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Step 2. Adaptively measure each qubit in an appropriate basis.
(The measurement bases decide what we compute.)

Step 3. A desired output state |¢¢) is prepared:) f

Step 2 is the only online operation in MBQC.

It is theoretically and experimentally interesting to reduce the
necessary number of measurement bases even if the initial state

becomes (slightly) complex.

(A part of) our results:
We have constructed a universal resource state that only requires

adaptive Pauli X and Z-basis measurements for universal MBQC.




Several universal resource states

Resource state

Measurement basis

Class

Cluster state [15]
Brickwork state [17]

Triangular lattice state [18]
Raussendorf-Harrington-Goyal (RHG) lattice [19, 20]
Decorated RHG lattice [22]
Affleck-Kennedy-Lieb-Tasaki (AKLT) state [23, 24]

X, Y, TXT"[16]
X, Y, TXT" [17]
X,Z H,XHX [18]
XY, Z, TXT' 20, 21]
X, Y, TXT' [22]
qutrit bases [24]

graph state
graph state
graph state
graph state

graph state
matrix-product state

Union Jack state [25] X,Y, Z [25] hypergraph state
Three-uniform hypergraph state [26] X,Y, Z [26] hypergraph state

Mglmer-Sgrensen graph state [27] X, Z [27] weighted graph state
Our state X, Z hypergraph state

[Briegel et al. ‘01]
» Graph state

[Rossi et al. “13]
» Hypergraph state

[Hartmann et al. ‘07]
» Weighted graph state
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Hypergraph states vs. weighted graph states
Our resource state Mglmer — Sgrensen state
[Kissinger et al. “17]
O=0—=() At —i(1/4)ZRZ
?Z{ : iﬁ |
—1(71'/8)Z®Z
Bases X,Z X,Z
(Computation) { ’ } { ’ }
Class Hypergraph state Weighted graph state
Bases {X y /Z } X
(Verification) [Morimae-Takeuchi-Hayashi Other six measurj'(_ement bases
17, Miller-Sanders-Miyake in the x-y plane of the Bloch sphere
‘17, Takeuchi-Morimae ‘18, _ .
Zhu-Hayashi 18] [Hayashi-Takeuchi ‘19]




Our contribution

Our result:

We have constructed, for the first time, a universal hypergraph state
that achieves

* Universality

* Verifiability

at the same time with only Pauli X and Z-basis measurements.

| This property cannot be achieved using graph states
due to the Gottesman-Knill theorem.

In the rest of this presentation, | would like to explain (the idea of)
how to construct our universal hypergraph state.




Our universal resource state

ldea of our construction
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» Fact 1: Teleportation & Decoupling
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» Fact 2: Universal gate set

{H, COZ} [Shi ‘02]

Our goal: Using only fact 1, we construct a hypergraph state that
realizes H, CCZ, and |.
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> Identlty gate

» Hadamard gate
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ldea of our construction

» One-depth quantum computing on three input qubits
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v— Three output qubits (up to nonlocal byproducts)
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* Local Pauli byproduct
(ordinary byproduct)
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* Nonlocal byproduct
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» One-depth quantum computing on three input qubits
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Our universal resource state

ldea of our construction

» One-depth quantum computing on three input qubits
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correction of nonlocal byproducts.



Conclusion
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that achieves
e Universality
* Verifiability

We have constructed, for the first time, a universal hypergraph state

at the same time with only Pauli X and Z-basis measurements.
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