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Motivation for HEP (Part I)

bulk-boundary correspondence via entanglement

HEP (e.g., AdS/CFT): QI (e.g., MBQOC):

geometry/gravity at bulk lattice geometry/symmetry at bulk

= correlations/complexity = correlations/space-time complexity/
at boundary computational universality at boundary

Measurement-based quantum computation (MBQC) is a systematic
way to connect entanglement to computational complexity.

* analogy with Page-Wooters's timeless construction of time (Part IT)

« complexity = entanglement + classical communication (Part ITIT)



2D cluster states and graph states
[ review: Hein et al., quant-ph/0602096]

1. For agraph 6,
vertices = qubits, edges = Ising-type interaction pattern.
degree is the number of edges from a vertex.

6)= [] €Z“”|+)", €Z=diag(1,11,-1),|+)=2(|0)+|1))
(a,b)eedges
2. joint eigenstate of N commuting correlation operators for N qubits.

K.|6)=|6), K,=0 ® o7

beN,

3. stabilizer states = graph state, up to local unitaries (not local Clifford).
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2D cluster state GHZ state 7-qubit Steane codeword



Simple example: 1D cluster state
[Briegel & Raussendorf, PRL 2001]
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Key idea of MBQC

Steering quantum information by quantum
correlation (entanglement)
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Motivation for HEP (Part II)

relative state using a hidden U(1) degree of freedom 1 in cluster state

Page-Wootters's timeless construction of time (1983): precursor of Feynman clock

Wheeler-DeWitt equation: wavefunction of universe is static.

AB
2 |0)AP = 0
Consider a joint system by clock A and system B,
A A A
A = h*@17 -140h" )" = et o)

Schroedinger equation of B relative to clock A

%(t\\ﬁ[!) = (t| K @1 |W) = (t| A +1h" |V) = b7 (| V).

(

cluster-state example: hd = g, I o



Universality in cluster-state MBQC model
Raussendorf, Briegel, PRL 86, 5188 (2001)

Universality of 20 cluster states

the family of 2D cluster states with various sizes is a universal resource
in measurement-based quantum computation (MBQC).
proof:

the universal set of gates {CNOT, SU(2)} is simulatable and
composable as the circuit model.

Note that there are no exponential overheads in nhumbers of qubits,
local quantum operations, and classical communication (LOCC).

CNOT SU(2) with Euler angles
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Motivation for HEP (Part III)

cluster model ~ Page-Wootters mechanism + classical communication
Miyake, arXiv:1111.2855 (2011)

Note Holevo theorem: 1 cbit out of 1 qubit

==
 simulate "time" direction
Q4 1 ebit + 2 parallel cbits (teleportation)
P O
| 0, « simulate "space” direction
¢ 1 ebit + 2 opposite cbits (synchronization of
local clocks)

Measurement-based quantum computation (MBQC) allows to count space
and time complexity in tferms of entanglement and classical information



(Incomplete) zoo of universal entanglement for MBQC

Wha’r kinds of entangled states are computationally universal under LOCC?
tensor network states
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AKLT states by two-body Hamiltonian (with
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Motivations for HEP

bulk-boundary correspondence via entanglement

HEP (e.g., AdS/CFT): QI (e.g., MBQOC):

geometry/gravity at bulk lattice geometry/symmetry at bulk

= correlations/complexity = correlations/space-time complexity/
at boundary computational universality at boundary

Measurement-based quantum computation (MBQC) is a systematic
way to connect entanglement to computational complexity.

* analogy with Page-Wooters's timeless construction of time (Part IT)

« complexity = entanglement + classical communication (Part ITIT)

What kinds of entangled states are computationally universal under LOCC?
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Symmetry-protected topological order

* Symmetry
* Family of states with a common symmetry
 Generally consider finite abelian groups (G such as copies of Z5 .

* Global symmetries act in an “on-site” manner.

u(g) = Onsite representation

S(g) = Global representation

e X-type symmetries of cluster states define SPTO.
* Want to do MBQC in a way that is compatible with symmetry.
* Mainly restrict to X- measurements. (non-network MBQC)

6/18/19
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Symmetry-protected topological order
* Topological
* For periodic boundary conditions the ground state is unique

N *Local Hamiltonian terms
c v H = — E Zj—lXij—H give complete set of

j=1 commuting observables.

invariant under global X’s (Z,), or even-site X’s and odd-site X's (Z5 x Z5)

* Degeneracy of ground states occurs for open boundary (fractionalized edge states)
N-—1

‘ ‘ ‘ ‘— H:—sz—1Xij+1
j=2
XL — X, 7, ~ 2. X, bulk-boundary correspondence
T 12 ®] 2 +1 in MBQC:
47 = [ ~ @szj universality at boundary in

terms of bulk entanglement

6/18/19



Symmetry-protected topological order
* Topological considerations of symmetry
* For 1D SPTO the symmetry is represented projectively at the boundary

ZQXZQ

Linear Rep. —— LY = 2

Linear Representation - u(g)u(h) = u(gh)

Projective Representation — V(g)V(h) = w(g, h)V(gh)
. where w(g,h) € U(1) | ProjectiveRep. — XY — 1/

* The only non-trivial projective representation of Z5 x Z5 is equivalent to the
Pauli matrices.

* For each copy of Z5 x Z5 we get a qubit degree of freedom at the edge!



Phase of symmetry-protected topological order

* Symmetry-protected
* No symmetry respecting perturbation can lift the degeneracy.
e Ground states in same phase related by a symmetric local unitary (SLU).

constant-depth local guantum circuit

\v/ U- such that U(g)-U-:-U-u<g) |¢>

a u(g)—F 1—_tulg) ;

CSILENISE LS

Illqlll
I
N
MAMAAL

SILEJISE LS

* No intrinsic topological order!

X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82,
1555138 (2010).



Symmetries of 2D cluster states

* Cluster states have many fancy symmetries
* Biggest symmetry group is full stabilizer group.

LeEN (v)

* Smallest is global Z5 symmetry.
* Apply all stabilizers!

* One symmetry generator

*Note for odd degree lattice the action is a global Y .
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Symmetries of cluster states

* 1/k-Fractional symmetry.
* On a k-colorable graph, apply stabilizers on each vertex of a given color.
* Well studied symmetry. Common for defining symmetric phases of matter.

a N

k-colorable

6/18/19 19



Symmetries of cluster states

* Subsystem symmetry
* Apply stabilizer on some site. Try to add as few more to cancel all Z ’s.
e Periodic structure for periodic boundaries. This is the main topic of this work.
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Symmetries of cluster states

e 1-form symmetry.
* Closed loops of X - operators.
* Deformable = Product of two loops is a bigger loop

4 N

L
EA =

extensively large.

6/18/19



From 2D to quasi-1D

Raussendorf, Okay, Wang, Stephen, Nautrup, PRL 122, 090501 (2019)

* Embed a 2D lattice cluster state on a torus and group together an
nXxXn block of sites.

OrE 1l

X

e Periodic structure of Z%’”subsystem Q’QQ
symmetry contained within each Q’Q’Q

tensor! Q’ Q’ ’
* Capable of encoding n qubits at the ’Q”’Q’
edge and is universal for MBQC. ”’Q’Q’Q’Q””

6/18/19 22
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Tensor Networks and MBQC

* The matrix product state description of the 1D cluster state is useful.
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Convenient tensor networks for 2D cluster
states

* Think of 2D cluster state as coupled 1D cluster states.
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e X - basis measurements turn the TN into a Clifford circuit.
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Quantum Cellular Automata

* QCA = Set of Hilbert spaces + translation invariant local update rules
* i.e. A quantum circuit applied iteratively in time.
* Evolution specified by transfer matrix. Ty (t)) = [¢(t + 1))

e Clifford QCA are efficiently simulable! (Gottesmann Knill)

5(33) f(z L 9 *Binary representation is important for
®X P(f) — f = |:2n simulation
T € Aut(F2") such that TSTT =% | X1/0 1 1 0 —
§X2 0O 1 0 O} __
. Z111 0 0 0]
- Zo\1 0 0 1

0 1 . . .
> = (1 O) i.e. [’ is a binary matrix

Stephen, D. T, et. Al. R. (2018). ArXiv:1806.08780



Quantum Cellular Automata

* Clifford QCA can be classified into 3 types. Guetschow et al., JIMP 51, 015203 (2010)

Periodic Glider Fractal

e Operator support is fractal
* Period varies wildly

e Period is constant and
independent of

e Supports gliders
(eigenoperators up to

| |
| |
| |
| |
| |
| |
. | . |
system Slze I translatlon) I
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e & : L R
I —o— X I &
—— [ —— | I 60
| X —H—7 |
—e— X —o— I |
X X X I J/ —e— H I %0
74 | | . s
' 1 ' 10 20 40 60 80 100
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QCA and subsystem symmetries

* There is a 1-1 correspondence between QCA evolution and subsystem
symmetries of cluster phases.
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QCA and subsystem symmetries

|

* There is a 1-1 correspondence between QCA evolution and subsystem
symmetries of cluster phases.

e 2n generators of Pauli group = 2n real-space
symmetry generators.

* Subsystem symmetries define a SPT phase, cluster

phase, universal for MBQC.

 We study cluster phases of Archimedean lattices.
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2D cluster SPTO phase by subsystem symmetry

Daniel, Alexander, Miyake, in preparation

All ground states (which are not necessarily stabilizer states) in 2D cluster phase on a 2D
Archimedean lattice with Ribbon/Cone/Fractal subsystem symmetry are universal for MBQC.

* Archimedean lattices are vertex translative (each vertex locally looks the same).

(4%) (3°) (3,4,6,4) (6) (4,8%) (4,6,12) (3,6) (3°,4%)  (3,6,3,6) (3,12%)
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Real space Real space Virtual space |Computational | Lattices
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Ribbon 3" Periodic Yes ““u;m"'""lm.* *Previously known
Cone 3" Glider Yes (4%)¥ (3%), (3,4,6,4) Raussendorf et al
Fractal Fractal Yes (6°)* (4,8%), (4,6,12), PRL 122 090501 ("2019)
f 4 . f o n2 a3 2 ’ o
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| - Form gON) No No | (3.6,3,6), (3,12%) PRA 98, 022332 (2018)
| ‘;.]. l.‘]-;trlinll.‘ll- ':'_. . - | - . All STephen et Cll.,

1806.08780



Lattices supporting glider QCA

e Consider the (3,4,6,4) lattice. We first construct tensor network
description.
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Lattices supporting glider QCA

* Gliders are operators whose support is translated by the QCA.

6/18/19
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Lattices supporting glider QCA

* Gliders are operators whose support is translated by the QCA.

Site
(0] ~ (e)] (@)] SN w N —

6/18/19
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Lattices supporting glider QCA

* Gliders are operators whose support is translated by the QCA.

NN P -

(@)}
—
~
[ee}
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Lattices supporting glider QCA

* Defining symmetry for the SPTO (cluster phase) is the cone symmetry.




Lattices supporting glider QCA

e Universal gates achieved via measurement in (X,Y)-plane.

6/18/19 Tl T2 T3 35



Lattices supporting glider QCA

e Universal gates achieved via measurement in (X,Y)-plane.

6/18/19
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Lattices supporting glider QCA

* By analogous argument we find the following gate set.

Gates Measurement

e~ Wi (1,1)

e 10X (n,1)
6—739Z41X4z+1Z4l+2 (27 4] + 1)

e Other lattices supporting glider QCA and cone symmetries.

(4%) (3%)

AAAAA



Lattices supporting fractal QCA

* Fractal QCA are characterized by operators supported on a fractal
subset of space-time points.

50

100

150

O
05200

mm::::mmml
[=][=][=][=][=][=]

250
Ty 15 T3 Ty
300

* QCA period varies spuriously 350

with system size. 400

50 100 150 200
Time
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Lattices supporting fractal QCA

* The defining symmetry of the cluster phase is the fractal symmetry.




Lattices supporting fractal QCA

* For the (4,8%) lattice the following gate set can be derived.

Gates Measurement
e~ 102 (1,1)
e 10X (1,1)
e~ 102211 X2 (27 2] — 1)
e~ W22 X241 (1 —1,20)

e Other lattices supporting fractal QCA and fractal symmetries.
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More fractal QCAs
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Lattices with no QCA structure

e Lattices with 1-form symmetries prevent unital QCA.
e 1-form symmetries are closed loops of operators

* Symmetry operators are deformable as multiplying two together gives a
larger loop.

* Pauli-X measurements at the edge implement YY parity measurements.

Measurement outcome tells | | | |
us YY-parity of two qubits. |
Hiyy IIiyy
\\ Hiyy Miyy
T - \ — H [+ XJt (— ] | | | -
= (—1)d1tiz+isyy . j Mayy Moyy
[ — H X2 |— | | | | .
Hiyy H:EYY

*This lattice can teleport a single qubit encoded in a repetition code.

6/18/19 42



Summary and Outlook for HEP

summary:
* bulk-boundary correspondence via entanglement

* Measurement-based quantum computation (MBQC) allows to count space
and time complexity in terms of entanglement and classical information

All ground states (which are not necessarily stabilizer states) in 2D cluster phase on a 2D
Archimedean lattice with Ribbon/Cone/Fractal subsystem symmetry are universal for MBQC.

Outlook: « universality -> scrambling in 3 classes of Clifford QCA
« 1-form symmetry, gauge theories, spurious topological entropy
« QCA for quantum field theory

* subsystem symmetries for non-Eucleadian lattices



