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(Frameworks of) Quantum Computation

_ . ] 5 v Major scheme by most
. Circuit: 8 i ; o labs: IBM, Intel Rigett,
0 B W lonQ, Alibaba
0 = 101
- - ~—0 H(t) = (1 — i)Hinitial + iHﬁnal
[l. Adiabatic: T T
I v Approach by D-Wave

. quantum gates = braiding anyons
lll. Topological: ~ Approach by Microsoft,

Google uses a hybrid of Il and |
(circuit version of V)

V. Measurement local measurement is the
based: only operation needed

v Used in photonic systems,
such as PsiQuantum



QC by Local Measurement

[Raussendorf & Brigel ‘01]

o First: carve out entanglement structure B

by local Pauli Z measurement > _

- O O OO0 OOO-
o = |

P P

a Then:
(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

‘ 2D or higher dimensions are needed for universal QC



How much entanglement is needed?

, ) [Gross, Flammia & Eisert '09;
0 States (n-qubit) possessing too much Bremner, Mora & Winter ‘09]

geometric entanglement E, are not
universal for QC (i.e if )

Q Intuition: if state is very high in geometric entanglement, every
local measurement outcome has low probability

=» whatever local measurement strategy, the distribution of outcomes is
so random that one can simulate it with a random coin (thus not more
powerful than classical random string)

L Moreover, states with high entanglement are typical:

those with IS rare, i.e. with fraction
=» Universal resource states are rare ®

Search in moderate
entanglement (accessible b
polynomial-size circuits)

accessible
anyway




Key questions for MBQC

o Characterizing all resource states? Still open

o Can they be unique ground state with 2-body Hamiltonians
with a finite gap? = If so, create resources by cooling!

+ Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT'87,'88]

1D (not universal): [Gross & Eisert et al. ‘07, ‘“10] [Brennen & Miyake '08]
2D (universal): [Miyake’'11] [Wei, Affleck & Raussendorf ‘11] [Wei et al. ‘13-'15]

» Nonzero 2D gap still not proven (after 30 yrs) [see also Abdul-Rahman
et al. 1901.09297; Pomata & Wei 1905.01275]

+» Symmetry-protected topological states

1D (not universal): [Miyake’10, Miller&Miyake ‘15] [Else, Doherty & Bartlett '12]
[Prakash & Wei’15] [Stephen et al.’17, Raussendorf et al. “17]
2D (universal, but not much explored): [Miller & Miyake '15] [Poulsen Nautrup & Wei’15]

» Important progress for QC in entire symmetry-protected phases: [Raussendorf et
al. PRL’ 19, and Devakul & Williamson, PRA 18, Daniel, Alexander& Miyake (talk yesterday)]

+» Thermal states (density matrices at finite T): some topologically protected
[Li et al 11, Fujii &Morimae 12, Fujii, Nakata, Ohzeki& Murao’13, Wei,Li&Kwek 14 ]
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Valence-bond ground states
of isotropic antiferromagnet

o AKLT (Affleck-Kennedy-Lieb-Tasaki) states/models

» Importance: provide strong support for Haldane’s [AKLT '87,88]
conjecture on spectral properties of spin chains

» Provide concrete example for symmetry-protected
topological order  [Gu & Wen 09,11, .. ]

o States of spin S=1,3/2, 2,.. (defined on any lattice/graph)

=» Unique* ground states of gapped”* two-body isotropic Hamiltonians

H = Z F(S;-S;)  f(x)is a polynomial
(i,7)
e.g. 1D: S=1

*w/ appropriate boundary conditions [Kennedy, Lieb & Tasaki '88]



(hybrid) AKLT state defined on any graph

sint};let

0 # virtual qubits
= # neighbors

o0 S=# neighbors / 2

o Physical spin Hilbert
space = symmetric
subspace of qubits

P, = projection to symmetric subspace of n qubit = spin n/2



Warm up: 1D AKLT state for gates

0 1D spin-1 AKLT state can be used to implement
arbitrary one-qubit gate

» Using matrix-product representation: [Gross & Eisert et al. ‘07, “10]
> Using edge degrees of freedom: [Brennen & Miyake '08]
[Miyake’10]

o Alternative view by reduction to 1D cluster state

by local measurement
[Chen, Duan, Ji & Zeng ‘10 ]

> Adaptive:

> Fixed measurement: (see next) [Wei, Affleck & Raussendorf ‘11 ]



Converting 1D AKLT state to cluster state

a Via fixed POVM = generalizable to 2D AKLT:

[Wei, Affleck & Raussendorf ‘11 ]

= Outcome labeled by x,y, z: projects to y
local two-level space



POVM: 1D AKLT state =» cluster state

[Wei, Affleck & Raussendorf’11, 12 ]

4 POVM: y

e.g. for the outcome (labeled x, vy, z) z

=>» the post-measurement state is an encoded 1D cluster state with graph:

=» 1 logical qubit = 1 domain = consecutive sites with same outcome

=>» This generalizes to some 2D AKLT states (with S<2)



2D AKLT states for quantum computation?

. . Miyake ‘11; Wei,Affleck & Raussendorf, PRL '11
o On various lattices Wei, PRA 13, Wei, Haghnegahdar& Raussendorf, PRA ‘14
Wei & Raussendorf ‘15

«. honeycomb s Square-octagon . ‘cross’ ® star
spin-3/2:
 square-hexagon s decorated-square < square ® Kagome
(spin-2 spin-3/2 mixture)  (spin-2 spin-1 mixture) (spin-2) (spin-2)

s Sy —q e
T




AKLT states on trivalent lattices

o Each site: three virtual qubits Q = spin 3/2 (in general: S= #nbr /2)

=» physical spin = symmetric subspace of qubits

o Two virtual qubits on an edge form a singlet W
01) — [10)

—> Effective qubit




POVM for spin-3/2

[Miyake ‘11, Wei, Affleck &

F, = g §><§ + _§><_§ Raussendorf’11]

3\I2/\21; 2 21z

2
o _(§><§ b= 2y(-3 )

3\I2/\21z 2 21 Completeness:

2 (13\ /3 3 3 i ; b
Po= .2 _><_ __><__ FiF, + FIF, + FIF, =1
v 3 ( 5/\31, 7173 21y vy

o POVM gives random outcome X, y and z at each site
/ K
Y
oo 8 Foeyonl®
P) T~z



Tensor-network picture

[Miyake ‘“11]

o After POVM, each site effectively has two
physical values

e.g. outcome z:

v Further local measurements
give rise to single- and
two-qubit gates (in virtual
bond space)

v Notion of computational
backbone



Alternative: Reduction to 2D graph states

| o 2 § § + | = § I § [Wei,Affleck & Raussendorf’11
= 3\[2/\2]. 9 2, Miyake ‘“11]
2 13\ /3 3 3
b = § ( §><§ T T §>< B 5 3;) Completeness:
2 13\ /3 3 3 + i i
o= /Z _><_ __><__ FiF, + FIF,+ FIF, =1
v 3 ( 2/\2l, 17 2 21y v

o POVM gives random outcome X, y and z at each site
/ *
Y
e
D) T~z

=» Can show POVM on all sites converts AKLT to a graph state

(graph depends on random x, y and z outcomes)



Probability of POVM outcomes

o Measurement gives random outcomes, but what is the
probability of a given set of outcomes?

o Can evaluate this using coherent states; alternatively
use tensor product states

o Turns out to be a geometric object

[Wei, Affleck & Raussendorf, PRL 11 & PRA’12]



Difference from 1D case:
graph & percolation

[Wei,Affleck & Raussendorf PRL'11]

1. What is the graph”? which determines the graph state
=» How to identify the graphs ?

v" From these graphs we can ‘cut out’ the computational backbone
2. How do we know these graph states are universal?

v Percolation is the key



Recipe: construct graph for ‘the graph state’

» Examples: random POVM outcomes x, v, z

honeycomb square octagon



Step 1: Merge sites to “"domains™ vertices

» 1 domain = 1 logical qubit

honeycomb / square octagon

| L) [ 4141 @ encoding of a logical qubit



Step 2: edge correction between domains

» Even # edges = 0 edge, Odd # edges = 1 edge
(dueto o2 =1 inthe C-Zgate)

honeycomb square octagon



Step 3: Check connections (percolation)

» Sufficient number of wires if graph is in supercritical phase (percolation)

v" Verified this for honeycomb, square octagon and cross lattices
=» AKLT states on these are universal resources



I:)span

How robust is connectivity?

» Characterized by artificially removing domains to see
when connectivity collapses (phase transition)

[Wei’13]

supercritical subcritical B
supercritical subcritical



Frustration on star lattice

!

ay

=» Cannot have POVM outcome
XXX, YYYy Oor zzz on a triangle

=» Consequences:

(1) Only 50% edges on triangles occupied
< py, =0.5244 of Kagome

—> disconnected graph

(2) Simulations confirmed: graphs not
percolated

=>» AKLT on star likely NOT universal



Difficulty for spin-2

o Technical problem: trivial extension of POVM
does NOT work!

e e A R s I W)

o= b s
F, = 2><2y+ —2><—2y

o Fortunately, can add elements K’s to complete the identity

=>» Leakage out of logical subspace (error)!

gE—

[Wei, Haghnegahdar, Raussendorf’14]

Completeness:



Another difficulty: sample POVM outcomes

[Wei, Raussendorf’15]

o How to calculate such an N-body correlation function?

=» Bottom line: can use Monte Carlo sampling



Local POVM: 5-level to (2 or 1)-level

[Wei, Haghnegahdar, Raussendorf’14]

Completeness:

—

o POVM gives random outcome F,, Fy, F,, K, Ky, K, ateach site

=» Local action (depends on outcome):

‘(I)> — Fa::c,y,orz‘q)>

or



Post-POVM state: graph state

[Wei, Haghnegahdar, Raussendorf’14]

o If F outcome on all sites
=>» a planar graph state

~

a domain v" Vertex = a domain of sites with
= vertex same color (x, y or z)

o Koutcome = F followed by
measurement (then post-selecting ‘- result)

= Either
(1) shrinks domain size [trivial] or
(2) logical X or Y measurement [nontrivial]



POVM = Graph of the graph state

Vertex = domain = connected sites of same color
Edge = links between two domains (modulo 2)

o Effect of nontrivial logical X logical Y
=>» non-planar graph measurement measurement




Non-planarity from X/Y measurement

[See e.g. Hein et 06]

X measurement
onA

Y measurement
onA

=>» Effect of X measurement is more complicated than Y measurement



Restore planarity: further measurement

o Deal with non-planarity due to Pauli X measurement:
remove all vertices surrounding that of X measurement (via Z measurement)

X measurement /‘/$

onA . i

o

o Deal with non-planarity due to Pauli Y measurement:

remove only subset of vertices surrounding that of Y measurement

Y measurement
on A




POVM = Graph of the graph state

Vertex = domain = connected sites of same color
Edge = links between two domains (modulo 2)

o Pauli X or Y measurement on planar Jogical X ‘logical Y
graph state =» non-planar graph measurement measurement




Restore Planarity by
Another round of measurement

|:> Deal with X measurement |:> Deal with Y measurement



Examining percolation of typical graphs
(resulting from POVM and active logical Z measurement)

v 1. As system size N=L x L increases, exists
a spanning cluster with high probability

1 v 2. Robustness of connectivity: finite
percolation threshold (deleting each vertex
with increasing probability)

v' 3. Data collapse: verify that transition is
continuous (critical exponent v = 4/3)

subcritical
supercritical phase

phase (graph state

(graph state not universal)
universal)



Spin-2 AKLT on square is universal for
gquantum computation

Because the typical graph states (obtained from local measurement
on AKLT) are universal = hence AKLT itself is universal

Difference from spin-3/2 on honeycomb: not all randomly
assigned POVM outcomes are allowed
=» weight formula is crucial

If there are different spin magnitudes in the system, we can
apply corresponding POVMs (for spin-1/2, we do nothing)

Emerging (partial) picture for AKLT family:

AKLT states involving spin-2 and other lower spin entities are
universal if they reside on a 2D frustration-free lattice (e.g.
w/o triangles) with any combination of spin-2, spin-3/2, spin-1
and spin-1/2
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AKLT Hamiltonians and gap(?)

o On honeycomb lattice

> Kennedy, Lieb & Tasaki (KLT) proved decay of  [KLT 8g]
correlation functions (including on square lattice):
C, ¢ const. >0
==> strongly suggests nonzero gap (no analytic proof after 30 yrs!)
==> they also showed ground state is unique

o Some example numerical values

[Garcia-Saez,Murg
& Wei “13]

IPEPS tensor network « system: A=0.10
[see also Vanderstraeten ‘15]



Progress in proving nonzero gap

o Decorating lattice A into A by adding n spin-1 sites to each edge

n=1

o Abdul-Rahman, Lemm, Luica,
Nachtegaele & Young (ALLNY), arXiv:1901.09297

v' First analytic proof of nonzero gap for some 2D AKLT models ©
(but not the undecorated honeycomb model)

Nothing can be said about n=1 & 2 cases regarding spectral gap
Can we prove n=0 case?
What about other lattices? Decorated square lattices? Triangular?



Other lattices



ldeas by ALLNY 19

o Decorating lattice A into A by adding n spin-1 sites to each edge
n=]

« Also consider two modified H:
[Abdul-Rahman et al. 1901.09297]

(1)

+ They proved gap of (2) for n=3 (hence lower bound on gap of AKLT models)



How to prove nonzero gap?

i . [Knabe ‘88, Fannes, Nachtergaele & Werner '92,
4 Squarlng H: ..., Abdul-Rahman et al. 1901.09297]

» Throwing out
non-overlapping
P,P,20

Overlapping P, P,, can be non-positive.

But if we have: n>0 is smallest as
possible

then we have

[z: coordination #]

If y=(1-zn) > 0, then there is a nonzero gap



Useful lemma to upper bound n

o [Fannes, Nachtergaele, Werner '92]:

For two projectors E & F:

E ~ F : projection onto ran(E)= E#
& ran(F)=F#
» Proof discussed later

+» (1-z&) > 0 implies y = (1-zn) > O, then there is a nonzero gap

> Want €<1/z (z=3 for honeycomb)

[Abdul-Rahman et al. (ALLNY) 1901.09297]



Key point in upper bounding ¢

a Use E=I-P, (projection to local
ground space supported on Y,),
F=I-P, (projection to local ground
space supportedonY,) & E+F
(projection to local ground space
supportedon Y, UY,,) in

0 ALLNY 1901.09297 used tensor-network approaches (e.g. MPS) to
give an upper bound on € [No time for details here]

o n=1case: EF - E » F is operator roughly on size of 12 qubits,
unfortunately €=0.4778 > 1/3; n=2 operator on ~ 20 qubits (not
accessible); n=5 -> ~43.6 qubits



Our main results

[Pomata & Wei: 1905.01275]

o Analytically prove AKLT models on decorated square lattice
(spin-2 + spin-1 decoration) are gapped for n = 4

o Prove AKLT models on decorated mixed
degree 3 & 4 lattices are gapped forn =4

o Proof extends to lattices with same local structure:
e.g. decorated square lattices gapped < decorated
kagome lattices gapped « decorated diamond lattices

gapped

0 Reduce the effective size to obtain € by exact diagonalization

gapped




Useful lemma to upper bound n

E ~ F : projection onto ran(E)= E#

& ran(F)=F#
» Proof discussed later




Hilbert space and two projectors

4 )

o Consider eigenvalue equation a in [-1,1]:

E & F are projectors; a Ifa=-1,
Ve B
and similarly V¢ do not o lfa=1,

include intersection

o Ifain (-1,1), unique decomposition o So

and (can prove this)

hence



Proving

\

E & F are projectors;
Ve and Vi do not
include intersection

o E ~ F projects onto
o Ifain (-1,1),

has unique decomposition

o Then

(can show ¢ & y have same norm)

hence



[Pomata & Wei: 1905.01275]

o Analytically prove AKLT models on decorated square lattice
(spin-2 + spin-1 decoration) are gapped forn =4

o Prove AKLT models on decorated mixed
degree 3 & 4 lattices are gapped forn =24

o Proof extends to lattices with same local structure:
e.g. decorated square lattices gapped < decorated
kagome lattices gapped

@educe the effective size to obtain € by exact diagonalizatiD




Reducing Hilbert space size

o Consider a projector A satisfies:

4 )

\ J

E & F are projectors;
Ve and Vi do not
include intersection

o SVDecompose SO

“Smaller projectors”:
but preserve the norm

(1)
(2)

(so

(commute)

o Ifain (-1,1)\{0},

then

(spectrum preserved)

(smaller space)



Eigenvalue max a is preserved

o Decompose
SO (

o Consider

E & F are projectors;

Ve and V¢ do not ==> gpectrum (1-a) is preserved
include intersection

o Can further reduce dimension if exists projector B:
(1) (2)

then ( )



Numerical procedure

a Obtain E=I-P, via tensor ¥ of Y,
by SVD w.r.t.

a Similarly for F=I-P,, A and B

o Define

where

o Calculate smallest eigenvalue 1-¢ of E’+F”

o If e <1/z, then the model is gapped

o Reduction: for a pair of vertices of degrees z & z': eg.z=z'=3, n=5
E+F acts on space of dimension (z+1)(z'+1)3@*z-1n, 43> éetdu%'%n f"%r_ft\
but E’+F’ acts on reduced dimension 2(z*z+2)3n, -0 10 1o-9 qubHs




Improved lower bound on gap

o Consider re-arrangement of H:

o Observation: naive extrapolation of lower bound from n=3 & n=2 linearly
[1] to n=1: y(1)=0.1262096, [2] to n=0: y(0)= 0.097682  cf. iPEPS: A=0.10



Discussions

o Decoration of spin-1 sites make the AKLT state more likely to
be universal

» Short 1D AKLT wire between neighboring undecorated sites

o Decoration removes the frustration
feature of measurement:

ZZZ, XXX Or yyy
outcome not allpwed

tcome ok |
BA

o Decoration weakens/removes Néel order: e.g. on 3D cubic lattice

ZZZ, XXX Or yyy

[Parameswaran, Sondhi & Arovas '09]: AKLT state on cubic lattice is Néel ordered

» AKLT model gapless, but
--> adding decoration make the decorated model gapped
(at least for n=2 sites per edge)
--> weakens tendency toward long-range order



Discussions: “deformation”

o Can consider deformed AKLT states and investigate phase diagrams

[Niggemann, Kliumper& Zittartz ‘97,’00, Hieida,Okunishi& Akutsu
‘99, Darmawan, Brennen, Bartlett ‘12, Huang, Wagner, Wei'16,
Huang,Pomata,Wei ‘18]

o Example on square lattice:
[Huang,Pomata,Wei 18]

= deformation:

= ground
state:



Discussion: Realizations of
1D AKLT state

0 Resch’s group: photonic implementation (Nature Phys 2011)



Discussion: creating 2D AKLT states?

a Liu, Liand Gu [JOSAB 31, 2689 (2014)]

o Koch-Janusz, Khomskii & Sela [PRL 114, 247204 (2015)]

t,4 electrons in Mott insulator



Summary and open questions

—0 Discussed AKLT family of states for universal measurement-based
QC

o Discussed how to establish nonzero gap for AKLT models on
decorated lattices

o Universal MBQC using AKLT states with higher spins S>27?
o Using AKLT for QC but without the “preprocessing” POVM?

o What is essential symmetry that stabilizes the AKLT phase?
Can the entire phase be universal resource?

o Proving nonzero gap for AKLT models on honeycomb and square
lattices?

[see also Lemm, Sandvik & Yang 1904.01043 for gap on hexagonal chain]



