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How can we demonstrate 
quantum supremacy?

Quantum supremacy: A task that can be realized by 
quantum computer but cannot be realized by classical 
computer.

Solving factorization via Shor’s algorithm
by using quantum computer

However, there is no guarantee that no classical 
algorithm realizes the same performance as Shor’s
algorithm. 

This type of supremacy depends on the above 
conjecture.



Another idea for Quantum 
supremacy

More convinced conjecture (Conjecture 1): 
Let                                be uniformly random degree-
three polynomial over     .
It is #P-hard to approximate                     up to a 
multiplicative error of 1/4 + o(1) for a 1/24 fraction of 
polynomials f.
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Bremner, Montanaro, and Shepherd 
Phys. Rev. Lett. (2016).

More people convince this conjecture.



Another idea for Quantum 
supremacy

The polynomial-time hierarchy (PH): a hierarychy of 
complexity classes, 
0th PH ⊂1st PH ⊂ 2nd PH ⊂ 3rd PH ⊂… nth PH..

Another more convinced conjecture (Conjecture 2): 
The PH does not collapse to its third level.

0th PH ⊂1st PH ⊂ 2nd PH ⊂ 3rd PH =nth PH

More people convince this conjecture.



How can we demonstrate 
quantum supremacy?

Theorem:
Assume Conjectures 1 and 2 are true. 
There exists an IQP circuit whose diagonal gate D is 
composed of Z, C-Z, and CC-Z gates
such that its output probability distribution
cannot be classically simulated in polynomial time,  
within an error 1/192 in l1 norm.

Quantum Supremacy:
Realization of the output state any IQP circuit whose 
diagonal gate D is composed of Z, C-Z, and CC-Z 
gates within an error 1/192 in l1 norm.

Bremner, Montanaro, and Shepherd 
Phys. Rev. Lett. (2016).



How to verify such output state
The output state of such an IQP circuit is given as 
a weighted graph state.

Weighted graph state:

It is sufficient to verify a weighted graph state! 

Graph state:
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How to construct graph state
(1) For each vertex, we set the qubit system to 

(2) Apply controlled Z 
to the two-qubit systems connected by edges
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This condition is needed to accept the proper computation 
outcome.
Acceptance probability     is the passing probability with 
correct state and measurements 

Concepts of Verification (same as QKD)
Detectability: State and measurement should be 
rejected when they are not properly prepared.

Acceptability: State and measurement should be 
accepted when they are properly prepared.

This condition is needed for guaranteeing the precision
of computation outcome when the test is passed.
Significance level is the maximum passing 
probability with incorrect state or measurements 
(e.g. 5%) 
Fidelity between the resultant state and target state with 
significance level
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Verification of two-colorable 
graph state

Since we perfectly trust measurement, it is sufficient 
to verify only the two-colorable (Black and White) 
graph state        by local measurements.
In two-colorable state, the Z values on one color sites 
decide the X values on the other color sites.

Z measurement on Black
Z measurement on White

predicts

X measurement on Black
X measurement on White

Our verification: 
We check whether X outcomes equal the prediction.

G

MH, Morimae 2015



Verification of two-colorable 
graph state

Z on Black X on White

Computation

2 ' 1NG  

Z on White X on Black

N' copies

'  copiesN

1 copy

Random choice

or            
incorrect state

Stabilizer test



With significance level β, the probability being 
incorrect computation outcome is 
less than                          .

Verification of two-colorable 
graph state

Once 2N’ tests are passed, the state     of the 
resultant system satisfies 

with significance level β.
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Verification of m-colorable 
graph state

It is natural to apply the cover protocol to N systems. 

To evaluate the performance of the above protocol,
we need to prepare a general theory.

(1) We randomly choose one color with equal prob 
1/m.

(2) We measure node whose color is not the chosen 
color with Z basis.

(3) We measure node whose color is the chosen color 
with X basis.

Cover protocol: Zhu MH arXiv:1806.05565



General theory for verification
is a POVM element. 

Assume that we apply the measurement                  
to N systems. 

Theorem:
Once N tests are passed, the state     of the resultant 
system satisfies

with significance level  
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Verification of m-colorable 
graph state

Once N tests are passed, the state     of the 
resultant system satisfies

with significance level β.
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(1) We randomly choose one color with equal prob 
1/m.

(2) We measure node whose color is not the chosen 
color with Z basis.

(3) We measure node l whose color is the chosen 
color with basis .

Adaptive verification of m-
colorable weighted graph state 

with perfect match 
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Adaptive verification of m-
colorable weighted graph state 

with perfect match 
Once N tests are passed, the state     of the 
resultant system satisfies

with significance level β.
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(1) We randomly choose one color with equal prob 
1/m.

(2) We measure node whose color is not the chosen 
color with Z basis.

(3) We measure node l whose color is the chosen 
color with basis .

Adaptive verification of m-
colorable weighted graph state 

with imperfect match 
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Adaptive verification of m-
colorable weighted graph state 

with imperfect match 
Once N tests are passed, the state     of the 
resultant system satisfies

with significance level β.
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(1) We choose one color with equal prob 1/m.
(2) We measure node whose color is not the chosen 

color with Z basis.
(3) We measure node l whose color is the chosen 

color with basis 

Here, j is chosen with equal prob 1/h.

(4) We reject only when outcome is

Non-adaptive verification of m-
colorable weighted graph state 

with perfect match 
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Non-adaptive verification of m-
colorable weighted graph state 

with perfect match 
Once N tests are passed, the state     of the 
resultant system satisfies

with significance level β.
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(1) We randomly choose one color with equal prob 
1/m.

(2) We measure node whose color is not the chosen 
color with Z basis.

(3) We measure node l whose color is the chosen 
color with basis 

Here, j is chosen with equal prob 1/h.

(4) We reject only when 

Non-adaptive verification of m-
colorable weighted graph state 

with imperfect match 
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Non-adaptive verification of m-
colorable weighted graph state 

with imperfect match 
Once N tests are passed, the state     of the 
resultant system satisfies

with significance level β.
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Application to Quantum Supremacy 
via IQP circuit

There exists an output sate of IQP circuit 
whose diagonal gate D is composed of Z, C-Z, and 
CC-Z gates
satisfying the following.
No distribution     on the n-bit system satisfies the 
following;
• can be classically simulated in polynomial time 

for n.
•

Q

Q

1
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IQP
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Assume Conjectures 1 and 2 are true. 



Application to Quantum Supremacy 
via IQP circuit

We set 
28 192 (1 )nN 




 

Once N tests are passed, we apply the 
measurement on Z to the resultant system.

Then, the output distribution       satisfies

with significance level β.
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Conclusion
• We have proposed a method to verify weighted 

graph state.
• We applied the result to quantum supremacy via 

IQP circuit.
• The required number of sampling is only linear for 

the size of circuit.



References
• MH Morimae, Phys. Rev. Lett 115, 220502 (2015).
• Zhu, MH, arXiv:1806.05565
• MH Takeuchi, arXiv:1902.03369
• Bremner, Montanaro, and Shepherd Phys. Rev. Lett. (2016).
•


