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Want to reliably store & process q. information. Need QECCs! 

Topological codes = geometrically local  
generators, logical info encoded non-locally. 

Examples: toric & color codes. 

Desired properties:  
— can be built in the lab,  
— fault-tolerant logical gates,  
— efficient decoders,  
— high thresholds.

TOPOLOGICAL QUANTUM 
ERROR-CORRECTING CODES
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Errors are inevitable in any real information processor.
Quantum computers are particularly susceptible to errors as
quantum systems are highly sensitive to noise effects that

can be exotic compared with the simple bit-flip errors of classical
computation. As such, realizing a fault-tolerant quantum
computer is a significant challenge that requires encoding the
information into a quantum error-correcting code. To add to the
difficulty, direct extraction of the information typically destroys
the system, and ancillary syndrome systems must be employed to
perform non-demolition measurements of the encoded state.
Previous work in nuclei1–3, trapped ions4–6 and superconducting
qubits7 has attempted to address similar problems; however, these
implementations lack the ability to perform fault-tolerant
syndrome extraction, which continues to be a challenge for all
physical quantum computing systems.

The surface code (SC)8,9 is a promising candidate to achieve
scalable quantum computing due to its nearest-neighbour qubit
layout and high fault-tolerant error thresholds10. The SC is an
example of a stabilizer code11, which is a code whose state is
uniquely defined by the measurement of a set of observables
called stabilizers. Code qubits in the SC are placed at the vertices
of a two-dimensional array and each stabilizer involves four
neighbouring code qubits. The SC stabilizers are, therefore,
geometrically local and can be measured fault tolerantly with a
single syndrome qubit12. Error detection on a lattice of code
qubits is achieved through mapping stabilizer operators onto a
complementary lattice of syndrome qubits, followed by classical
correlation of measured outcomes. Among the syndrome qubits,
a distinction is made between bit-flip syndromes (or Z-
syndromes) and phase-flip syndromes (or X-syndromes). Each
code qubit in the SC is coupled with two X-syndrome qubits and
two Z-syndrome qubits, and, in turn, each syndrome qubit is
coupled with four code qubits.

Superconducting qubits have become prime candidates for SC
implementation13,14, especially with continuing improvements
to coherence times15–17 and quantum gates18. Furthermore,
implementing superconducting resonators as quantum buses to
realize the circuit quantum electrodynamics architecture permits
a straightforward path for building connectivity into a lattice of
superconducting qubits14. There are numerous ways of building
the SC lattice with superconducting qubits and resonators. Here
we employ an arrangement in which each qubit is coupled with

two bus resonators and each bus couples with four qubits14.
Although previously the engineered dissipation of a resonator has
been used to stabilize the entanglement of two superconducting
qubits to which it is coupled19, it is of note that here the
stabilization is achieved via explicitly mapping code qubit
stabilizers onto syndrome qubits.

Here we experimentally demonstrate the complete algorithm
constituting a quantum error detection code that detects arbitrary
single-qubit errors in a non-demolition manner via syndrome
measurements. The scheme is implemented in a two-by-two
lattice of superconducting qubits that represents a primitive tile
for the SC. Stabilizer measurements, ubiquitous to fault-tolerant
quantum error-correcting codes, are successfully demonstrated in
this work for both bit- and phase-flip errors on an encoded
codeword. The non-demolition nature of the protocol is verified
by demonstrating the preservation of the entangled state
constituting the codeword through high-fidelity syndrome
measurements in the presence of an arbitrary applied error.
These error detection experiments constitute a key milestone for
SC implementation, as our operations now extend into the plane
of the two-dimensional surface and we show the ability to
concurrently perform bit- and phase-parity checks. Moreover,
our results illustrate the ability to build structures of super-
conducting qubits, which are not co-linear but latticed while
preserving high-fidelity operations. Moving forward, on improv-
ing the measurement and gate fidelities in these systems, further
expanding the lattice will lead to important studies of different
error-correcting codes and the encoding of logical qubits, thereby
allowing experimental investigation of fault-tolerant quantum
computing. Our results bolster the prospect of employing
superconducting qubit lattices for large-scale fault-tolerant
quantum computing.

Results
Physical device and quantum control. Our physical device
(Fig. 1a,b) consists of a 2! 2 lattice of superconducting
transmons, with each coupled with its two nearest neighbours via
two independent superconducting coplanar waveguide (CPW)
resonators serving as quantum buses (Fig. 1b; blue). Each qubit is
further coupled with an independent CPW resonator for both
qubit control and readout. Dispersive readout signals for each
qubit are amplified by distinct Josephson parametric
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Figure 1 | Surface code implementation and error detection quantum circuit. (a) Cartoon schematic of SC consisting of alternating square tiles of
X- (yellow) and Z- (green) plaquettes for detecting phase-flip (Z) and bit-flip (X) errors, respectively. Semi-circular pieces reflect parity checks at the
boundaries of the lattice. These plaquette tiles can be mapped onto a lattice of physical superconducting qubits with appropriate nearest-neighbour
interconnectivity, as shown in the layer labelled MAP. Here there are code qubits (purple spheres), X-syndrome qubits (yellow) for phase parity detection
of surrounding code qubits, and Z-syndrome qubits (green) for bit parity detection of surrounding code qubits. The physical connectivity for
superconducting qubits can be realised via coupling every qubit to two quantum bus resonators, shown as wavy blue diamonds in the MAP. The device
studied in this work (false-colored optical micrograph in b) embodies two half-plaquettes of the SC as circled in a, and allows for independent and
simultaneous detection of X and Z errors on two-code qubits, shaded purple in b and labelled Q1 and Q3. (c) The circuit to implement the half-plaquette
operations encodes the bit (ZZ) and phase (XX) parities of the two-code qubits’ Bell state cj i onto the respective syndrome qubits, Q2 (green) and Q4

(yellow). Arbitrary errors e are intentionally introduced on the code qubit Q1 and detected from the correlated measurement of the syndrome qubits.
Q2 (Q4) is initialized to 0j i þj i ¼ 0j iþ 1j ið Þ=2ð Þ. A Hadamard operation, H, is applied to Q4 before measurement.
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Stabilizer codes [G96]: commuting Pauli operators 
code space = (+1)-eigenspace of stabilizers. 

Quantum error-correction game: 
 
 
 
 

Decoding = classical algorithm to find error correction from syndrome. 

Threshold pth = max error rate tolerated by code (family).

E(| i)
| i

move outside  
the code space

measure stabilizers to  
discretize and diagnose errors

| i encode�����! | i noise����! E(| i) recovery������! R � E(| i) read o↵������! | 0i

decoding

Gottesman'96

DECODING PROBLEM 
FOR STABILIZER CODES



Leading approach to scalable q. computing — 2D toric code (surface). 

Difficulty: fault-tolerant non-Clifford gate (needed for universality). 

Color code as alternative to toric code 
   😀     easier computation in 2D,  
  😀 😀     more qubit efficient, 
 😀 😀 😀   code switching [B15,BKS] instead of magic state distillation. 

Unfortunately, color code  
   🙁       seems difficult to decode,  
  🙁 🙁      seems to exhibit worse performance than toric code.

WHY COLOR CODE?
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Bombin'15; Beverland et al. (in prep.)



MAIN RESULTS & OUTLINE
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Results: efficient decoders for color code in d ≥ 2 dim w/ high thresholds. 

1. Toric & color codes in 2D.  

2. Restriction Decoder: color code decoding 
  by using toric code decoding.  

3. High thresholds: color code 
  performance matches toric code.  

4. Extra: going beyond 2D 
  & neural network decoding.
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of the Restriction Decoder. This in turn allows us to estimate the color code threshold from the
toric code threshold.

A. Morphism between color and toric code chain complexes

Definition 4 (Restriction). Let L be a d-colex and C ⇢ Zd+1

be a subset of k + 1 colors, where

1  k < d. The restriction ⇡C is a triple of linear operators ⇡(0)

C : Ck�1

(L) ! Ck�1

(LC),

⇡(1)

C : Cd(L) ! Ck(LC) and ⇡(2)

C : Cd�k�1

(L) ! Ck+1

(LC) defined as follows

⇡(0)

C (µ) =

(
µ if color(µ) ⇢ C,

0 otherwise,
(30)

⇡(1)

C (�) = �|C , (31)

⇡(2)

C (⌫) =

(
⌅(⌫) if color(⌫) = Zd+1

\ C,

0 otherwise,
(32)

where �|C is the k-simplex of color C belonging to the d-simplex � 2 �d(L). Recall that LC is
the restricted lattice and according to Eq. (28) ⌅(⌫) is the (k + 1)-face of LC corresponding to the
(d � k � 1)-simplex ⌫ removed from L, and thus, by definition, @C

k+1

⌅(↵) = Lkk(⌫).

Lemma 5 (Morphism). Consider the color code of type k defined on a d-colex L, where 1  k < d
and let C ⇢ Zd+1

be a subset of k + 1 colors. Then, the restriction ⇡C is a morphism between
chain complexes of the color code of type k on L and the toric code of type k on the restricted
lattice LC . In other words, the following diagram is commutative

Cd�k�1

(L)
@
d�k�1,d�����! Cd(L)

@
d,k�1����! Ck�1

(L)
??y⇡

(2)
C

??y⇡
(1)
C

??y⇡
(0)
C

Ck+1

(LC)
@C

k+1����! Ck(LC)
@C

k����! Ck�1

(LC)

(33)

Proof. Let us pick � 2 L and consider the right side of the diagram. We want to show that

⇡(0)

C � @d,k�1

(�) = @C
k � ⇡(1)

C (�). Note that for any n < k all n-simplices of � of colors included in C

belong to the k-simplex �|C = ⇡(1)

C (�) of �, namely

�n(�|C) = {⌫ 2 �n(�)|color(⌫) ⇢ C}. (34)

Thus, we obtain

⇡(0)

C � @d,k�1

(�) = ⇡(0)

C

0

@
X

µ2�
k�1(�)

µ

1

A =
X

µ2�
k�1(�)

color(µ)⇢C

µ =
X

µ2�
k�1(�|C)

µ = @k(�|C) = @C
k � ⇡(1)

C (�),(35)

which shows commutativity of the right side of the diagram.
Now we analyze the left side of the diagram. Let us pick � 2 �d�k�1

(L) and consider two cases.
In the first case, when color(�) = Zd+1

\C, all the k-simplices in the k-link of � have color C. Recall
that Eq. (4) establishes a one-to-one correspondence between the elements of the k-link Lkk(�) and



2D toric code [K97]: 
— qubits = edges, 
— stabilizers = Z-faces & X-vertices, 
— Z-errors = edges, 
— excitations = vertices. 

Decoding = finding position of errors 
from violated stabilizers = pairing up excitations! 

Successful decoding iff error and correction differ by stabilizer. 

Toric code decoders [DKLP02,H04,DP10,DN17,…]: MWPM, RG, UF, …

2D TORIC CODE & DECODING
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Kitaev’97; Dennis et al.’02; Duclos-Cianci&Poulin’10; Harrington’04; Delfosse&Nickerson’17



Z
Z
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Lattice: triangles, 3-colorable vertices. 

2D color code [BM08]: 
— qubits = triangles,  
— stabilizers = X- & Z-vertices. 

Color and toric codes related [KYP15]… 

…but decoding seems to be challenging 
as excitations created in pairs & triples! 

Set-up:

qubit stabilizer

Z

Bombin&Martin-Delgado’06; Kubica et al.’15

2D COLOR CODE

1D

error               syndrome 
  2D                     0D

local lift               TC decoder



Restriction Decoder: restricted lattice LRG, restricted syndrome sRG. 

1. Use toric code decoder for LRG and sRG. 
Repeat for LRB and sRB. 

2. For all R vertices v find some faces f(v). 

3. Color code correction = ∑ f(v). 

Comments: 
— any toric code decoder can be used,  
— local lifting procedure to find f(v), 
— similar for d ≥ 2 dim.

COLOR CODE DECODER 
FROM TORIC CODE DECODER
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Square-octagon lattice, phase-flip noise and ideal measurements. 

Color code threshold ~ 10.2% on a par w/ toric code threshold ~ 10.3%. 

Previous highest thresholds 7.8% ~ 8.7% [SR12,BDCP12,D14]. 

For almost-linear time decoder, use UF (instead of MWPM).

NUMERICS
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Sarvepalli&Raussendorf’12; Bombin et al.’12; Delfosse’14
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Restriction Decoder: toric code decoding + local lifting procedure. 

Theorem 1: the kth homology groups of the color code lattice L and the 
restricted lattice LC are isomorphic. 

Lemma: morphism between color and toric code chain complexes  
 
 
 
 

Theorem 2: Restriction Decoder for the d-dim color code succeeds iff 
toric code decoding succeeds.

GOING BEYOND 2D
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of the Restriction Decoder. This in turn allows us to estimate the color code threshold from the
toric code threshold.

A. Morphism between color and toric code chain complexes

Definition 4 (Restriction). Let L be a d-colex and C ⇢ Zd+1

be a subset of k + 1 colors, where

1  k < d. The restriction ⇡C is a triple of linear operators ⇡(0)

C : Ck�1

(L) ! Ck�1

(LC),

⇡(1)

C : Cd(L) ! Ck(LC) and ⇡(2)

C : Cd�k�1

(L) ! Ck+1

(LC) defined as follows

⇡(0)

C (µ) =

(
µ if color(µ) ⇢ C,

0 otherwise,
(30)

⇡(1)

C (�) = �|C , (31)

⇡(2)

C (⌫) =

(
⌅(⌫) if color(⌫) = Zd+1

\ C,

0 otherwise,
(32)

where �|C is the k-simplex of color C belonging to the d-simplex � 2 �d(L). Recall that LC is
the restricted lattice and according to Eq. (28) ⌅(⌫) is the (k + 1)-face of LC corresponding to the
(d � k � 1)-simplex ⌫ removed from L, and thus, by definition, @C

k+1

⌅(↵) = Lkk(⌫).

Lemma 5 (Morphism). Consider the color code of type k defined on a d-colex L, where 1  k < d
and let C ⇢ Zd+1

be a subset of k + 1 colors. Then, the restriction ⇡C is a morphism between
chain complexes of the color code of type k on L and the toric code of type k on the restricted
lattice LC . In other words, the following diagram is commutative

Cd�k�1

(L)
@
d�k�1,d�����! Cd(L)

@
d,k�1����! Ck�1

(L)
??y⇡

(2)
C

??y⇡
(1)
C

??y⇡
(0)
C

Ck+1

(LC)
@C

k+1����! Ck(LC)
@C

k����! Ck�1

(LC)

(33)

Proof. Let us pick � 2 L and consider the right side of the diagram. We want to show that

⇡(0)

C � @d,k�1

(�) = @C
k � ⇡(1)

C (�). Note that for any n < k all n-simplices of � of colors included in C

belong to the k-simplex �|C = ⇡(1)

C (�) of �, namely

�n(�|C) = {⌫ 2 �n(�)|color(⌫) ⇢ C}. (34)

Thus, we obtain

⇡(0)

C � @d,k�1

(�) = ⇡(0)

C

0

@
X

µ2�
k�1(�)

µ

1

A =
X

µ2�
k�1(�)

color(µ)⇢C

µ =
X

µ2�
k�1(�|C)

µ = @k(�|C) = @C
k � ⇡(1)

C (�),(35)

which shows commutativity of the right side of the diagram.
Now we analyze the left side of the diagram. Let us pick � 2 �d�k�1

(L) and consider two cases.
In the first case, when color(�) = Zd+1

\C, all the k-simplices in the k-link of � have color C. Recall
that Eq. (4) establishes a one-to-one correspondence between the elements of the k-link Lkk(�) and



Decoders designed and analyzed for simplistic noise models. 
Dominant sources of errors not known/device-dependent. 

Generic stabilizer codes are hard to decode [HL11,IP13]. 

Desirable decoding methods should:  
— minimize human input,  
— be easily adaptable to different noise/code,  
— be efficient and have good performance. 

Idea: decoding as a classification problem [TM16]. 

[MKJ19]: neural-network decoding is versatile 
and outperforms efficient decoders.
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...

...

...

v1

v2

v3

vn�1

vn

l = 1 l = 2 l = 3

I

X

Y

Z

EXTRA: NEURAL-NETWORK 
DECODING [MKJ19]
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Maskara, K., Jochym-O’Connor’19; Hsieh&LeGall’11; Iyer&Poulin’13; Torlai&Melko’16



DISCUSSION
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Restriction Decoder: efficient decoder of color  
code in d ≥ 2 dim by using toric code decoding. 

Restriction Decoder threshold ~ 10.2% 
— better than all previous results for 2D color code,  
— on a par with 2D toric code ~ 10.3%. 

Things to explore: boundaries, circuit-level thresholds, … 

Take-home: q. computing based on 2D color code worth pursuing!

THANK YOU! 
arXiv: 1905.07393
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