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Lieb-Schultz-Mattis
Theorem
and its Generalizations




Lieb-Schultz-Mattis (LSM) type theorem

No-go theorem which states that certain quantum many-
body systems CANNNOT have a gapped unique ground state

( the Onglnal theorem Lieb, Schultz, Mattis 1961, Affleck, Lieb 1986 f
' antiferromagnetic Heisenberg chain

H = ijl Sj : Sj_|_1 with S =

=45
SEspisiieli s

for anys < L, there exists an energy eigenvalve £
t.
such that Eqs < E < Egg + ——

there are gapless excitations in the limit L+ <



Proof of the original theorem

Lieb, Schultz, Mattis 1961, Affleck, Lieb 1986

H=37",8;-5;:1 uniqueground state|GS)

(1) vananonal estimate : :
g.8. is rotation invariant exp iZGSJZ- GS) = |GS)

gradual non-uniform rotation to g.s.
V, = exp E 53?—0 277%35} o
Wy) = Vi|GS)

0 $ J
from an elementary estimate

A t.
(We|H|We) — Bas < —




Proof of the original theorem

Lieb, Shultz, Mattis 1961, Affleck, Lieb 1986

H=37",8;-5;:1 uniqueground state|GS)
(1) vananonal estimate

(Wl HWy) — Bos < 7 W) = V4/GS)
(2) orthogonality

it can be shown (by symwetry) that (¥,|GS) =0

for s = ;g ;

/for any¢ < L, there exists an energy eigenvalve £ §
| {4
such that Eqs < E < < Fas - i |

e e el D e e et B o

there cannot be a unique gapped ground state!




Lieb-Schultz-Mattis (LSM) type theorem

No-go theorem which states that certain quantum many-
body systems CANNNOT have a gapped unique ground state

the original theorem and its extensions
Lieb, Shultz, Mattis 1961, Affleck, Lieb 1986

Oshikawa, Yamanaka, Affleck 1997
Oshikawa 2000, Hastings 2004, Nachtergaele, Sims 2007

U(1) invariance is essential

[ ( ¢ L )
recent extensions
Chen, Gu, Wen 2011 Watanabe, Po, Vishwanath, Zaletel 2013

similar no-qo statements for models without continvous
symwefry, but with some discrete symmetry

projective representation of the symmetry is inconsistent
with the existence of unique disordered state

the argument appears already in Matsui 2001



A Typical Theorem

TREOREM 1; Consider a quantum spin chain with
S=1,32 ... and a short-ranged Hawmiltonian that is
invariant under translation and Z, x 7,
transformation. Then it can never be the case that
the corresponding ground state is unique and

accomganied by a honzero gap.

Lo % 7o transtormation
m-rotations about the three axes

R« S;( = 5;( Sj’ > S;’ Sj > —S57
o T Y —» &8 8% -5

R, > XSy> 3§ S7 — 5%
invariant Hamuffoman (an examplef =
H =5 L] 0%x5% L+ L5797 .+ J,8287! . + K G487 6]




7o x Lo transformation of a single spin
spin operator 5 = (5*,$7,5%) § =S5(S+1) §=11,3

757...

(representation of the ) generators of su(2)
(25 +1) x (25 + 1) matrices

the simplest (but an important) case with s = 1/2
e X D 2N A& Y 0O T=EN e 40
o R R ([

w-rotation about the a-axis ., = exp[-in5* o =x y.z

Uylhy = Uy  Uyly = Uy Ugliy = Uy  U,T, Uy = 1

il

for s = 1/2 we have

i =—1X w =-—tY 1 =-—i/



72 x Z- transtormation of a single spin
spin operator 5 = (5%,57,5%) § =S(S+1) S=1,1,3,...
w-rotation about the a-axis ., = exp[—in5% o =x,y.z

lolly = Gy Uylly = Gy Gyl = Gy Gyllyli = 1
infeger S (5=1,2,...)

(G)* = 1 Uallg = Upla

1,4y, iy, 0, give a genvine representation of Z, x Z,

half-odd-infeger S (s=1,3,..)
(ﬂa)Q = -1 UglUg = —Uply . F [
1, i, 1y, 0, give a projective representation of Z, x Z,
for s=1/2wehave * = —iX @& =—-iY 4*=—iZ



Theorem for
Matrix Product States
(MPS)

Watanabe, Po, Vishwanath, Zaletel 2013




Matrix Product States (MP$)

Fannes, Nachtergaele, Werner 1991, 1992
quantum spin system with spin son {1,2,...,L}

standard basis states |o1,...,01) = @, loj);
D x D matrices M°witho = -5,...,S blieis o

translation invariant state (MPS)
By =50 . 1, ..., 01

it is known that disordered states (area-law states)
can be approximated by MPS

@) is said to be injective if >,__s M7 (M) =1, and
there is ¢such that Mo: Mz ... Moewith all possibleo, . .., oo

span the whole space of D x Dwmatrices |

D) is injective if it is disordered, and not a ‘cat”




Theorem for MPS

translation invariant state (MPS)
@) =50 [, o, ..., o)

@) is said to be injective if >o—_sM7(M?)T =1, and
there is ¢such that Mo: M2 ... Meewith all possibleo, ..., o,
span the whole space of D x Dwmatrices

D) is injective if it is disordered, and not a ‘cat”

THEOREM 1*: There cannot be a translation
invariant and Z, x Z,invariant injective MPS for

_ 135
S—§7§7§7...

D D




Proof of Theorem 1’

Watanabe, Po, Vishwanath, Zaletel 2013 (arranged by H.T.)

THEOREM 1*: There cannot be a translation
invariant and Z> x Z.,invariant injective MPS for

_ 135
5—575757...

assume that @) =>">  _ (Tr[M? .. M°t]|oy,...,00)

,,,,,

S injective, gmd Zo X Zoinvariant, i.e.,
exp[—im ). S7]|®) = const |®) for o = x,y,z
ST Tr[MeL .. M%Z]|oq,...,0L) = const ¥ Tr[M? ... M%L]|oq,...,0L)
With Mo =3 (o]tis|0’YM?’ L

Gio = exp[—imS]



Proof of Theorem 1’

b TMed L M2E ] o L ,JL>/:\COHS1: ) B ME s e MEE o e o
with M2 = 3 (5iis |0’ )M’

Fannes, Nachtergaele, Werner 1992
Perez-Garcia, Wolf, Sanz, Verstraete, and Cirac 2008
Pollmann, Turner, Berg, Oshikawa 2010

\'4
there are D x Dunitary matrices u,, U, U, Which form a
projective representation of Z, x Z,, and constants
(. € C With|¢.| = 1for a = x,y,2, such that

M? = ¢, Ul MU,

uniqueness of
injective MPS

thus the matrices satisty nontrivial constraints
M? = (o >, {olad|o)ULMT U, fora =x,y,z

A

Glo = exp[—imS¥]



Proof of Theorem 1’

thus the matrices satisty nontrivial constraints
= (o Y {olal | UIMT U, fora =x,y,z

{io = exp|—imS]

we then find S is a half-odd inteqger
= (Ca)? Yo (ol (@58 o) (UL M2 (Ua)? = —(¢a)® M°
and *—1/ = Mo’

. B Mm%
S5 CXCyCZ M

(Ca)Z = —1

« Q I
Coc -, ctontradiction:



Theorem for MPS

THEOREM 1”: There cannot be a translation
invariant and Z, x Z.invariant injective MPS for

_ 1 3 5
S—§7§7§7...

nontrivial projective representation of the on-site

7o % 7, Symmetry is inconsistent with the existence of
an injective MPS

Matsui 2001 Chen, Gu, Wen 2011 Watanabe, Po, Vishwanath, Zaletel 2013
M? =, > (o]l o UES S

projective genuine
representation representation
contradiction!

if S is an integer, there are translation and Z, x Z-
invariant injective MPS, such as the AKLT state



Toward the Full Theorem



From Theorem 1’ to Theorem 1

we have proved

THEOREM 1’ There cannot be a translation
invariant and Z, x Z.invariant injective MPS for

_ 135
S—§7§,§7...

this seems to imply the desired

TREOREM 1 Consider a quantum spin chain with

S=1,3 2. anda short-ranged Hamiltonian that is
invariant under translation and Z, x Z-

transformation. Then it can never be the case that
the corresponding ground state is unique and

accomganied by a nonzero gap.
*




From Theorem 1’ to Theorem 1

assume that the 6S is unique and gapped

Hamiltonian has translation and Z, x Z,symwmetry

the 6S is disordered, and translationally and Z, x Z
invariant

)

there exists an injective MPS that is translationally and
Zo X Zoinvariant

this contradicts Theorem Y’

this “proof” looks plausible, but does not work!!!
the approximation by MPS is not that precise

the proof of Theorem 1 makes an essential use of
operator algebraic formulation



Opinions of a mathematical physicist on
operator algebraic approaches to spin systems

_early 20°s (student)

r
¢ :'/
S
o
. 2
“

=Y

mid 20’ posdc




Opinions of a mathematical physicist on
operator algebraic approaches to spin systems

WOW!
IT°S USEFUL!!!!!

Ogata, Tasaki 2018
Ogata 2018, 2019

™ late 50's (old quy) index fheorems for SPT phases




the core of the proof of Theorem 1
if the g.s. is unique and accompanied by a gap, thereis a

representation of the Cuntz algebra c° < B(#R)
Zo x o transformation of ¢ c==5...,8

7= 3 AolilloYRale”) (o €C |C]=1 a=xy,2

EihiEdags i Glo = exp[—imS]
Ry, Ry, R, *-automorphisms on B(Hg)
give a genuine representation of Z, x 7

exactly the same transtformation rule as in MPS!
= (o Y (o]at oYUt M U,

the same argument leads to contradiction matsui 2001

® =(a Y, {o|llllo”) Rate
projective genuine
representation representation



the core of the proof of Theorem 1
if the g.s. is unique and accompanied by a gap, thereis a

representation of the Cuntz algebra <° ¢ B(HR)

o=t S e
(¢?)o=—s,...s"infinite dimension version” of matrices for MPS
(Yo = 6, i related to the shift in
T a half-finite ch?in

T ‘0-7 01,02,03,04,.. >

)" £
e mp LAY ) = mir [ (A4)) C \Uiaiaigi,

o = a4 ] be
R vominds US of Hil
[ith infinitely many Y



Outline of the
Formulation and the
Proof




Operator algebraic formulation of
an infinite quantum spin chain 14

Cc*-algebra 2

0c the set of all polynowmials of 5, j€Z a=xy,z
A = A (completion w.rt. the operator norm)

the set of all local operators + a little bit more

states on 2
a state is a linear functionp: A — C

such that p(1) = 1 and p(A*A4) > 0 for any A e

o(A)the expectation value of 4 in the state
(Rew: the set of all states is weak-* compact)




Operator algebraic formulation of

an infinite quantum spin chain 24

Hamiltonian and commutator
formal Hamiltonian 7 = 3~ _, h;with h; € %o
comwmutator (£, A = [>.__, h;, A] for sufficiently large ¢
is well-defined for A € 2.

ground states . L :
a state w isa g.s. iff w(A*[H, A]) > 0forany A € Ay,

in a finite system B B
(GS|A*[H, A]|GS) = (GS|A*HA|GS) — Egs(GS|A*A|GS) > 0

unique gapped ground states

a unique 9.8. w is accompanied by a nonzero gap itf there
exists y > 0 sueh that w(A*[H, A]) > yw(A*A)
for any A € Ao With w(4) =0




Operator algebraic formulation of

an infinite quantum spin chain 34
what is the Hilbert space of the model?

Hoo == Q. C*° 1 is 100 large (physically and mathematically)

GNS (Gelfand-Naimark-Segal) construction
given a state oon 2, one can define
> a separable Hilbert space # bouw
> a representation of A on#, i.e., m: A — B(H) st

n(aA + BB) = an(A) + fn(B) mn(AB) = n(A) n(B)

AN

m(A*) = n(A)* ) =1
> aveetor Q € H st p(4) = (Q,(A)Q) for any A €
(H, 7, ) or, more precisely (H,,7,,9,), is the GNS triple

H is a physical Hilbert space that consists of the state o
(which is now Q ) and other states ‘close” to it



Operator algebraic formulation of
an infinite quantum spin chain 44

GNS (Gelfand-Naimark-Segal) construction

given a stater on 21, one can define
> a separable Hilbert space # nded op
> a representation of Aon 7, i.e, n: A — B(H) st
> a veetor Q ¢ H sk, p(A) = (2, (A)Q) tor any A c 2

the idea of the construction
we already have 2, which is a vector space
define an inner product in 2 by (A, B) := p(A*B)
make 2 into a Hilbert space by 7 =2/~
A~Bo (A-B,A-B)=0
fory ; € H we define the representation byn(B)y ; = ¢4,
we set Q := -

S




Setup for Theorem 1
spin operators S5 JE€Z a=xy,z
g oth (S -G08 f
we only consider models with S=3,2,5,...

translation automorphism 7(5{*) = 5i%) ete.
(linear *-automorphism)

: 5(5) =
Zo x L> automorphism r (g®)) _ Sﬂ;w) a=p
(linear *-automorphism) J ~57 a#p

Hamiltonian 7 =3, b,
short ranged: »; depends only on 5\ with|i —j| <r
translation invariant: (i) = h, ., forany j € Z
Zo x Zy invariant: Ro(h;) =h; forany j €z a=x,y,z

we assume that the g.s. w is unique and accompanied by a
nonzero energy gap



Setup for Theorem 1

we assume that the g.8. w is unique and accompanied by a
nonzero energy gap

we shall derive the transformation rule
G — Ca Za/ <0‘7/)’L‘J/>R@(CU,) a=X,y,4%

projective genuine
representation representation
coniradiction!

TREOREM 1: Consider a quantum spin chain with

S =132 ... and a short-ranged Hamiltonian that is
invariant under translation and Z, x Z-
transformation. Then it can never be the case that
the corresponding ground state is unique and

accomganied by a honzero gap.
T——




algebras for the half-infinite chain
Ar C*algebra generated from S\ with j=0,1,2,...
wr restriction of the unique g.5. w onto 2Ar
(Hr, R, Qr) the corresponding GNS triple

represen’ra’non of voh Neumann
the 0* algebra algebra

rR(™UAR) C Mr(™AR)” = Mr C B(Hr)

closure of g (2Ar) w.rt. the weak topology

Def. of comww’ran’r S -
M C B(H) ' :={Aec B(H)|[A,B] =0 for any B € M}




shift on the von Neumann algebra
a unique gapped g.s. w satisfies the split property

Hastlngs 2007, Matsui 2013

this means the von Neumann algebra oty is a type-1 factor
then there is a separable Hilbert space 7 and oy =~ B(Hg)

foro = -5,...,5,and A c 2z we define

07 (ma(4)) = 7 (|0) (0] © 7(4))

since WR(A) = WR(Q[R) C Mg
©° can be extended to a unital endomorphism on 915

translation invariance is essential!

“Wigner’s theorem” guarantees that there are operators
¢® € B(Hg) such that 07 x = <" x(c7)* for any x < my



representation of the cungz algebra

“Wigner's theorem” guarantees that there are operators
¢® € B(Hg) sueh that 07 x = ¢ x(¢?)* for any x c My

they roughly correspond to

one can show that
(Ca)*ca :500 1 C ‘0’1,0’2,0’3,0’4,...
7 (19)0] © i1 y) = €7 ()" R
Za COT[R(A)(CU)* — T[R(T(A)) — |O' O e O Jo IR OF 2 RO [ - >



Z> x Z, transtormation on 2
Ar C*algebra generated from S\ with j=0,1,2,...
wr restriction of the unique g.5. w onto 2Ar
(Hr, R, Qr) the corresponding GNS triple
Zs x Zo invariance of the g.s.
wr(Ra(A)) = wr(A) for any a = x,y,z and A e A

the invariance of the GNS inner product
(4,%5) = wr(A*B) = wr(Ra(A*)R(B)) = (¥r_ 4y Yr.(8))

unitary U,on#xcan be defined by U,y ; = v, 4
invariance is essential!

Uy, U,,U, form a genvine representation of Z> x Z;



Zo x Zo transtormation on o:

unitary U, on#xcan be defined by Uy ; = v 4
invariance is essential

A

Uy, Uy, U, form a genvine representation of Z. x Z;

for X € nmp(2Ar), wedefine =.(X):=U.XU*
which satisfies R, (mr(A)) = mr(Ra(A))

R., is then extended to mr(Ar)’ = Mg

~

Ry, Ry, R, form a genvine representation of Z. x Z,
RaoRg=TRsoRa RioRa=1id

~ ~ ~ ~

A PR SRR PR G S

~ ~

R0 Ry =R



transformation of the Cuntz algebra

CU - B(/}:[R) ng :ﬂR(Q[R)// -0 ‘0_170_270_370_47“.
(c®)*c® = 6,001 \ \ \ \
TR (o) (0| ® 1j1,00)) = 7 (7 )"
3R (A7) = mr(r(A) 0,01,02,03,04,...)

fix o =x,y,2 and let t = 3, (ol |6V Ra(c”)

-
y X J

Uq = exp|—1mSY]

the we can show
(oY — 8,071
mr(lo) (0’| @ 1 1,00)) = tg(tg )
L t"ﬂR( 1)(t7)* = mr(7 (A))



transformation of the Cuntz algebra

c’ € B(?LZR) =W — (AR
fix o =x,y,2 and let t° =3, (ol |6V Ra(c”)

from the uniqueness of representation of the Cuntz algebra
= wWith (. cC =1

we finally get the desired transformation rule

~

? = (o Y, (o|@llo" REE) for o =x,y,z
projective genuine
representation representation

S is a half-odd integer contradiction!




Proof of Theorem 1

we finally get the desired fransformaﬂon rule
¢? =(a > {olal|o)Ra(c”) fOr a=x,y,z

Gio = exp[—imS]

S is a half-odd integer

we thewn find

and i
¢? = (x 2o {o]il]o") Ru(c)

= (xCy ¢z ng <U‘(f&zﬁya><)]L o) 7’éx = 7’éy = 7%2( J,)

C
s ST
= CXCyCz it

: C
e 2] i
(cic)yqz . contradiction!



Extensions



symmetry

TREOREM 1 Consider a quantum spin chain with
S=1,32 ... and a short-ranged Hawmiltonian that is
invariant under translation and Z, x Z-
transformation. Then it can never be the case that
the corresponding ground state is unique and

accomganied by a honzero gap.
ﬁ

Zo X Zo symmetry

A
any on-site symmetry whose representation on a single
spin is projective
example: time-reversal symmetry for s =
S5 — —8¢

3 O
it

1
9



state

TREOREM 1 Consider a quantum spin chain with
S=1,32 ... and a short-ranged Hawmiltonian that is
invariant under translation and Z, x Z-
transformation. Then it can never be the case that
the corresponding ground state is unique and

accomganied by a honzero gap.
*

it is only essential that the state is pure, translation %
invariant and satisfies the split property

any translation invariant pure state with area law
entanglement is excluded ,/.icui 5013



general theorem

Yuji Tachikawa, private communication

THEOREM 2: In quantum spin chains, there can be
no translation invariant pure states with area law
entanglement and on-site symmetry whose
representation on a single spin is projective

———k *—

S =3,3,2,... and time-reversal or Z, x Z, symmetry, any

COROLLARY: In a translation invariant spin chain with
113
’%car%’ state must be degenerate and break symwetry



Summary

M LSM-type no-go theorew is proved for quantum
spin chains with translation and on-site symmetry
whose representation is projective

[ the proof is based on the inconsistency between the
projective symwmetry and the transformation
property of the Cuntz algebra

it is surprising (at least, to me) that such a

mathematically abstract object as the von Neumann

algebra is useful in proving physically natural theorems
(cf. Ogata’s fully rigorous index theorem for SPT)

background and related topics can be found in my book in
preparation (see the workshop Slack or ask me)



