Shape Derivatives of Entanglement Entropy and the Light Ray OPE

Adam Levine

Berkeley Center for Theoretical Physics

June 11, 2019

Based upon recent work:

Leichenauer, AL and Shahbazi-Moghaddam, arXiv:1802.02584. And forthcoming work: Balakrishnan, Chandrasekaran, Faulkner, AL and Shahbazi-Moghaddam, arXiv:1906.xx. Lots of recent progress has been made by connecting constraints from causality, quantum information theory and chaos to energy conditions.

Averaged Null Energy Condition

Non-local bound on stress energy

$$\hat{\mathcal{E}}_+(y) = \int_{-\infty}^\infty dv \, \langle \, {\mathcal{T}}_{vv}(u=0,v,y)
angle \geq 0$$

Averaged Null Energy Condition

Non-local bound on stress energy

$$\hat{\mathcal{E}}_+(y) = \int_{-\infty}^\infty dv \, \langle \, {\mathcal{T}}_{vv}(u=0,v,y)
angle \geq 0$$

u = x - t and v = x + t

Proved using a multitude of techniques. See [Faulkner et al. (2016)], [Hartman et al. (2016)]

A Local Quantum Energy Condition

Can we say anything about local energy density?

A Local Quantum Energy Condition

Can we say anything about local energy density?

The Quantum Null Energy Condition (QNEC)

$$\langle T_{vv}(y_0) \rangle \geq \frac{1}{2\pi} \frac{d}{d\lambda} \left(\frac{\delta S(\mathcal{R}(\lambda))}{\delta V(y_0)} \Big|_{V(y;\lambda)} \right)$$

$$S(\mathcal{R}(\lambda)) = -\operatorname{Tr}[
ho_{\mathcal{R}}\log
ho_{\mathcal{R}}], \
ho_{\mathcal{R}} = \operatorname{Tr}_{\bar{\mathcal{R}}}\ket{\psi}ig\langle\psi
ight|$$

- Proof uses causality as well as methods from quantum information, quantum chaos...
- Connects energy and entanglement

Conjectured: [Bousso et al. (2015)]. Proofs: [Bousso et al. (2015)], [Koeller and Leichenauer (2015)], [Balakrishnan, Faulkner, Khandker and Wang (2017)]

A Local Quantum Energy Condition

$$\left| \langle T_{vv}(y) \rangle \geq \frac{\hbar}{2\pi} \frac{d}{d\lambda} \left(\frac{\delta S(\mathcal{R}(\lambda))}{\delta V(y)} \Big|_{V(y;\lambda)} \right) \right|$$

 $S(\mathcal{R}(\lambda)) = -\operatorname{Tr}[
ho_{\mathcal{R}}\log
ho_{\mathcal{R}}], \
ho_{\mathcal{R}} = \operatorname{Tr}_{\bar{\mathcal{R}}}\ket{\psi}ra{\psi}$

Second Variations of the Entanglement Entropy

Let's look at second variations of the entanglement entropy with respect to the entangling surface position.

Second Variations of the Entanglement Entropy

Let's look at second variations of the entanglement entropy with respect to the entangling surface position.

$$rac{\delta^2 {\cal S}}{\delta X^\mu(y) \delta X^
u(y')} k^\mu k^
u = S^{\prime\prime}_{
u
u}(y) \delta^{d-2}(y-y') + {
m off}{
m -diagonal}$$

• S" stands for the "diagonal" variation of the entropy.

Second Variations of the Entanglement Entropy

$$\begin{array}{ccc}
 & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Let's look at second variations of the entanglement entropy with respect to the entangling surface position.

$$rac{\delta^2 S}{\delta X^\mu(y) \delta X^
u(y')} k^\mu k^
u = S^{\prime\prime}_{
u
u}(y) \delta^{d-2}(y-y') + ext{off-diagonal}$$

- S" stands for the "diagonal" variation of the entropy.
- Strong sub-additivity S(A) − S(AB) ≤ S(AC) − S(ABC) implies that the off-diagonal second variations are non-positive.

The Diagonal QNEC

By making $\frac{d}{d\lambda}V(y;\lambda) = \theta(\epsilon - |y - y_0|)$ and taking $\epsilon \to 0$ can make the QNEC become

$$T_{
u
u}(y_0) \geq rac{1}{2\pi} rac{d}{d\lambda} \left(rac{\delta S}{\delta V(y_0)}
ight) \Longrightarrow T_{
u
u} \geq rac{1}{2\pi} S_{
u
u}''$$

The Diagonal QNEC

By making $\frac{d}{d\lambda}V(y;\lambda) = \theta(\epsilon - |y - y_0|)$ and taking $\epsilon \to 0$ can make the QNEC become

$$T_{vv}(y_0) \geq rac{1}{2\pi} rac{d}{d\lambda} \left(rac{\delta S}{\delta V(y_0)}
ight) \Longrightarrow T_{vv} \geq rac{1}{2\pi} S_{vv}''$$

This is the "diagonal QNEC"

Saturation of the Diagonal QNEC

$$S_{
m vv}^{\prime\prime}=2\pi\left\langle T_{
m vv}
ight
angle$$

- New strong evidence that this equality holds for all QFTs with an *interacting* UV fixed point.
- N.B. *interactions are key*; Not saturated in free fields! [Bousso et al. (2015)]
- \implies The full (integrated) QNEC is a result of strong sub-additivity and *is not always saturated*.

Saturation of the Diagonal QNEC

$$S_{
u
u}^{\prime\prime}=2\pi\left\langle T_{
u
u}
ight
angle$$

- New strong evidence that this equality holds for all QFTs with an *interacting* UV fixed point.
- N.B. *interactions are key*; Not saturated in free fields! [Bousso et al. (2015)]

⇒ The full (integrated) QNEC is a result of strong sub-additivity and *is not always saturated*.

$$\mathsf{SSA} \implies \langle T_{\mathsf{vv}}(\mathsf{y}_0) \rangle \geq \frac{1}{2\pi} \frac{d}{d\lambda} \left(\frac{\delta S}{\delta V(\mathsf{y}_0)} \right)$$

Goal: Explicitly compute $\frac{\delta^2 S}{\delta V(y) \delta V(y')}$ in a special class of states.

$$|\psi\rangle = |\Omega\rangle + i\lambda O_{\mathcal{R}} |\Omega\rangle + \mathcal{O}(\lambda^2)$$

Goal: Explicitly compute $\frac{\delta^2 S}{\delta V(y) \delta V(y')}$ in a special class of states.

$$|\psi\rangle = |\Omega\rangle + i\lambda O_{\mathcal{R}} |\Omega\rangle + \mathcal{O}(\lambda^2)$$

₩

$$\rho_{\mathcal{R}} = \sigma_{\mathcal{R}} + \lambda \delta \rho + \mathcal{O}(\lambda)^2, \ \delta \rho \sim \sigma_{\mathcal{R}} O_{\mathcal{R}} \text{ for a flat } V(y) = 0 \text{ profile}$$

$$\frac{\delta^2 S}{\delta V(y) \delta V(y')} = \frac{\delta^2 \Delta S}{\delta V(y) \delta V(y')}$$

For such states, just expand $\Delta S(\rho) = -Tr[\rho \log \rho] + Tr[\sigma \log \sigma]$ using BCH...

$$egin{aligned} \Delta S(
ho) &\sim - \langle \log \sigma_{\mathcal{R}}
angle_{\psi} + \langle \log \sigma_{\mathcal{R}}
angle_{\textit{vac}} \ &+ \lambda^2 \int_{-\infty}^{\infty} ds rac{\langle O_{\mathcal{R}} e^{isK^{ ext{vac}}} O_{\mathcal{R}}
angle_{\textit{vac}}}{\sinh^2((s - i\epsilon)/2)} + \mathcal{O}(\lambda^3) \end{aligned}$$

[Faulkner, 1412.5648] where

What about for $V \neq 0$? Need this case for entropy variations...

What about for $V \neq 0$? Need this case for entropy variations...

$$egin{aligned} \Delta S[V(y)] &\sim - \left\langle \log \sigma_{\mathcal{R}}[V(y)]
ight
angle_{\psi} + \left\langle \log \sigma_{\mathcal{R}}[V(y)]
ight
angle_{vac} \ &+ \int_{-\infty}^{\infty} ds rac{\left\langle O_{\mathcal{R}} e^{isK^{ ext{vac}}[V(y)]} O_{\mathcal{R}}
ight
angle}{\sinh^2((s-i\epsilon)/2)} + \mathcal{O}(\lambda^3) \end{aligned}$$

where now

$$K^{\mathsf{vac}}[V(y)] = -\log \sigma_{\mathcal{R}}[V(y)] + \log \sigma_{\bar{\mathcal{R}}}[V(y)]$$

Detour into Vacuum Modular Hamiltonians

Simple form for vacuum "modular Hamiltonian" $-\log \sigma_{\mathcal{R}}[V(y)]$

$$- \langle \log \sigma_{\mathcal{R}} \rangle_{\psi} [V(y)] + \langle \log \sigma_{\mathcal{R}} \rangle_{vac} [V(y)] := \langle \Delta H_{\mathcal{R}}^{vac} \rangle_{\psi}$$
$$= 2\pi \int d^{d-2}y \int_{V(y)}^{\infty} dv (v - V(y)) \langle T_{vv} (u = 0, v, y) \rangle_{\psi}$$

$$\frac{\delta^2 \left\langle \Delta H_{\mathcal{R}}^{vac} \right\rangle}{\delta V(y) \delta V(y')} = \left\langle T_{vv}(y) \right\rangle \delta(y - y')$$

Detour into Vacuum Modular Hamiltonians

$$-\log \sigma_{\mathcal{R}} + \log \sigma_{\overline{\mathcal{R}}} = K_{vac}[V(y)]$$
$$= 2\pi \int d^{d-2}y \int_{-\infty}^{\infty} dv(v - V(y)) \langle T_{vv}(u = 0, v, y) \rangle_{\psi}$$

Again using BCH, two derivatives of the vacuum modular flow give:

$$\frac{\delta^2}{\delta V(y)\delta V(y')}e^{isK_{vac}[V(y)]} = (e^s - 1)^2 \hat{\mathcal{E}}_+(y)\hat{\mathcal{E}}_+(y')e^{isK_{vac}[V(y)]}$$

Returning to our formula...

$$\Delta S[V(y)] \sim \langle \Delta H_{\mathcal{R}}^{vac} \rangle + \lambda^2 \int_{-\infty}^{\infty} ds \frac{\langle O_{\mathcal{R}} e^{i s \mathcal{K}^{vac}[V(y)]} O_{\mathcal{R}} \rangle}{\sinh^2((s - i\epsilon)/2)} + \mathcal{O}(\lambda^3)$$

Returning to our formula...

$$\Delta S[V(y)] \sim \langle \Delta H_{\mathcal{R}}^{vac} \rangle + \lambda^2 \int_{-\infty}^{\infty} ds \frac{\langle O_{\mathcal{R}} e^{isK^{vac}[V(y)]} O_{\mathcal{R}} \rangle}{\sinh^2((s - i\epsilon)/2)} + \mathcal{O}(\lambda^3)$$

Take two derivatives

$$\begin{split} & \frac{\delta^2 \Delta S}{\delta V(y) \delta V(y')} \sim \langle T_{vv} \rangle_{\psi} \, \delta(y - y') \\ & + \int_{-\infty}^{\infty} ds e^{s} \, \langle O_{\mathcal{R}} \hat{\mathcal{E}}_{+}(y) \hat{\mathcal{E}}_{+}(y') e^{i s \mathcal{K}^{vac}[V(y)]} O_{\mathcal{R}} \rangle + \mathcal{O}(\lambda^3) \end{split}$$

Returning to our formula...

$$\Delta S[V(y)] \sim \langle \Delta H_{\mathcal{R}}^{vac}
angle + \lambda^2 \int_{-\infty}^{\infty} ds rac{\langle O_{\mathcal{R}} e^{isK^{vac}[V(y)]} O_{\mathcal{R}}
angle}{\sinh^2((s-i\epsilon)/2)} + \mathcal{O}(\lambda^3)$$

Take two derivatives

$$\begin{split} & \frac{\delta^2 \Delta S}{\delta V(y) \delta V(y')} \sim \langle T_{vv} \rangle_{\psi} \, \delta(y - y') \\ & + \int_{-\infty}^{\infty} ds e^s \, \langle O_{\mathcal{R}} \hat{\mathcal{E}}_+(y) \hat{\mathcal{E}}_+(y') e^{i s \mathcal{K}^{\text{vac}}[V(y)]} O_{\mathcal{R}} \rangle + \mathcal{O}(\lambda^3) \end{split}$$

Are there any delta functions in y - y' in the last term??

$$\int_{-\infty}^{\infty} ds \; e^{s} \left< O_{\mathcal{R}} \hat{\mathcal{E}}_{+}(y) \hat{\mathcal{E}}_{+}(y') e^{i s \mathcal{K}^{\mathsf{vac}}[V]} O_{\mathcal{R}}
ight>$$

Take $y \rightarrow y'$: OPE?

OPE of Averaged Null Energy Operators

[Hofman & Maldacena, 2008] considered this OPE. Recent work [Kologlu, Kravchuk, Simmons-Duffin, & Zhiboedov 2019].

$$\hat{\mathcal{E}}_+(y)\hat{\mathcal{E}}_+(y')\sim \sum_i rac{c_i\mathbb{O}'_{++}(y')}{|y-y'|^{2(d-2)- au_i(J=3)}}+(y ext{-descendants})$$

[Hofman & Maldacena, 2008] considered this OPE. Recent work [Kologlu, Kravchuk, Simmons-Duffin, & Zhiboedov 2019].

$$\hat{\mathcal{E}}_+(y)\hat{\mathcal{E}}_+(y')\sim \sum_i rac{c_i\mathbb{O}^i_{++}(y')}{|y-y'|^{2(d-2)- au_i(J=3)}}+(y ext{-descendants})$$

• \mathbb{O}_{++}^{i} should be thought of as the integral of a non-local spin-3 operator (e.g. $\int dv \int_{0}^{\infty} ds \frac{\partial \phi(v) \partial \phi(v+s)}{(s+i\epsilon)^{2}}$)

[Hofman & Maldacena, 2008] considered this OPE. Recent work [Kologlu, Kravchuk, Simmons-Duffin, & Zhiboedov 2019].

$$\hat{\mathcal{E}}_+(y)\hat{\mathcal{E}}_+(y')\sim \sum_i rac{c_i\mathbb{O}^i_{++}(y')}{|y-y'|^{2(d-2)- au_i(J=3)}}+(y ext{-descendants})$$

- \mathbb{O}_{++}^{i} should be thought of as the integral of a non-local spin-3 operator (e.g. $\int dv \int_{0}^{\infty} ds \frac{\partial \phi(v) \partial \phi(v+s)}{(s+i\epsilon)^{2}}$)
- For free theories, this OPE contains a delta function!
- For non-free theories (i.e. with a "twist gap"), delta function \rightarrow integrable power law divergence

- Argument for general states (displacement operator OPE on the twist defect)
- Argument from algebraic QFT