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@Santa Monica roller coaster ride: Losing everything we have done by killing our 
brain cells.



Outline
• Motivations 
   - Error Correction & Detection 
   - Physical Examples: Topological Order & Holography 
• Approximate Quantum Error Correction & Detection 
• A Matrix Product Encoding: No-Go Result: Trivial(=constant 

distance) ground space codes 
• Getting around No-Go: Low energy space as codes: 
A. Gapped excitations as codes: A general MPS formalism 
B. Gapless excitations as codes: The Heisenberg XXX model 
• Conclusions & Outlook



Motivations I - Quantum error detection/correction

log(dim 𝒞) = k

log(dim ℋ) = N

𝒞 : Code subspace

ℋ : Physical Hilbert space



Motivations I – Quantum Error Correction

𝒞 ⊂ ℋ is an [[N, k, d]] quantum error correcting code against a noise 
channel 𝒩 if there exists a recovery channel ℛ such that

ℛ(𝒩( |ψ⟩⟨ψ | )) = |ψ⟩⟨ψ | ∀ |ψ⟩ ∈ 𝒞



Motivations I – Quantum Error Correction

𝒞 ⊂ ℋ is an [[N, k, d]] quantum error correcting code against a noise 
channel 𝒩 if there exists a recovery channel ℛ such that
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Let { |ψ1⟩, |ψ2⟩, …, |ψ2k⟩} ∈ ℋ be an orthonormal basis for 𝒞. They satisfy

•  Knill-Laflamme Conditions

⟨ψi |E†
aEb |ψj⟩ = λabδij

i = j : Indistinguishability

i ≠ j : No-collision in ℋ



Motivations I – Quantum Error Detection

𝒞 ⊂ ℋ is an [[N, k, d]] quantum error detecting code against a noise 
channel 𝒩 If

Let { |ψ1⟩, |ψ2⟩, …, |ψ2k⟩} ∈ ℋ be an orthonormal basis for 𝒞. They satisfy

•  Knill-Laflamme Conditions

⟨ψi |Ea |ψj⟩ = λaδij
i = j : Indistinguishability

i ≠ j : No-collision in 𝒞

⟨ψ |
P𝒩( |ψ⟩⟨ψ | )P

tr(P𝒩( |ψ⟩⟨ψ | )P)
|ψ⟩ = 1.



“Wise” words from old men

“This is just a linear algebra problem!”

• Richard Brower, Aspen, May 2019



Motivations II – Topological Order (Kitaev)



“Wise" words from old men

“This is just a linear algebra problem!”

• Richard Brower, Aspen, May 2019

• Frank Verstraete, various places on Earth, 4-5 times between 2013 and 2016 

“Error-correction is not a problem of fundamental  
science anymore, it’s engineering.”



Motivations III – Holography (Almheiri, Dong, Harlow)

    

• Boundary: Physical Hilbert space 
Bulk: Code space 

• Apparent puzzles like subregion 
duality and radial commutativity 
points out that 

is a quantum error correcting code 
against erasure channel. 
• Conjecture: Low energy eigenspace 

of holographic CFTs are QECCs.

V : Bulk → Boundary



Topological 
order

AdS/CFT 
holography

Chaos Gapless 
modelsHigh 

energies of 
1D TI

Quantum Error 
Correction

Brandao, Crosson, MBS, Bowen arXiv:1710.04631 [quant-ph]


EXACT 

APPROXIMATE 

https://arxiv.org/abs/1710.04631


What did we do at arXiv:1710.04631 [quant-
ph]?

Quantum 
Error 

Correction

1D translation 
invariance 

Gapless models 
(e.g., Motzkin)

Eigenstate 
thermalization

- A restrictive assumption of noise model (geometrically d-local) 
- Don’t address the error correction properties of generic gapped/gapless low 

energy subspace

https://arxiv.org/abs/1710.04631


What are we going to do now?

Low energies 
of gapless XXX-

model

Low energies of 
gapped local H

A No-Go Result for 
ground space

- No-go: Ground space of 1d local gapped Hamiltonians are trivial (=constant distance)  
- Our cure for getting around the No-Go: Extend to low energy subspace 
A. Low energy space of any local gapped Hamiltonian 
B. Low energy space of the gapless Heisenberg XXX-model

MPS MPS



Approximate Quantum Error Detection
𝒞 ⊂ ℋ is a (δ, ϵ)[[N, k, d]] quantum error detecting code against noise
channel 𝒩 if the following holds for all |ψ⟩ ∈ 𝒞

tr(P𝒩( |ψ⟩⟨ψ | )) ≥ δIf then ⟨ψ |
P𝒩( |ψ⟩⟨ψ | )P

tr(P𝒩( |ψ⟩⟨ψ | )P)
|ψ⟩ ≥ 1 − ϵ .

What do we mean above? 
- Remind that, we detect an error only when we go out of the code space.  
- But there may be an overlap with code space, say of amount 
- In this case, we want to make sure that we make a logical error of 
    amount at most             is error-detecting if  

δ′� ≥ δ .

ϵ . lim
n→∞

ϵn, δn = 0.𝒞



A sufficient condition for AQEDC
𝒞 ⊂ ℋ is a (δ, ϵ)[[N, k, d]] quantum error detecting code against d-local
noise 𝒩(ρ) = ∑

i

piEiρE†
i if the following holds for all |ψ⟩ ∈ 𝒞

tr(P𝒩( |ψ⟩⟨ψ | )) ≥ δ

Let { |ψ1⟩, |ψ2⟩, …, |ψ2k⟩} ∈ ℋ be an orthonormal basis for 𝒞 . They satisfy

⟨ψi |Od |ψj⟩ ≤ λ(Od)δij + γ∥Od∥ for some γ

If then

ϵ = 25kγ2δ−1

⟨ψ |
P𝒩( |ψ⟩⟨ψ | )P

tr(P𝒩( |ψ⟩⟨ψ | )P)
|ψ⟩ ≥ 1 − ϵ .



A necessary condition for AQEDC
Let { |ψ1⟩, |ψ2⟩, …, |ψ2k⟩} ∈ ℋ be an orthonormal basis for 𝒞 . Say

|⟨ψi |O |ψi⟩ − ⟨ψj |O |ψj⟩ | = η

for some i ≠ j, η ∈ (0,1] : 1 − η ≪ 1.

is not an𝒞 (δ, ϵ)[[N, k, d]] quantum error detecting code for any

ϵ < 1 − 10(1 − η) and δ < η2 .



An MPS encoding

Encoding of boundary degrees of freedom into the bulk via an MPS 
network. The set of states spanned by varying the boundary tensor X, 
is the ground space of a local gapped hamiltonian with open boundary 
conditions.

• An encoding of boundary space into 
bulk Hilbert space, the code space      
is given by  

• It has the potential of creating a 

• We want to understand whether above 
is possible with a nontrivial distance d, 
i.e., sth that scales with the system size. 

• No-Go Theorem: 

𝒞

span{ |ψ(A, N, X)⟩ |X ∈ 𝕄DXD}

(ϵ = N−ν, δ → 0)[[N, k = log D2, d]] − AQEDC

d ≤ c log D



No-Go theorem: No nontrivial QEDC in the 
ground space
• The first condition that we have to satisfy is 

local indistinguishability! We want two 
orthogonal codevectors        

                               and 
    to look locally the same. 

• Due to exponential decay of correlations, 
they look very much the same in the bulk! 

• However, in 1D (injectivity of MPS transfer 
matrix), this implies that most of the 
boundary information is encoded in the 
physical qubits close to the boundary! 
Hence if an error happens in a few of them 
we make a logical error!

1

2

|ψ(A, N, X1)⟩ |ψ(A, N, X2)⟩



Getting around the No-Go theorem
• No-Go theorem assumes: 

Injectivity 

The ground space MPS form with constant bond dimension 

• Hence, we have to investigate the cases where we violate these assumptions: 

Use an ansatz that accounts for superpositions of MPSs:  

   Excitation ansatz: Represents momentum eigenstates faithfully! 

Go non-injective: Construct higher excitations with Matrix Product Operators 
(MPO & Injective MPS —-> Noninjective MPS)



Excitation Ansatz

• Onb for the code subspace        is: 

• The goal is to figure out which set of momentum eigenstates can be packed 
into the code space with what parameters of the number of logical qubits=      
and distance=    . 

• Note that given a faithful MPS ground state, above type of states can 
faithfully represent single quasi-particle momentum eigenstates (after 
blocking). (~Haegeman, Michalakis, Nachtergaele, Osborne, Verstraete)

|ψ(A, N; B, p)⟩ =

{ |ψ(A, N; B, p)⟩ |p}

N

∑
k=1

e2πipk/N

𝒞

k
d



AQEDC at low energies of local gapped H
• Start from an injective MPS (hence there 

is a local gapped Hamiltonian): 
Local tensor  

• Variationally construct a quasi-particle 
band: 

Local tensor 
• This is an                                                

with                                   

• Intuitively: Packing more states = Ability 
of constructing localized wave packets! 

Nκ

P

B

A

k = κ log N, d = N1−ν, ϵ = Θ(N−(ν−(5κ+Δ))), δ = N−Δ

(δ, ϵ)[[N, k, d]] − AQEDC



Status of recent physical codes

Quantum 
Error 

Correction

1D translation 
invariance Gapless models 

(e.g., Motzkin)

Eigenstate 
thermalization

• General low energy eigenspace of CFTs? 
• Iff conditions for matrix elements in the code space vs. correctability/detectability 
• Decay of energy gap vs. code parameters 
• Next two slides for further applications of MPS and QECC

Low energy of 
gapped systems

Bethe ansatz of 
XXX model


