Learning Unitaries with gradient descent optimization

Reevu Maity (Oxford)

In progress with Bobak Kiani (MIT), Zi-Wen Liu (Perimeter), Seth Lloyd (MIT) & Milad Marvian(MIT)

> It from Qubit 2019 June 13

- We consider classical optimization algorithms to learn / simulate parametrized unitary transformations generated by two Hamiltonians applied in alternation (QAOA).
- Gradient Descent algorithms are first order classical methods widely studied in the machine learning community for convex optimization.
- Recently, it was shown that QAOA can be used for universal quantum computation.

S. Lloyd (2018)

Any unitary can be simulated with $2d^2$ parameters via the alternating operator method.

S. Lloyd & RM (2019)

 Aim : Study the learnability / simulability of unitaries under the alternating operator / QAOA formalism with gradient descent.

Problem

QAOA Unitary : $\mathcal{U}(\vec{t}, \vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$

A, B are random matrices of dimension d sampled from the GUE and $2N \leq d^2$.

Learning problem

• Given access to a target unitary $\mathcal{U}(\vec{t*}, \vec{\tau*})$ and knowledge of A, B, can we simulate \mathcal{U} by a sequence $\mathcal{V}(\vec{t}, \vec{\tau}) = e^{-iB\tau_K}e^{-iAt_K}\cdots e^{-iB\tau_1}e^{-iAt_1}$ using gradient descent on all 2K parameters such that $\|\mathcal{U}(\vec{t*}, \vec{\tau*}) - \mathcal{V}(\vec{t}, \vec{\tau})\| \leq \epsilon$?

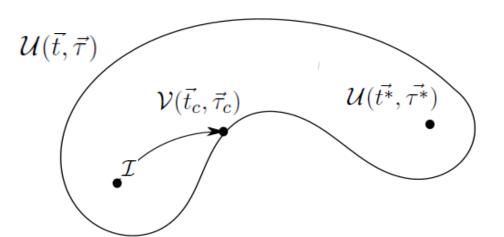
What is the time complexity = minimum number of parameters 2K + total number of gradient descent steps ?

• Suppose $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ is a shallow depth unitary (say, depth-4 with parameters $t_1^*, \tau_1^*, t_2^*, \tau_2^*$), can we find a sequence \mathcal{V} such that $K \leq O(\text{polylog } d)$?

Non-Convex Optimization

QAOA Unitary : $\mathcal{U}(\vec{t}, \vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$

- The space of the set of unitaries $\mathcal{U}(\vec{t}, \vec{\tau})$ is in general non-convex.
- Standard gradient descent algorithms do not converge in non-convex spaces.



• Gradient descent usually gets stuck at some local critical point $\vec{t}_c, \vec{\tau}_c$ where $\|\mathcal{U}(\vec{t}^*, \vec{\tau}^*) - \mathcal{V}(\vec{t}_c, \vec{\tau}_c)\| > \epsilon$.

Non-Convex Optimization

- Second order optimization techniques (eg. Newton's method : calculate Hessian and then it's inverse) require,
 - a) at least $O(m^2)$ time for a Hessian matrix of dimension m.
 - b) fine tuning of hyperparameters.
- Gradient descent methods can be powerful due to their computational efficiency from the above perspectives.

Require O(m) time to calculate gradients for m parameters, fine tuning not required.

• Can gradient descent optimization enable us to learn paramterized/QAOA unitaries ?

Results so far

QAOA Unitary : $\mathcal{U}(\vec{t}, \vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$ $\mathcal{V}(\vec{t}, \vec{\tau}) = e^{-iB\tau_K} e^{-iAt_K} \cdots e^{-iB\tau_1} e^{-iAt_1}$ $\|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) - \mathcal{V}(\vec{t}, \vec{\tau})\| < \epsilon$

• We find that gradient descent optimization requires at least d^2 parameters in \mathcal{V} to approximate $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ with accuracy ϵ where $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ is sampled from a parameter manifold of dimension $\leq d^2$.

The rate of learning increases when gradient descent is done in overparametrized spaces with dimension $\geq d^2$.

• We propose a greedy algorithm for learning low-depth $U(\vec{t}, \vec{\tau})$ in time $\ll d^2$. However the success probability of efficient learning in non-convex spaces is not ideal.

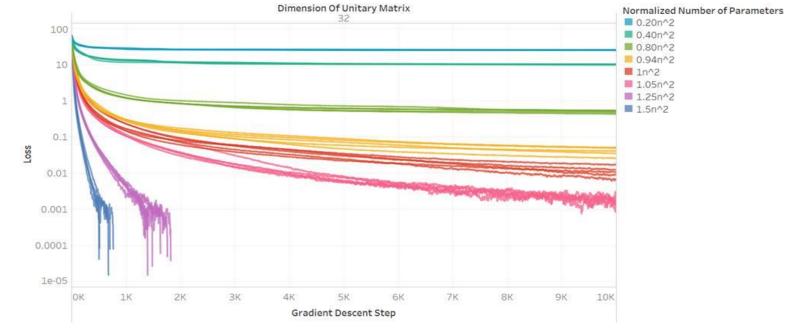
$$\mathcal{U}(\vec{t},\vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$$
$$\mathcal{V}(\vec{t},\vec{\tau}) = e^{-iB\tau_K} e^{-iAt_K} \cdots e^{-iB\tau_1} e^{-iAt_1}$$

Some basic equations for gradient descent optimization,

- Loss function : $C(\vec{t}, \vec{\tau}) = \|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) \mathcal{V}(\vec{t}, \vec{\tau})\|$
- Gradients : $\nabla_t C$, $\nabla_\tau C$
- Learning rate : η , fixed to a certain value during the entire iteration . e.g. η = 0.001
- Parameter update : $t \leftarrow t \eta \nabla_t C$, $\tau \leftarrow \tau \eta \nabla_\tau C$

Aim : Optimize $\mathcal{C}(\vec{t},\vec{\tau})$ to a desired accuracy ϵ .

Learning with gradient descent

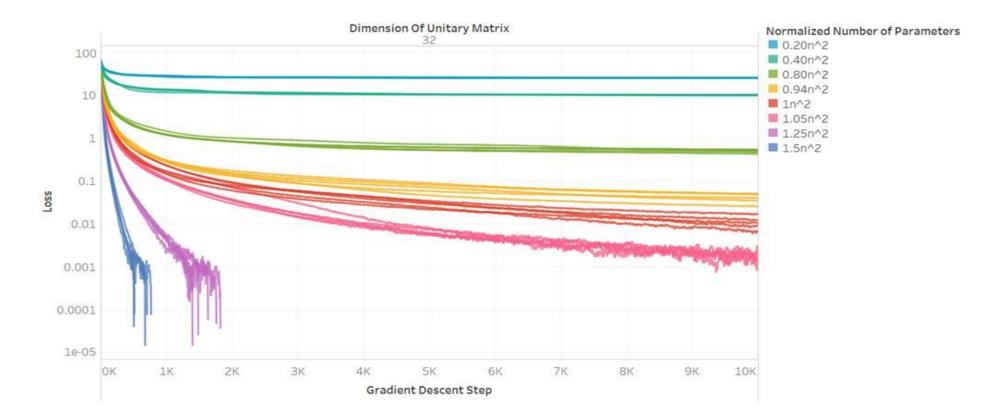


In this work,

Loss Function : $C(\vec{t}, \vec{\tau}) = \|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) - \mathcal{V}(\vec{t}, \vec{\tau})\|_2^2$. Aim : Learn $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ to an accuracy $O(10^{-8}.d^2)$.

Simulations for 32 dimension target unitaries $\mathcal{U}(\vec{t}, \vec{\tau})$ with $d^2/2$ or 512 parameters while varying the number of learning parameters 2K in \mathcal{V} .

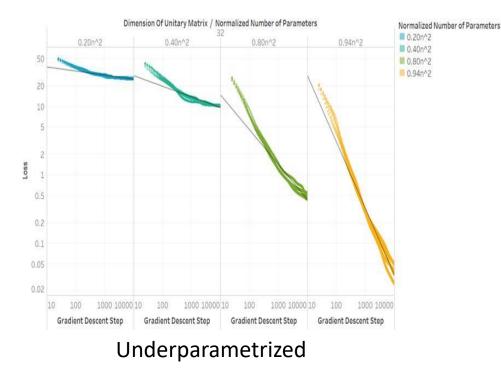
Gradient Descent Numerics

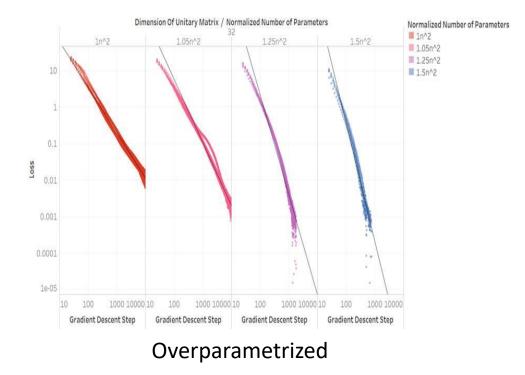


A `transition' occurs when gradient descent is performed in the overparameterized domain, $2K \ge d^2$.

The rate of learning increases as we do gradient descent on more parameters beyond d^2 .

Gradient Descent Numerics (Contd.)





α = rate of learning

For the first 200 gradient descent steps, Loss = κ (no. of grad. descent steps)^{- α}

The underparametrized models learn $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ following a power law while the overparametrized models learn faster than the power law.

A Greedy Algorithm for low depth QAOA unitary

Can we learn low depth $U(\vec{t*}, \vec{\tau*})$ with << d^2 parameters ? A layer = $e^{-iB\tau}e^{-iAt}$

Pseudocode : Given access to $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ with A, B known .

- 1. $a_0 = \text{Initial Loss} = \|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) \mathcal{I}\|_2^2$.
- 2. Add a layer to \mathcal{I} with parameters t_1, τ_1 . Cost function = $\|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) e^{-iB\tau_1}e^{-iAt_1}\|_2^2$.
- 3. Perform gradient descent on t_1, τ_1 to obtain optimized t_1^1, τ_1^1 .

 $a_1 = \text{Updated Loss} = \|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) - e^{-iB\tau_1^1}e^{-iAt_1^1}\|_2^2 \text{ and } a_1 < a_0$.

- 4. Add a new layer with parameters t_2, τ_2 to the layer in the previous step. Updated Cost function = $\|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) e^{-iB\tau_2}e^{-iAt_2}e^{-iB\tau_1^1}e^{-iAt_1^1}\|_2^2$
- 5. Perform gradient descent on $t_1^1, \tau_1^1, t_2, \tau_2$ to obtain optimized $t_1^2, \tau_1^2, t_2^2, \tau_2^2$. $a_2 = \text{Updated Loss} = \|\mathcal{U}(\vec{t^*}, \vec{\tau^*}) - e^{-iB\tau_2^2}e^{-iAt_2^2}e^{-iB\tau_1^2}e^{-iAt_1^2}\|_2^2$ and $a_2 < a_1$.
- 6. Repeat the above for n steps till convergence i.e. $a_n < \epsilon$.

$$\mathcal{U}(\vec{t},\vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$$

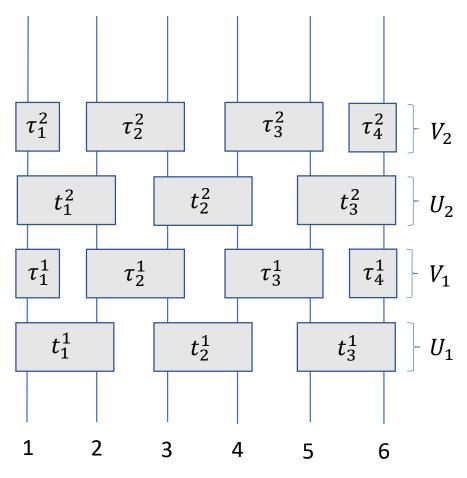
 $\mathcal{V}(\vec{t},\vec{\tau}) = e^{-iB\tau_K} e^{-iAt_K} \cdots e^{-iB\tau_1} e^{-iAt_1}$

Can we learn low depth $U(\vec{t*}, \vec{\tau*})$ with << d^2 parameters ?

- Approximating $\mathcal{U}(\vec{t*}, \vec{\tau*})$ with depth-4 corresponding to n = 2, 3, 4, 5, 6 qubits .
- Succeeds in finding a sequence \mathcal{V} with at most 20-24 parameters and $\|\mathcal{U}(\vec{t*}, \vec{\tau*}) \mathcal{V}(\vec{t}, \vec{\tau})\| \leq \epsilon$
- Success probability of learning in non-convex spaces is not ideal, between 0.1 and 0.15.
- Usually gets stuck at some local critical point or saddle point .

Learning with random local circuits

A general learning setting



Motivation : Study many-body dynamics / MBL . Goal : Learn / Simulate $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ with $U_1 V_1 U_2 V_2 \dots U_N V_N$ without assuming knowledge of A, B.

 $U = e^{-iu_{12}t_1} \otimes e^{-iu_{34}t_2} \otimes e^{-iu_{56}t_3}$

 $V = e^{-iv_1\tau_1} \otimes e^{-iv_{23}\tau_2} \otimes e^{-iv_{45}\tau_3} \otimes e^{-iv_6\tau_4}$

 \boldsymbol{u} , $\boldsymbol{v}~$ are random matrices sampled from GUE.

Result : Simulates depth-4 $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ when gradient descent is done on all d^2 parameters.

Can the local circuit model simulate low depth $\mathcal{U}(\vec{t*}, \vec{\tau*})$ with << d^2 parameters ? Can it simulate Haar random unitaries ?

Remarks

QAOA Unitary : $\mathcal{U}(\vec{t}, \vec{\tau}) = e^{-iB\tau_N} e^{-iAt_N} \cdots e^{-iB\tau_1} e^{-iAt_1}$

- Numerical simulations of the learnability of $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ with at least d^2 parameters by gradient descent.
- A greedy algorithm for simulating short depth $\mathcal{U}(\vec{t^*}, \vec{\tau^*})$ with << d^2 parameters. Success probability is not ideal.

In progress

- A rigorous justification of the requirement of more than d^2 parameters for learning $\mathcal{U}(\vec{t*}, \vec{\tau*})$. Investigate the distribution of critical points in the loss function landscape.
- A local circuit model algorithm that can efficiently simulate low depth $U(\vec{t*}, \vec{\tau*})$ with higher success probability than the greedy one.
- Noise resilience of simulating constant depth QAOA unitaries in NISQ devices.