frac{1}{N}\sum_{k=1}^{N}\sqrt{4\sin^{2}(\frac{\pi k}{N}) + m^{2}a^{2}}e^{\frac{2\pi i k(n-n')}{N}}$
(small) mass $\sim 10^{-4}$

$$=:\exp\left(-\frac{1}{2}(\vec{\phi}_{AB},\vec{\phi}_{other})^{T}\begin{pmatrix}P&Q\\Q^{T}&R\end{pmatrix}(\vec{\phi}_{AB},\vec{\phi}_{other})\right)$$

Minimal Gaussian Purification ansatz

$$\rho_{AB}(\vec{\phi}_{AB},\vec{\phi}'_{AB}) \propto \exp\left(-\frac{1}{2}(\vec{\phi}_{AB},\vec{\phi}_{AB})^{T} \begin{pmatrix} P - \frac{1}{2}QR^{-1}Q^{T} & -\frac{1}{2}QR^{-1}Q^{T} \\ -\frac{1}{2}QR^{-1}Q^{T} & P - \frac{1}{2}QR^{-1}Q^{T} \end{pmatrix} (\vec{\phi}_{AB},\vec{\phi}'_{AB}) \right)$$

Minimal Gaussian Purification ansatz |AB| = |A'B'| $\Psi_{AA'BB'}^{\text{Gaussian}}(\vec{\phi}) \propto \exp\left(-\frac{1}{2}(\vec{\phi}_{AB}, \vec{\phi}_{A'B'})^T \begin{pmatrix} J & K \\ K^T & L \end{pmatrix}(\vec{\phi}_{AB}, \vec{\phi}_{A'B'})\right)$

• $\operatorname{Tr}_{A'B'}|\Psi^{G}\rangle\langle\Psi^{G}|_{AA'BB'} = \rho_{AB} \Rightarrow \text{ only } K \text{ is free parameters}$

• Perform the minimization of $S_{AA'}(K)$ over the minimal Gaussian purification ansatz by changing the components of K

(We can further reduce the numbers of parameters by using a symmetry of EE)

EoP for Ising model

$$H_{\text{total}} = -\sum_{\langle i,j \rangle} \sigma_i^z \otimes \sigma_j^z - \sum_i \sigma_i^x$$

• The critical 2d Ising model

• Total vacuum state $|\Omega\rangle_{\text{total}} \rightarrow \rho_{AB} \rightarrow |\psi_0\rangle_{AA'BB'}$ (any purification)

- All possible purifications = All isometry maps (embedding + unitary) $\rho_{AB} \rightarrow I_{AB} \otimes V_{A'B'}^{iso} |\psi_0\rangle_{AA'BB'}$
- Minimize $S_{AA'}(V_{A'B'}^{iso})$ without any ansatz

EoP for Ising model

 $\operatorname{rank}\rho_{AB} = 4$

We do not need to consider arbitrary large Hilbert space $\mathcal{H}_{A'B'}$

Theorem Ibinson-Linden-Winter '06 In a finite dimensional case, the minimum of $S_{AA'}$ can be achieved by $\dim \mathcal{H}_{A'} \leq \operatorname{rank} \rho_{AB}$ and $\dim \mathcal{H}_{B'} \leq \operatorname{rank} \rho_{AB}$ E.g. 2 qubits $A \bullet B \models A \cup B \bullet \bullet \bullet \bullet A' \cup B'$

 $\dim \mathcal{H}_{A'} = \dim \mathcal{H}_{B'} = 4$

Z2 symmetry breaking

The Z2 symmetry breaking and quantum phase transition

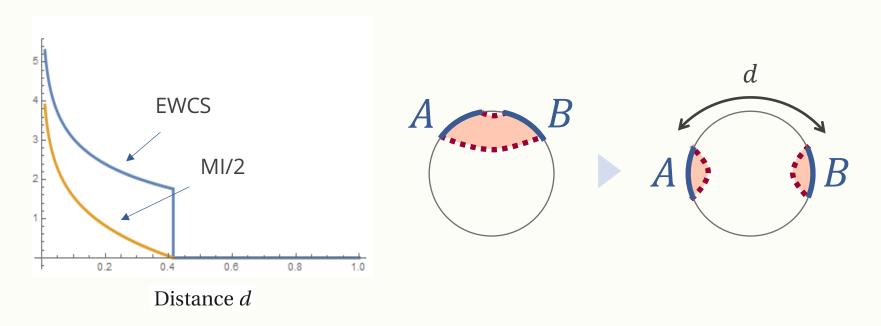
$$H_{\text{total}} = -\sum_{\langle i,j \rangle} \sigma_i^z \otimes \sigma_j^z - h \sum_i \sigma_i^x$$

(N = \omega, thermal ground state |\Omega|) = $\lim_{\beta \to \infty} e^{-\beta H} / Z(\beta)$)
(w = 1, d = 1)

 0.7
 0.6
 0.5
 0.4
 0.7
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.6
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0
 0.5
 0.0

Implications to holography

• We know that EWCS behaves differently from MI around the transition point



• Reflection symmetry could also break in excited states or O(1) correction