# Information leakage from black holes with symmetry

### Yo\$hifumi NAKATA

Kyoto university

E. Wakakuwa, and YN (arXiv:1903.05796) YN, E. Wakakuwa, and M. Koashi (arXiv:19xx.xxxx)





# **Outline of the talk**

# Outline

### 1. Black hole information paradox

## 2. Review of the Hayden-Preskill toy model

• Q.I. approach to the paradox

### 3. Summary of our results

Information leakage from a rotating black hole

## 4. Technical contribution

- Partial decoupling theorem
- 5. Summary and Discussions

### Black hole information paradox 1

## Information paradox of black holes

Does Hawking radiation carry away information from black holes?

Quantum theory  $\rightarrow$  YES, since the dynamics is unitary & reversible.



### Black hole information paradox 2

## Information paradox of black holes

Does Hawking radiation carry away information from black holes?

Quantum theory  $\rightarrow$  YES, since the dynamics is unitary & reversible.

The holographic principle indicates that

 $\rightarrow$  the whole dynamics should be unitary.



 $\rightarrow$  the information is preserved = radiation should carry info.



**How** does radiation carry the info. away from black holes? **How quickly?** 

## Hayden-Preskill toy model ['07]

Quantum information theoretic proposal towards the resolution.

# **Outline of the talk**

# Outline

## **V**. Black hole information paradox

## 2. Review of the Hayden-Preskill toy model

• Q.I. approach to the paradox

### 3. Summary of our results

Information leakage from a rotating black hole

## 4. Technical contribution

- Partial decoupling theorem
- 5. Summary and Discussions





### Setting:

- 1. Alice throws her quantum info. A (k qubits) into a black hole  $X_{\text{in}}$  (N qubits).
- 2. The whole black hole  $S = AX_{in}$ undergoes time evolution  $U^S$ .
- 3. A part  $S_1$  ( $\ell$  qubits) of S is evaporated.
- 4. Bob applies a recovery operation to  $S_1$  and early radiation  $X_{out}$ .

### Assumption:

U<sup>S</sup> is unitary and is sufficiently
 Haar scrambling (Haar random).

Entanglement between the initial black hole X<sub>in</sub> and the early radiation X<sub>out</sub>





### "A black hole is hardly black at all. It is an information mirror"

#### Far reaching consequences (incomprehensive):

- Scrambling
  [Sekino & Susskind '08] [Lashkari et al '13] [Shenker & Stanford '15]...
- Out-of-Time-Ordered-Correlators (OTOCs) [Roberts & Stanford '15] [Hosur et al '16] ...
- Firewalls
  [AMPS '13] [Yoshida '19]...
- Holographic principles...

### To quantum information:

- Decoding algorithm of random encoder [Yoshida & Kitaev '17] [Landsman et al '19]
- Information theory is useful also in physics?



# **Outline of the talk**

# Outline

## **V**. Black hole information paradox

# 2. Review of the Hayden-Preskill toy model

• Q.I. approach to the paradox

### 3. Summary of our results

Information leakage from a rotating black hole

## 4. Technical contribution

- Partial decoupling theorem
- 5. Summary and Discussions

### What happens

### if we take the symmetry of BHs into account?

### Immediate implication:

- ∃conservation quantities
  - $\rightarrow U^S$  CANNOT be fully scrambling.

### How does this affect the information leakage?

### No exact symmetry in Q. gravity

- Harlow & Oguri '19, etc...
- ∃approximate symmetry to be consistent with classical BHs
- In early time, symmetry restricts U<sup>S</sup>.

We start with an exact symmetry.



## Information leakage from Kerr black holes 1

### What happens

### if we take the symmetry of BHs into account?

- Kerr black holes = BHs with an axial symmetry
  - $\rightarrow$  Z-component of angular momentum is conserved.





$$U^S = \bigoplus_{m=0}^{N+k} U_m^S$$

 $\checkmark m$  is the Z-component of angular momentum









HP result without any symmetry

Entanglement of the initial BH

$$\Delta \le 2^{(N-H_{\min}(\xi))/2+k-\ell}$$



### When BH has an axial symmetry...

- Entanglement of the initial BH, and its relation to symmetry
- Asymmetry of the state of the initial black hole

For symmetry-inv. Info of Alice:  $\Delta_{inv} \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}}$ For the whole Info of Alice:  $\Delta \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}} + n(\xi)$ 







 When the initial BH X<sub>in</sub> is maximally entangled with the early radiation X<sub>out</sub> (infinite temp.),

The recovery error:  $\Delta \leq 2^{k-\ell} + O(N^{-0.5})$ 

- k: # of Alice's qubits
- *l*: # of Hawking radiation
- N: Size of the initial BH

(If  $\exists$  symmetry,  $\Delta \leq 2^{k-\ell}$  [HP07])



• The info leaks out extremely quickly iff the initial Kerr BH is sufficiently large  $(N \gg O(2^k))$ .

A Kerr black hole is an information mirror iff it is sufficiently large.

# **Outline of the talk**

# Outline

## **V**. Black hole information paradox

# 2. Review of the Hayden-Preskill toy model

• Q.I. approach to the paradox

## **%** Summary of our results

Information leakage from a rotating black hole

## 4. Technical contribution

- Partial decoupling theorem
- 5. Summary and Discussions

## Symmetry-invariant and -variant info. 1

- Information of A is stored in the correlation b/t the reference R.
  ✓ Under certain assumptions, MES |Φ⟩<sup>AR</sup> is sufficient.
- The information in  $|\Phi\rangle^{AR}$  can be classified in terms of symmetry.



## Symmetry-invariant and -variant info. 2

The information in  $|\Phi\rangle^{AR}_{k}$  can be classified in terms of symmetry  $\checkmark$  Hilbert space  $\mathcal{H}^{A} = \bigoplus_{\kappa=0}^{k} \mathcal{H}^{A}_{\kappa}$  (Decomp. by the axial symmetry)  $\checkmark P^{A}_{\kappa}$ : projection onto  $\mathcal{H}^{A}_{\kappa}$ Invariant under rotation

 $\Phi^{AR} = \Phi^{AR}_{\text{diag}} + \Phi^{AR}_{\text{off}}$ where  $\Phi^{AR}_{\text{diag}} = \sum_{\kappa=0}^{k} \Phi^{AR}_{\kappa\kappa}$ , and  $\Phi^{AR}_{\kappa\kappa'} = (P^{A}_{\kappa} \otimes I^{R}) \Phi^{AR}(P^{A}_{\kappa'} \otimes I^{R}).$ 



# Symmetry-invariant and -variant info. 3

### How quickly symmetry-invariant/-variant info. of Alice leaks out from a Kerr BH?



### symmetry-invariant part

+ symmetry-variant part

## **Decoupling approach 1**

#### HP approach in detail:

- 1. Assume that  $U^S$  is Haar scrambling.
- 2. Use the one-shot decoupling.



## **Decoupling approach 2**

#### HP approach in detail:

- 1. Assume that  $U^S$  is Haar scrambling.
- 2. Use the one-shot decoupling.

$$\Psi_U^{RS_2} = \operatorname{Tr}_{S_1} \left[ U^S (\Phi^{AR} \otimes \xi^{X_{\text{in}}}) U^{S\dagger} \right]$$



## **Decoupling approach 3**

#### HP approach in detail:

- 1. Assume that  $U^S$  is Haar scrambling.
- 2. Use the one-shot decoupling.

Decoupling theorem (simplified) [Dupuis et.al. 2014]

For a state  $\rho^{SR}$ , a CPTP map  $\mathcal{T}^{S \to E}$ , and a Haar scrambling  $U^S$ ,

$$\|\mathcal{T}^{S \to E}(U^S \rho^{SR} U^{S\dagger}) - \tau^E \otimes \rho^R\|_1 \le 2^{-\frac{1}{2}H_{\min}(S'S|ER)_{\tau \otimes \rho}}$$

with high probability, where  $\tau^{SE}$ : state representation of  $\mathcal{T}^{S \to E}$  and  $H_{\min}(S'S|ER)_{\tau \otimes \rho}$  is the conditional min-entropy.

### Our approach to the Kerr BH:

- 1. The  $U^S$  is a partial scrambling due to the symmetry.  $U^S = \bigoplus^{N+1}$
- 2. Prove PARTIAL decoupling and use it.



## Partial decoupling approach 1



## Partial decoupling approach 2



## Partial decoupling approach 3

Partial decoupling (simplified) [E. Wakakuwa and YN 2019]For a state  $\rho^{SR}$ , a CPTP map  $\mathcal{T}^{S \to E}$ , and a partial scrambling  $U^S = \bigoplus U_m^S$ , $\|\mathcal{T}^{S \to E}((\bigoplus_m U_m^S)\rho^{SR}(\bigoplus_m U_m^S)^{\dagger}) - \sum_m \tau_{mm}^E \otimes \rho_{mm}^R\|_1 \le 2^{-\frac{1}{2}H_{\min}(S'S|ER)_{\tau*\rho}}$ 

with high probability.

### What about the whole information, including **symmetry-variant** one?



From the difference b/t partial decoupling and full decoupling...

Error in recovering the whole Info of Alice:

$$\Delta \le 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}} + \eta(\xi)$$

 $\xi$ : state of the initial BH

## **Information leakage from Kerr BHs 1**

For symmetry-inv. Info of Alice:  $\Delta_{inv} \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}}$ 

For the whole Info of Alice:  $\Delta \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}} + \eta(\xi)$ 

- $H_{min}(SS|ER)_{\tau*\rho}$ 
  - ✓  $\tau * \rho$  is constructed from
    - Alice's source A
    - Initial black hole  $\xi$
    - Symmetry
    - The evaporation process.
  - ✓ generally increases when ℓ increases.

- $\eta(\xi)$  ( $\xi$  is a state of the initial BH.)
  - ✓ Fluctuation of  $S_z$ .
  - ✓ depends on ℓ only weakly.



## **Information leakage from Kerr BHs 2**

For symmetry-inv. Info of Alice: 
$$\Delta_{inv} \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}}$$
  
For the whole Info of Alice:  $\Delta \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}} + \eta(\xi)$ 

• Pure initial BH (
$$\xi^{X_{in}}$$
 = pure) for  $\langle S_Z \rangle = 0$ .



## **Information leakage from Kerr BHs 3**

For symmetry-inv. Info of Alice: 
$$\Delta_{inv} \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}}$$
  
For the whole Info of Alice:  $\Delta \leq 2^{-\frac{1}{2}H_{min}(SS|ER)_{\tau*\rho}} + \eta(\xi)$ 

• Initial BH max. entangled with the early radiation ( $\xi^{X_{in}X_{out}} = \Phi^{X_{in}X_{out}}$ ).



# **Outline of the talk**

# Outline

## **V**. Black hole information paradox

# 2. Review of the Hayden-Preskill toy model

• Q.I. approach to the paradox

## **%** Summary of our results

Information leakage from a rotating black hole



- Partial decoupling theorem
- 5. Summary and Discussions

### Summary



### Information leakage problem of Kerr black holes

#### 1. Partial decoupling approach

- ✓ General tool and useful when ∃symmetry
- ✓ E.g. energy, SO(3), charge, etc...

#### 2. Info leakage from Kerr BHs

- Symmetry-invariant/-variant info.
- Two factors: entanglement & asymmetry



## **Discussion 1**



#### 1. Reasonable initial state $\xi$ ?

- ✓ We tried pure states and MES.
- ✓ Reasonable assumptions on  $\xi$  incorporating with Penrose process?



## **Discussion 1**



#### 1. Reasonable initial state $\xi$ ?

- ✓ We tried pure states and MES.
- Reasonable assumptions on  $\xi$  incorporating with Penrose process?

### 2. Weak violation of symmetry?

- ✓ Violation will be amplified during the time-evolution.
- ✓ In the long-time limit, there should be a deviation from our results.

Operational approach to the symmetry violation in Q. gravity?

## **Discussion 2**



#### Assumption:

 $U_m^S$  is Haar scrambling in each subspace

3. Replacing Haar?

- Haar is normally replaced with unitary 2-designs.
- ✓ Symmetry-preserving unitary design?
- ✓ Implementation [Khemani et al '18]

#### 4. OTOC with symmetry?

- Argued that a decay of OTOC implies info recover.
- ✓ How symmetry affects it?

#### 5. Non-unitary case?

- $\checkmark$  Time-evolution of BHs is not unitary.
- Technically feasible, but what is the dynamics?



E. Wakakuwa, and YN (arXiv:1903.05796) YN, E. Wakakuwa, and M. Koashi (arXiv:19xx.xxxx)

