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Establishing Quantum “Supremacy”

Find some computational task that can be solved easily in the quantum 
setting, even with current (or near-future) quantum technology, but are 
hard to solve in the classical setting 

Goal: in the circuit model

 quantum key distribution

 quantum fingerprinting (and many tasks involving quantum communication)
 quantum games (Bell inequalities)

We already know many such tasks:

it’s OK if the task is not really useful

Many good candidates:
Boson sampling, instantaneous quantum polynomial-time 
computation, random circuit sampling,…

In all these results, the proof of the classical hardness relies on 
conjectures (e.g., anti-concentration conjecture) or complexity-theoretic 
assumptions (e.g., generalization of  P ≠ NP)

Can we establish quantum supremacy without relying on any 
conjecture or assumption?



Establishing Quantum “Supremacy”

Find some computational task that can be solved easily in the quantum 
setting, even with current (or near-future) quantum technology, but are 
hard to solve in the classical setting 

Goal:it’s OK if the task is not really useful

Can we establish quantum supremacy without relying on any 
conjecture or assumption?

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 17])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) no shallow classical circuit can solve it on all inputs.

Our result:
There exists a computational problem such that:

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it                  
on all inputs; but 

(ii) no shallow classical circuit can solve it on a non-negligible fraction of inputs.

worst-case classical hardness

average-case classical hardness

(comparison given in later slides)

Remark: similar results have been obtained independently by many other researchers
[Bravyi, Gosset, König 18], [Bene Watts, Kothari, Schaeffer, Tal 19], [Coudron, Stark, Vidick 18]

in the circuit model



Step 1 Step 2

Graph States
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1. Prepare one qubit in state ⟩|0 +| ⟩1
2

for each node of G
2. Apply a controlled-Z operation on the qubits corresponding to each edge of G

The graph state corresponding to a graph G is the state obtained by the 
following process:

Definition (Graph State)

Example:



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3

Each node will output one bit

n=18

n/3 nodes

n/3 nodes
n/3 nodes

Key Prior Work [Barrett, Caves, Eastin, Elliot, Pironio 07]
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Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input
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multiple of 3 n=18

Each node will output one bit

This quantum process samples from the uniform distribution over all binary 
strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

Claim 1:

Each non-corner node measures its qubit in the X 
basis and then outputs the bit corresponding to 
the measurement outcome
Each corner node measures its qubit in the X basis if 
its input bit is 0, or measures it in the Y basis if its 
input bit is 1, and then outputs the bit corresponding 
to the measurement outcome

2.

3.

1. The nodes prepare the graph state corresponding to 
the whole triangle PROCESS(each node only needs to 
communicate with its two nearest neighbors)

(no communication)

(no communication)

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17
(parity of the outputs of the nodes of even index on the left)

(parity of the outputs of all the nodes of odd index)



b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

This quantum process samples from the uniform distribution over all binary 
strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

Claim 1:

Claim 2: Any classical protocol that samples (even approximately) from the same 
distribution requires long-distance communication.

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6
(parity of the outputs of the nodes of even index on the right)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17
(parity of the outputs of all the nodes of odd index)

 In any classical protocol in which no communication occurs 
between two nodes located at distance ≥ n/6: 

𝑚𝑚𝑅𝑅 is an affine function of b1 and b2
𝑚𝑚𝐵𝐵 is an affine function of b2 and b3
𝑚𝑚𝐿𝐿 is an affine function of b1 and b3
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 is an affine function of b1, b2 and b3

 Such functions cannot satisfy all the linear conditions of Claim 1

can be implemented by a constant-depth quantum circuit 
(even with nearest-neighbor topology)

any nearest-neighbor classical circuit sampling from this 
distribution must have Ω(n) depth



Advantage against Arbitrary Classical Circuits

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 17])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) any classical circuit that solves it on all inputs has depth Ω(log n).

n

nConsider a square grid of n nodes
Let m be the number of edges (m = Θ(n))
The input of the computational problem is 
a pair (a,c) ∈ 0,1 n × 0,1 m

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 

not only restricted to nearest-neighbor topology



n

nConsider a square grid of n nodes
Let m be the number of edges (m = Θ(n))
The input of the computational problem is 
a pair (a,c) ∈ 0,1 n × 0,1 m

example: n = 9

m = 12

b = 110110101110
a = 110010100

keep only the edges number 1,2,4,5,7,9,10,11
1 2

3 4 5
6 7

8 9 10
11 12

measure nodes 1,2,5,7 in the Y basis, and the others in the X basis

Y Y

Y

Y

X X

X

XX

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 



Advantage against Arbitrary Classical Circuits

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 17])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) any classical circuit that solves it on all inputs has depth Ω(log n).

n

nConsider a square grid of n nodes
Let m be the number of edges (m = Θ(n))
The input of the computational problem is 
a pair (a,c) ∈ 0,1 n × 0,1 m

straightforward: graph states on constant-degree graphs 
can be constructed by a constant-depth quantum circuit

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 



Proof of the Classical Lower Bound

n

nConsider a square grid of n nodes
Let m be the number of edges (m = Θ(n))
The input of the computational problem is 
a pair (a,c) ∈ 0,1 n × 0,1 m

 The circuit has n + m input wires and n output wires

 Associate to each of the first n input wires the corresponding node of the grid
Associate to each of the n output wires the corresponding node of the grid

 Consider any classical circuit of small depth that solves our problem 

Claim (trivial): In a classical circuit of small depth any input bit can 
contribute only to a small amount of output bits

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 

b9 z10

z25 z28



Proof of the Classical Lower Bound

n

 The circuit has n + m input wires and n output wires

 Consider any classical circuit of small depth that solves our problem 

Claim (trivial): In a classical circuit of small depth any input bit can 
contribute only to a small amount of output bits

There may be long-distance communication, but 
not for too many pairs

There exists a long cycle on which no long-
distance communication occurs

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 

 Consider the string a that specifies this long cycle
 The circuit cannot work for all strings c, from the 

argument from the first part of the talk

 Associate to each of the first n input wires the corresponding node of the grid
Associate to each of the n output wires the corresponding node of the grid



Advantage against Arbitrary Classical Circuits

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 17])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) any classical circuit that solves it on all inputs has depth Ω(log n).

Consider a square grid of n nodes
Let m be the number of edges (m = Θ(n))
The input of the computational problem is 
a pair (a,c) ∈ 0,1 n × 0,1 m

straightforward: graph states on constant-degree graphs 
can be constructed by a constant-depth quantum circuit

The computational problem asks to 
sample from the distribution 

corresponding to measuring the graph 
state specified by the string a in the 

basis specified by the string c 

for any small-depth classical circuit there exists an input 
(a,c) such that the circuit does not work

n
worst-case classical hardness



Getting Average-Case Hardness: Our Key Construction

Given a graph

we define its “extended graph” as

any graph

Similar construction used in, e.g., [Fujii and Morimae 2017]



Sampling from the Corresponding Graph State

 Consider any cycle and see it as a 
triangle by dividing it into three parts 
(of roughly the same size)

 Each corner gets a bit as input

b1

b2

b3

Each non-corner node (this includes the nodes outside the cycle) measures its qubit in 
the X basis and then outputs the bit corresponding to the measurement outcome
Each corner node measures its qubit in the X basis if its input bit is 0, or measures it in the Y 
basis if its input bit is 1, and then outputs the bit corresponding to the measurement outcome

2.

3.

1. The nodes prepare the graph state corresponding to the whole graph

This quantum process samples from the uniform distribution over all binary 
strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 ∈ 0,1 𝑁𝑁 satisfying the following condition:

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝑇𝑇 = 1 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

Claim:

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎: parity of the outputs of all blue nodes

𝑚𝑚𝑅𝑅: parity of the outputs of all green nodes in the right 
side of the triangle

𝑚𝑚𝑇𝑇: parity of the outputs of all green nodes in the 
top side of the triangle

𝑚𝑚𝐿𝐿: parity of the outputs of all green nodes in the 
left side of the triangle

𝑁𝑁: total number of vertices of the whole graph
 Each node of the graph will output a bit



b1

b2

b3

This quantum process samples from the uniform distribution over all binary 
strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 ∈ 0,1 𝑁𝑁 satisfying the following condition:

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ⨁ 𝑚𝑚𝑇𝑇 = 1 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

Claim:

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎: parity of the outputs of all blue nodes

𝑚𝑚𝑅𝑅: parity of the outputs of all green nodes in the right 
side of the triangle

𝑚𝑚𝑇𝑇: parity of the outputs of all green nodes in the 
top side of the triangle

𝑚𝑚𝐿𝐿: parity of the outputs of all green nodes in the 
left side of the triangle

Claim 2: Any classical protocol that samples (even approximately) from the same 
distribution requires long-distance communication.

 In any classical protocol in which 
no long-distance communication 
occurs between nodes on the 
three sides: 
𝑚𝑚𝑅𝑅 is an affine function of b1 and b2
𝑚𝑚𝑇𝑇 is an affine function of b1 and b3
𝑚𝑚𝐿𝐿 is an affine function of b2 and b3
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 is an affine function of b1,b2,b3

 Such functions cannot satisfy all 
the linear conditions of the claim

 Consider any cycle and see it as a 
triangle by dividing it into three parts 
(of roughly the same size)

 Each corner gets a bit as input
 Each node of the graph will output a bit



Proof of the Classical Lower Bound

n

 The circuit has n + m input wires and n output wires

 Consider any classical circuit of small depth that solves our problem 

There may be long-distance communication, but 
not for too many pairs

There exists a long cycle on which no long-
distance communication occurs

 Associate to each of the first n input wires the corresponding node of the grid
Associate to each of the n output wires the corresponding node of the grid

[Bravyi, Gosset, König 17]

Needed to remove everything 
except this red cycle



Proof of the Classical Lower Bound

 The circuit has n + m input wires and n output wires

 Consider any classical circuit of small depth that solves our problem 

There may be long-distance communication, but 
not for too many pairs

There exists a long cycle on which no long-
distance communication occurs

 Associate to each of the first n input wires the corresponding node of the grid
Associate to each of the n output wires the corresponding node of the grid

[Bravyi, Gosset, König 17]

Needed to remove everything 
except this red cycle

n



n

 The circuit has n + m input wires and n output wires

 Consider any classical circuit of small depth that solves our problem 

There may be long-distance communication, but 
not for too many pairs

There exists a long cycle on which no long-
distance communication occurs

 Associate to each of the first n input wires the corresponding node of the grid
Associate to each of the n output wires the corresponding node of the grid

with our trick
Proof of the Classical Lower Bound

No need to remove anything, since our new 
impossibility argument works even with the 
vertices outside the cycle

For this computational problem:
Our result

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all strings c; but 

(ii) any classical circuit that solves it on a non-negligible fraction of 
the strings c has depth Ω(log n).

The new computational problem asks to sample 
from the distribution corresponding to measuring 

the extended graph state of the square grid in 
the basis specified by the string c 

The input of the new computational 
problem is simply a string c ∈ 0,1 m

average-case classical hardness



n

 For technical reasons we need to work a graph slightly more complicated 

Omitted Details

Our result

 To obtain such a strong average-case hardness result we need to use amplification 
(repeat the same process on several copies of the construction)

For this computational problem:
(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         

on all strings c; but 
(ii) any classical circuit that solves it on a non-negligible fraction of 

the strings c has depth Ω(log n).



Relation with Concurrent Works

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 17 (ArXiv version)])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) no shallow classical circuit can solve it on all inputs.

Our result:
There exists a computational problem such that:

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it                  
on all inputs; but 

(ii) no shallow classical circuit can solve it on a non-negligible fraction of inputs.

There exists a computational problem such that:
Theorem ([Bravyi, Gosset, König 18 (Supplementary materials)])

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it         
on all inputs; but 

(ii) no shallow classical circuit can solve it on a constant fraction of inputs.

worst-case classical hardness

average-case classical hardness

[Bene Watts, Kothari, Schaeffer, Tal (unpublished, QIP’19, STOC’19)]:
same statement as ours + holds even against classical circuits with unbounded fanin

[Coudron, Stark, Vidick 18]: same statement as ours + application to randomness expansion
but different construction

different construction



Conclusion and Open Problems

Our result: average-case quantum advantage using shallow circuits
There exists a computational problem such that:

(i) there is a shallow (i.e., constant-depth) quantum circuit solving it                  
on all inputs; but 

(ii) no shallow classical circuit can solve it on a non-negligible fraction of inputs.

solves it only when there is no noise

Open problem #1: quantum supremacy with noisy quantum computation

[Bravyi, Gosset, König, Tomamichel 19] showed a noisy 
version of this theorem using error-correction techniques 
(for local noise)

What about more general versions of noise? 

Open problem #2: show advantage against stronger classes of classical 
computation 

but a logarithmic-depth classical circuit can solve it

Can we break this logarithmic barrier for a separation 
that does not rely on any conjecture or assumption? 

does not rely on any conjecture or assumption
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