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Energy in Quantum Field Theories

Lots of recent progress has been made by connecting
constraints from causality, quantum information theory and
chaos to energy conditions.
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Averaged Null Energy Condition

Non-local bound on stress energy

Ê+(y) =

∫ ∞
−∞

dv 〈Tvv (u = 0, v , y)〉 ≥ 0

u = x − t and v = x + t

Proved using a multitude of techniques. See [Faulkner et al. (2016)], [Hartman et
al. (2016)]
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A Local Quantum Energy Condition

Can we say anything about local energy density?

The Quantum Null Energy Condition (QNEC)

〈Tvv (y0)〉 ≥ 1

2π

d

dλ

(
δS(R(λ))

δV (y0)

∣∣∣∣
V (y ;λ)

)
S(R(λ)) = −Tr [ρR log ρR], ρR = TrR̄ |ψ〉 〈ψ|

Proof uses causality as well as methods from quantum
information, quantum chaos...

Connects energy and entanglement

Conjectured: [Bousso et al. (2015)]. Proofs: [Bousso et al. (2015)],
[Koeller and Leichenauer (2015)], [Balakrishnan, Faulkner, Khandker and Wang

(2017)]
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A Local Quantum Energy Condition

〈Tvv (y)〉 ≥ ~
2π

d

dλ

(
δS(R(λ))

δV (y)

∣∣∣∣
V (y ;λ)

)
S(R(λ)) = −Tr [ρR log ρR], ρR = TrR̄ |ψ〉 〈ψ|

V (y ;λ) = V̇ (y)λ
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Second Variations of the Entanglement Entropy

d

dλ

(
δS

δV (y)

∣∣∣∣
V (y ;λ)

)

=

∫
dd−2y ′

δ2S

δV (y)δV (y ′)

d

dλ
V (y ′;λ)

Let’s look at second variations of the entanglement entropy with
respect to the entangling surface position.

δ2S

δXµ(y)δX ν(y ′)
kµkν = S ′′vv (y)δd−2(y − y ′) + off-diagonal

S ′′ stands for the “diagonal” variation of the entropy.

Strong sub-additivity - S(A)− S(AB) ≤ S(AC )− S(ABC ) -
implies that the off-diagonal second variations are
non-positive.

Adam Levine IFQ Workshop at YITP



Second Variations of the Entanglement Entropy

d

dλ

(
δS

δV (y)

∣∣∣∣
V (y ;λ)

)

=

∫
dd−2y ′

δ2S

δV (y)δV (y ′)

d

dλ
V (y ′;λ)

Let’s look at second variations of the entanglement entropy with
respect to the entangling surface position.

δ2S

δXµ(y)δX ν(y ′)
kµkν = S ′′vv (y)δd−2(y − y ′) + off-diagonal

S ′′ stands for the “diagonal” variation of the entropy.

Strong sub-additivity - S(A)− S(AB) ≤ S(AC )− S(ABC ) -
implies that the off-diagonal second variations are
non-positive.

Adam Levine IFQ Workshop at YITP



Second Variations of the Entanglement Entropy

d

dλ

(
δS

δV (y)

∣∣∣∣
V (y ;λ)

)

=

∫
dd−2y ′

δ2S

δV (y)δV (y ′)

d

dλ
V (y ′;λ)

Let’s look at second variations of the entanglement entropy with
respect to the entangling surface position.

δ2S

δXµ(y)δX ν(y ′)
kµkν = S ′′vv (y)δd−2(y − y ′) + off-diagonal

S ′′ stands for the “diagonal” variation of the entropy.

Strong sub-additivity - S(A)− S(AB) ≤ S(AC )− S(ABC ) -
implies that the off-diagonal second variations are
non-positive.

Adam Levine IFQ Workshop at YITP



The Diagonal QNEC

d

dλ

(
δS

δV (y)

∣∣∣∣
V (y ;λ)

)

=

∫
dd−2y ′

δ2S

δV (y)δV (y ′)

d

dλ
V (y ′;λ)

By making d
dλV (y ;λ) = θ(ε− |y − y0|) and taking ε→ 0 can

make the QNEC become

Tvv (y0) ≥ 1

2π

d

dλ

(
δS

δV (y0)

)
=⇒ Tvv ≥

1

2π
S ′′vv

This is the “diagonal QNEC”
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Saturation of the Diagonal QNEC

S ′′vv = 2π 〈Tvv 〉

New strong evidence that this equality holds for all QFTs with
an interacting UV fixed point.

N.B. interactions are key; Not saturated in free fields! [Bousso
et al. (2015)]

=⇒ The full (integrated) QNEC is a result of strong
sub-additivity and is not always saturated.

SSA =⇒ 〈Tvv (y0)〉 ≥ 1

2π

d

dλ

(
δS

δV (y0)

)
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Entanglement Entropy in Near Vacuum States

Goal: Explicitly compute δ2S
δV (y)δV (y ′) in a special class of states.

|ψ〉 = |Ω〉+ iλOR |Ω〉+O(λ2)

⇓

ρR = σR + λδρ+O(λ)2, δρ ∼ σROR for a flat V (y) = 0 profile

δ2S

δV (y)δV (y ′)
=

δ2∆S

δV (y)δV (y ′)
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Entanglement Entropy in Near Vacuum States

For such states, just expand ∆S(ρ) = −Tr [ρ log ρ] + Tr [σ log σ]
using BCH...

∆S(ρ) ∼ −〈log σR〉ψ + 〈log σR〉vac

+ λ2

∫ ∞
−∞

ds
〈ORe isK

vac
OR〉vac

sinh2((s − iε)/2)
+O(λ3)

[Faulkner, 1412.5648]

where

K vac = − log σR + log σR̄

for V(y) = 0
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Entanglement Entropy in Near Vacuum States

What about for V 6= 0? Need this case for entropy variations...

∆S [V (y)] ∼ −〈log σR[V (y)]〉ψ + 〈log σR[V (y)]〉vac

+

∫ ∞
−∞

ds
〈ORe isK

vac[V (y)]OR〉
sinh2((s − iε)/2)

+O(λ3)

where now

K vac[V (y)] = − log σR[V (y)] + log σR̄[V (y)]
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Detour into Vacuum Modular Hamiltonians

Simple form for vacuum “modular Hamiltonian” − log σR[V (y)]

− 〈log σR〉ψ [V (y)] + 〈log σR〉vac [V (y)] := 〈∆Hvac
R 〉ψ

= 2π

∫
dd−2y

∫ ∞
V (y)

dv(v − V (y)) 〈Tvv (u = 0, v , y)〉ψ

δ2 〈∆Hvac
R 〉

δV (y)δV (y ′)
= 〈Tvv (y)〉 δ(y − y ′)
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Detour into Vacuum Modular Hamiltonians

− log σR + log σR̄ = Kvac [V (y)]

= 2π

∫
dd−2y

∫ ∞
−∞

dv(v − V (y)) 〈Tvv (u = 0, v , y)〉ψ

Again using BCH, two derivatives of the vacuum modular flow give:

δ2

δV (y)δV (y ′)
e isKvac [V (y)] = (es − 1)2Ê+(y)Ê+(y ′)e isKvac [V (y)]
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Entanglement Entropy in Near Vacuum States

Returning to our formula...

∆S [V (y)] ∼ 〈∆Hvac
R 〉+ λ2

∫ ∞
−∞

ds
〈ORe isK

vac[V (y)]OR〉
sinh2((s − iε)/2)

+O(λ3)

Take two derivatives

δ2∆S

δV (y)δV (y ′)
∼ 〈Tvv 〉ψ δ(y − y ′)

+

∫ ∞
−∞

dses 〈ORÊ+(y)Ê+(y ′)e isK
vac[V (y)]OR〉+O(λ3)

Are there any delta functions in y − y ′ in the last term??
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dses 〈ORÊ+(y)Ê+(y ′)e isK
vac[V (y)]OR〉+O(λ3)

Are there any delta functions in y − y ′ in the last term??

Adam Levine IFQ Workshop at YITP



Entanglement Entropy in Near Vacuum States

∫ ∞
−∞

ds es 〈ORÊ+(y)Ê+(y ′)e isK
vac[V ]OR〉

Take y → y ′: OPE?
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OPE of Averaged Null Energy Operators

[Hofman & Maldacena, 2008] considered this OPE. Recent work
[Kologlu, Kravchuk, Simmons-Duffin, & Zhiboedov 2019].

Ê+(y)Ê+(y ′) ∼
∑
i

ciOi
++(y ′)

|y − y ′|2(d−2)−τi (J=3)
+ (y -descendants)

Oi
++ should be thought of as the integral of a non-local

spin-3 operator (e.g.
∫
dv
∫∞

0 ds ∂φ(v)∂φ(v+s)
(s+iε)2 )

For free theories, this OPE contains a delta function!

For non-free theories (i.e. with a “twist gap”), delta function
→ integrable power law divergence
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No time for...

Argument for general states (displacement operator OPE on the
twist defect)

Argument from algebraic QFT
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