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(Frameworks of) Quantum Computation 

II. Adiabatic:

III. Topological:

IV. Measurement
-based:

quantum gates = braiding anyons

I. Circuit: 0/1

0/1

0
0
0
0

 Major scheme by most
labs: IBM, Intel Rigetti,
IonQ, Alibaba

 Approach by Microsoft,
Google uses a hybrid of III and I 
(circuit version of IV)

 Approach by D-Wave

local measurement is the 
only operation needed

 Used in photonic systems, 
such as PsiQuantum



QC by Local Measurement
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 First: carve out entanglement structure 
by local Pauli Z measurement Z
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

2D or higher dimensions are needed for universal QC

 Then:

[Raussendorf & Brigel ‘01]



How much entanglement is needed?
[Gross, Flammia & Eisert ’09; 
Bremner, Mora & Winter ‘09] States (n-qubit) possessing too much 

geometric entanglement Eg are not 
universal for QC ( i.e if                     )

 Intuition: if state is very high in geometric entanglement, every 
local measurement outcome has low probability

 whatever local measurement strategy, the distribution of outcomes is 
so random that one can simulate it with a random coin (thus not more 
powerful than classical random string)

 Moreover, states with high entanglement are typical:

those with                                        is rare, i.e. with fraction  
 Universal resource states are rare 

Very high 
Eg: not
accessible
anyway

Search in moderate 
entanglement (accessible by 
polynomial-size circuits)



Key questions for MBQC

 Can they be unique ground state with 2-body Hamiltonians 
with a finite gap?

 Characterizing all resource states? Still open

 If so, create resources by cooling!

 Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT ’87, ‘88]

[Gross & Eisert et al. ‘07, ‘10] [Brennen & Miyake ’08]1D (not universal):

2D (universal): [Miyake’11] [Wei, Affleck & Raussendorf ‘11] [Wei et al. ‘13-’15]

 Nonzero 2D gap still not proven (after 30 yrs) [see also Abdul-Rahman 
et al. 1901.09297; Pomata & Wei 1905.01275] 

 Important progress for QC in entire symmetry-protected phases:  [Raussendorf et 
al. PRL’ 19, and Devakul & Williamson, PRA’18, Daniel, Alexander& Miyake (talk yesterday)] 

 Symmetry-protected topological states

 Thermal states (density matrices at finite T): some topologically protected
[Li et al ‘11, Fujii &Morimae ’12, Fujii, Nakata, Ohzeki& Murao’13, Wei,Li&Kwek ‘14 ’]

2D (universal, but not much explored):

[Else, Doherty & Bartlett ’12]1D (not universal):
[Prakash & Wei ’15]

[Miller & Miyake ’15]

[Stephen et al. ’17, Raussendorf et al. ‘17]

[Poulsen Nautrup & Wei ’15]

[Miyake’10, Miller&Miyake ‘15]
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Valence-bond ground states 
of isotropic antiferromagnet

 Unique* ground states of gapped# two-body isotropic Hamiltonians

 States of spin S=1,3/2, 2,.. (defined on any lattice/graph)

[AKLT ’87,88]

 AKLT (Affleck-Kennedy-Lieb-Tasaki) states/models

f(x) is a polynomial

*w/ appropriate boundary conditions [Kennedy, Lieb & Tasaki ’88]

 Importance: provide strong support for Haldane’s
conjecture on spectral properties of spin chains

 Provide concrete example for symmetry-protected 
topological order [Gu & Wen ’09, ’11, …]

e.g. 1D: S=1



(hybrid) AKLT state defined on any graph

singlet

Pv

S=1

S=1/2
S=2

S=3/2

 S= # neighbors / 2

 # virtual qubits
= # neighbors

 Physical spin Hilbert
space = symmetric
subspace of qubits

Pv = projection to symmetric subspace of n qubit ≡ spin n/2



Warm up: 1D AKLT state for gates

 Using matrix-product representation:

1D spin-1 AKLT state can be used to implement 
arbitrary one-qubit gate

[Gross & Eisert et al. ‘07, ‘10]

[Brennen & Miyake ’08] Using edge degrees of freedom:
[Miyake’10]

Alternative view by reduction to 1D cluster state 
by local measurement

[Chen, Duan, Ji & Zeng ‘10 ]

 Adaptive:

 Fixed measurement: (see next) [Wei, Affleck & Raussendorf ‘11 ]



Converting 1D AKLT state to cluster state

 Via fixed POVM generalizable to 2D AKLT:

[Wei, Affleck & Raussendorf ‘11 ]

 Outcome labeled by x,y, z:         projects to 
local two-level space

POVM

x

y

z



POVM: 1D AKLT state  cluster state

 POVM:

[Wei, Affleck & Raussendorf ’11, `12 ]

e.g. for the outcome (labeled x, y, z)

POVM

x

y

z

 the post-measurement state is an encoded 1D cluster state with graph:

 1 logical qubit = 1 domain = consecutive sites with same outcome

 This generalizes to some 2D AKLT states (with S ≤ 2 )



2D AKLT states for quantum computation?

 On various lattices
Miyake ‘11; Wei,Affleck & Raussendorf, PRL ’11 
Wei, PRA ’13, Wei, Haghnegahdar& Raussendorf, PRA ‘14
Wei & Raussendorf ‘15

 honeycomb

spin-3/2: 

 star square-octagon  ‘cross’

 Kagome  
(spin-2)

 square-hexagon
(spin-2 spin-3/2 mixture)

 decorated-square
(spin-2 spin-1 mixture)

 square
(spin-2)



AKLT states on trivalent lattices

 Each site: three virtual qubits ≡ spin 3/2 (in general:  S= #nbr /2)

 Two virtual qubits on an edge form a singlet

 physical spin =  symmetric subspace of qubits

Effective qubit



POVM for spin-3/2

 POVM gives random outcome x, y and z at each site

Completeness: 

[Miyake ‘11, Wei,Affleck & 
Raussendorf ’11]



Tensor-network picture
[Miyake ‘11]

After POVM, each site effectively has two 
physical values

e.g. outcome z:

 Further local measurements 
give rise to single- and 
two-qubit gates (in virtual 
bond space) 

 Notion of computational 
backbone



Alternative: Reduction to 2D graph states

 POVM gives random outcome x, y and z at each site

Completeness: 

 Can show POVM on all sites converts AKLT to a graph state 
(graph depends on random x, y and z outcomes)

[Wei,Affleck & Raussendorf ’11
Miyake ‘11]



Probability of POVM outcomes

 Can evaluate this using coherent states; alternatively
use tensor product states

 Turns out to be a geometric object

 Measurement gives random outcomes, but what is the
probability of a given set of outcomes?

[Wei,Affleck & Raussendorf, PRL ’11 & PRA ’12]



2.  How do we know these graph states are universal? 

1. What is the graph? which determines the graph state
 How to identify the graphs ?

Difference from 1D case: 
graph & percolation

[Wei,Affleck & Raussendorf PRL’11]

 From these graphs we can ‘cut out’ the computational backbone

 Percolation is the key 



Recipe: construct graph for ‘the graph state’

honeycomb square octagon

 Examples: random POVM outcomes x, y, z 



Step 1: Merge sites to “domains” vertices

 1 domain = 1 logical qubit

honeycomb square octagon

: encoding of a logical qubit



Step 2: edge correction between domains

 Even # edges = 0 edge, Odd # edges = 1 edge
(due to                in the C-Z gate )

honeycomb square octagon



Step 3: Check connections (percolation)

 Sufficient number of wires if graph is in supercritical phase (percolation) 

 Verified this for honeycomb, square octagon and cross lattices
 AKLT states on these are universal resources



How robust is connectivity?  
 Characterized by artificially removing domains to see 

when connectivity collapses (phase transition)

supercritical subcritical
supercritical subcritical

[Wei ’13]

P
sp

a
n

   
  

 



Frustration on star lattice

?

 Cannot have POVM outcome
xxx, yyy or zzz on a triangle 

(1) Only 50% edges on triangles occupied 
< pth ≈0.5244 of Kagome

 disconnected graph

(2)  Simulations confirmed: graphs not      
percolated 

 AKLT on star likely NOT universal

 Consequences: 



Difficulty for spin-2

 Technical problem: trivial extension of POVM 
does NOT work!

 Fortunately, can add elements K’s to complete the identity

 Leakage out of logical subspace (error)!

Completeness: 

[Wei, Haghnegahdar, Raussendorf ’14]



Another difficulty: sample POVM outcomes

[Wei, Raussendorf ’15]

 How to calculate such an N-body correlation function?

 Bottom line: can use Monte Carlo sampling



Local POVM: 5-level to (2 or 1)-level

 POVM gives random outcome Fx, Fy, Fz, Kx, Ky, Kz at each site

Completeness: 

[Wei, Haghnegahdar, Raussendorf ’14]

or

 Local action (depends on outcome):



Post-POVM state: graph state

 If F outcome on all sites 
 a planar graph state

[Wei, Haghnegahdar, Raussendorf ’14]

a domain
= vertex

 Vertex = a domain of sites with
same color (x, y or z)

 K outcome = F followed by 
measurement (then post-selecting ‘-’ result)

 Either 
(1) shrinks domain size [trivial] or
(2) logical X or Y measurement [nontrivial]



Vertex = domain = connected sites of same color
Edge = links between two domains (modulo 2)

POVM  Graph of the graph state

:logical X 
measurement

:logical Y 
measurement

 Effect of nontrivial 

 non-planar graph



Non-planarity from X/Y measurement

A

X measurement
on A

A

Y measurement
on A

X:

Y:

 Effect of X measurement is more complicated than Y measurement 

[See e.g. Hein et ‘06]



Restore planarity: further measurement 
 Deal with non-planarity due to Pauli X measurement: 

remove all vertices surrounding that of X measurement (via Z measurement)

AX:

X measurement
on A

 Deal with non-planarity due to Pauli Y measurement: 

remove only subset of vertices surrounding that of Y measurement

A

Y measurement
on A

Y:



Vertex = domain = connected sites of same color
Edge = links between two domains (modulo 2)

POVM  Graph of the graph state

:logical X 
measurement

:logical Y 
measurement

 Pauli X or Y measurement on planar
graph state  non-planar graph



Restore Planarity by 
Another round of measurement 

Deal with X measurement Deal with Y measurement



Examining percolation of typical graphs 
(resulting from POVM and active logical Z measurement)

 1. As system size N=L x L increases, exists
a spanning cluster with high probability

 2. Robustness of connectivity: finite 
percolation threshold (deleting each vertex 
with increasing probability)

 3. Data collapse: verify that transition is 
continuous (critical exponent ν = 4/3)

1

2
3

supercritical
phase

(graph state
universal)

subcritical
phase

(graph state
not universal)



Spin-2 AKLT on square is universal for 
quantum computation

 Because the typical graph states (obtained from local measurement
on AKLT) are universal  hence AKLT itself is universal

 Difference from spin-3/2 on honeycomb: not all randomly
assigned POVM outcomes are allowed 
 weight formula is crucial

 Emerging (partial) picture for AKLT family:

AKLT states involving spin-2 and other lower spin entities are 
universal if they reside on a 2D frustration-free lattice (e.g. 
w/o triangles) with any combination of spin-2, spin-3/2, spin-1 
and spin-1/2

 If there are different spin magnitudes in the system, we can 
apply corresponding POVMs (for spin-1/2, we do nothing)
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AKLT Hamiltonians and gap(?)
 On honeycomb lattice

 Kennedy, Lieb & Tasaki (KLT) proved decay of 
correlation functions (including on square lattice):

[KLT ‘88]

C, ξ const. >0

==> strongly suggests nonzero gap (no analytic proof after 30 yrs!)

==> they also showed ground state is unique

 Some example numerical values

[Garcia-Saez,Murg
& Wei ‘13]

iPEPS tensor network ∞ system: Δ=0.10
[see also Vanderstraeten ‘15]



Progress in proving nonzero gap

 Nothing can be said about n=1 & 2 cases regarding spectral gap
Can we prove n=0 case?
What about other lattices? Decorated square lattices? Triangular?

 Decorating lattice Λ  into Λ(n) by adding n spin-1 sites to each edge

n=1

v

Yv Abdul-Rahman, Lemm, Luica, 
Nachtegaele & Young (ALLNY), arXiv:1901.09297

 First analytic proof of nonzero gap for some 2D AKLT models 
(but not the undecorated honeycomb model)

n=2



Other lattices



Ideas by ALLNY ‘19
 Decorating lattice Λ  into Λ(n) by adding n spin-1 sites to each edge

n=1

 Also consider two modified H:
v

Yv

(1)

(2)

[Abdul-Rahman et al. 1901.09297]

 They proved gap of (2) for n≥3 (hence lower bound on gap of AKLT models)



How to prove nonzero gap?
Squaring H:

 Throwing out 
non-overlapping 
Pv Pw ≥ 0 

 Overlapping Pv Pw can be non-positive. 
But if we have:  

then we have

η>0 is smallest as 
possible

 If γ = (1-zη) > 0, then there is a nonzero gap

[z: coordination #]

[Knabe ‘88, Fannes, Nachtergaele & Werner ’92,
…., Abdul-Rahman et al. 1901.09297]



Useful lemma to upper bound η
 [Fannes, Nachtergaele, Werner ’92]:

For two projectors E & F:  

 Proof discussed later

 Want ε<1/z (z=3 for honeycomb)

E ^ F : projection onto ran(E)= EH
& ran(F)=FH

 (1-zε) > 0 implies γ = (1-zη) > 0, then there is a nonzero gap

[Abdul-Rahman et al. (ALLNY) 1901.09297]



Key point in upper bounding ε

v

v’

Yv

w

Yw

 Use E=I-Pv (projection to local 
ground space supported on Yv), 
F=I-Pw (projection to local ground 
space supported on Yw) & E ^ F 
(projection to local ground space 
supported on Yv U Yw) in

 ALLNY 1901.09297 used tensor-network approaches (e.g. MPS) to 
give an upper bound on ε [No time for details here]

 n=1 case: EF - E ^ F is operator roughly on size of 12 qubits, 
unfortunately ε≈0.4778 > 1/3; n=2 operator on ~ 20 qubits (not 
accessible); n=5 -> ~43.6 qubits



Our main results

v

v
’

Yv

[Pomata & Wei: 1905.01275]

 Analytically prove AKLT models on decorated square lattice 
(spin-2 + spin-1 decoration) are gapped for n ≥ 4

 Prove AKLT models on decorated mixed 
degree 3 & 4 lattices are gapped for n ≥ 4

 Proof extends to lattices with same local structure: 
e.g. decorated square lattices gapped ↔ decorated 
kagome lattices gapped ↔ decorated diamond lattices 
gapped 

 Reduce the effective size to obtain ε by exact diagonalization

gapped



Useful lemma to upper bound η
 [Fannes, Nachtergaele, Werner ’92]:

For two projectors E & F:  

 Proof discussed later

 Want ε<1/z (z=3 for honeycomb)

E ^ F : projection onto ran(E)= EH
& ran(F)=FH

 (1-zε) > 0 implies γ = (1-zη) > 0, then there is a nonzero gap

[Abdul-Rahman et al. (ALLNY) 1901.09297]



Hilbert space and two projectors

E & F are projectors;
VE

and similarly VF do not 
include intersection

 Consider eigenvalue equation α in [-1,1]:

 If α= -1,

 If α= 1,

 If α in (-1,1), unique decomposition

and                                          (can prove this) 

hence 

 So



Proving 

E & F are projectors;
VE and VF do not 
include intersection

 If α in (-1,1),

hence 

 Then

has unique decomposition

(can show  φ & ψ have same norm)

 E ^ F projects onto



Our main results

v

v
’

Yv

[Pomata & Wei: 1905.01275]

 Analytically prove AKLT models on decorated square lattice 
(spin-2 + spin-1 decoration) are gapped for n ≥ 4

 Prove AKLT models on decorated mixed 
degree 3 & 4 lattices are gapped for n ≥ 4

 Proof extends to lattices with same local structure: 
e.g. decorated square lattices gapped ↔ decorated 
kagome lattices gapped 

 Reduce the effective size to obtain ε by exact diagonalization



Reducing Hilbert space size

E & F are projectors;
VE and VF do not 
include intersection

 Consider a projector A satisfies:

(smaller space) 

(so                   )

so 

(1)

(2) (commute)

then                 (spectrum preserved)

 If α in (-1,1)\{0},

 SVDecompose

“Smaller projectors”:

but preserve the norm



Eigenvalue max α is preserved

E & F are projectors;
VE and VF do not 
include intersection

(                         ) so 
 Decompose 

 Consider 

==> spectrum (1-α) is preserved

 Can further reduce dimension if exists projector B: 
(1) (2)

then (                           ) 



Numerical procedure

v

v’

Yv

w

Yw

YA YB  Obtain E=I-Pv via tensor Ψ of Yv

by SVD w.r.t.

 Similarly for F=I-Pw, A and B

 Define

where

 Calculate smallest eigenvalue 1-ε of E’+F’  

 If ε <1/z, then the model is gapped

 Reduction: for a pair of vertices of degrees z & z’: 
E+F acts on space of dimension (z+1)(z’+1)3(z+z’-1)n, 
but E’+F’ acts on reduced dimension 2(z+z’+2)3n. 

e.g. z=z’=3, n=5 
--> reduction from 
43.6 to 15.9 qubits



Improved lower bound on gap

v

v’

Yv

 Consider re-arrangement of H:

 Observation: naive extrapolation of lower bound from n=3 & n=2 linearly 
[1] to n=1: γ(1)≈0.1262096, [2] to n=0: γ(0)≈ 0.097682 cf. iPEPS: Δ=0.10



Discussions
 Decoration of spin-1 sites make the AKLT state more likely to 

be universal

 Decoration removes the frustration
feature of measurement: 

 Decoration weakens/removes Néel order: e.g. on 3D cubic lattice

[Parameswaran, Sondhi & Arovas ’09]: AKLT state on cubic lattice is Néel ordered

 AKLT model gapless, but 
--> adding decoration make the decorated model gapped 
(at least for n=2 sites per edge)
-->  weakens tendency toward long-range order

 Short 1D AKLT wire between neighboring undecorated sites

z

z z

zzz, xxx or yyy
outcome not allowed z

z z

zzz, xxx or yyy
outcome ok



Discussions: “deformation”
 Can consider deformed AKLT states and investigate phase diagrams 

 Example on square lattice:

[Niggemann, Klümper& Zittartz ‘97,’00, Hieida,Okunishi& Akutsu 
‘99, Darmawan, Brennen, Bartlett ‘12, Huang, Wagner, Wei’16, 
Huang,Pomata,Wei ‘18]

[Huang,Pomata,Wei ’18]

 deformation:

 ground 
state:



Discussion: Realizations of 
1D AKLT state

 Resch’s group: photonic implementation (Nature Phys 2011)



Discussion: creating 2D AKLT states?
 Liu, Li and Gu [JOSA B 31, 2689 (2014)]

 Koch-Janusz, Khomskii & Sela [PRL 114, 247204 (2015)]

t2g electrons in Mott insulator



Summary and open questions

 Discussed AKLT family of states for universal measurement-based 
QC

 Discussed how to establish nonzero gap for AKLT models on 
decorated lattices

 Universal MBQC using AKLT states with higher spins S>2?

 Using AKLT for QC but without the “preprocessing” POVM?

 Proving nonzero gap for AKLT models on honeycomb and square 
lattices?

 What is essential symmetry that stabilizes the AKLT phase?
Can the entire phase be universal resource?

[see also Lemm, Sandvik & Yang 1904.01043 for gap on hexagonal chain]


