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Outline

• We consider classical optimization algorithms to learn / simulate parametrized unitary 
transformations generated by two Hamiltonians applied in alternation ( QAOA ). 

• Gradient Descent algorithms are first order classical methods widely studied in the 
machine learning community for convex optimization.

• Recently, it was shown that QAOA can be used for universal quantum computation.  

S. Lloyd (2018)

Any unitary can be simulated with        parameters via the alternating operator method. 

S. Lloyd & RM (2019)

• Aim : Study the learnability / simulability of unitaries under the alternating operator / 
QAOA formalism with gradient descent.



Problem

QAOA Unitary : 

are random matrices of dimension     sampled from the GUE and                 .

Learning problem

• Given access to a target unitary                   and knowledge of           ,  can we simulate     

by a sequence                                                                using gradient descent on all       

parameters such that                                           ?

What is the time complexity = minimum number of parameters        + total number  

of gradient descent steps ? 

• Suppose                   is a shallow depth unitary (say, depth-4 with parameters                    ),

can we find a sequence      such that                               ? 



Non-Convex Optimization
QAOA Unitary :

• The space of the set of unitaries is in general non-convex.

• Standard gradient descent algorithms do not converge in non-convex spaces.

• Gradient descent usually gets stuck at some local critical point          where                                           

.



Non-Convex Optimization

• Second order optimization techniques (eg. Newton’s method : calculate Hessian and 
then it’s inverse) require, 

a) at least            time for a Hessian matrix of dimension     .                      

b) fine tuning of hyperparameters.

• Gradient descent methods can be powerful due to their computational efficiency from 
the above perspectives.

Require          time to calculate gradients for      parameters, fine tuning not required.

• Can gradient descent optimization enable us to learn paramterized/QAOA unitaries ? 



Results so far

QAOA Unitary :

• We find that gradient descent optimization requires at least       parameters in      to 
approximate                 with accuracy    .where                is sampled from a parameter 
manifold of dimension           .  

The rate of learning increases when gradient descent is done in overparametrized  
spaces with dimension          .  

• We propose a greedy algorithm for learning low-depth in time ≪ . However 
the success probability of efficient learning in non-convex spaces is not ideal. 
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Gradient Descent 

Some basic equations for gradient descent optimization ,

• Loss function :               =

• Gradients :          ,           

• Learning rate :      , fixed to a certain value during the entire iteration .  e.g.    = 0.001 

• Parameter update :                            ,   

Aim :  Optimize              to a desired accuracy    .   



Learning with gradient descent

In this work, 

Loss Function :              =                                      .                

Aim : Learn                 to an accuracy                     .

Simulations for 32 dimension target unitaries with          or 512 parameters 
while  varying the number of learning parameters        in     .              



Gradient Descent Numerics

A `transition’ occurs when gradient descent is performed in the overparameterized 
domain,                   .

The rate of learning increases as we do gradient descent on more parameters beyond      . 



Gradient Descent Numerics (Contd.) 

α = rate of learning 
For the first 200 gradient descent steps,  Loss = κ (no. of grad. descent steps)−α

The underparametrized models learn                 following a power law while the 
overparametrized models learn faster than the power law. 

Underparametrized Overparametrized



A Greedy Algorithm for low depth QAOA unitary

Can we learn low depth                  with <<       parameters ?  

A layer =                       

Pseudocode : Given access to                with          known .

1. 𝑎0 = Initial Loss =                           .

2.  Add a layer to     with parameters          . Cost function =                                                 .

3.  Perform gradient descent on           to obtain optimized            .   

𝑎1 = Updated Loss =                                        .   and 𝑎1 < 𝑎0 .

4.  Add a new layer with parameters           to the layer in the previous step. Updated Cost

function =                                                         .

5.  Perform gradient descent on                      to obtain optimized                    

𝑎2 = Updated Loss =                                                           and 𝑎2 < 𝑎1 .

6.  Repeat the above for n steps till convergence i.e. 𝑎𝑛 <  ϵ.



Greedy Algorithm Performance

• Approximating                with depth-4 corresponding to n = 2, 3, 4, 5, 6 qubits . 

• Succeeds in finding a sequence       with at most 20-24 parameters and 

• Success probability of learning in non-convex spaces is not ideal , between 0.1 and 0.15 .

• Usually gets stuck at some local critical point or saddle point . 

Can we learn low depth                 with <<      parameters ?  



Learning with random local circuits 
A general learning setting                        Motivation : Study many-body dynamics / MBL .

Goal : Learn / Simulate                with  

without assuming knowledge of          .

,     are random matrices sampled from GUE. 

Result :  Simulates depth-4                  when gradient                  

descent is done on all        parameters.

Can the local circuit model simulate low depth 

with <<        parameters ? Can it simulate 
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Remarks
QAOA Unitary :

• Numerical simulations of the learnability of                 with at least        parameters by 
gradient descent.     

• A greedy algorithm for simulating short depth                with <<       parameters. Success 
probability is not ideal. 

In progress  

• A rigorous justification of the requirement of more than        parameters for learning  

. Investigate the distribution of critical points in the loss function landscape.

• A local circuit model algorithm that can efficiently simulate low depth                 with

higher success probability than the greedy one. 

• Noise resilience of simulating constant depth QAOA unitaries in NISQ devices.


