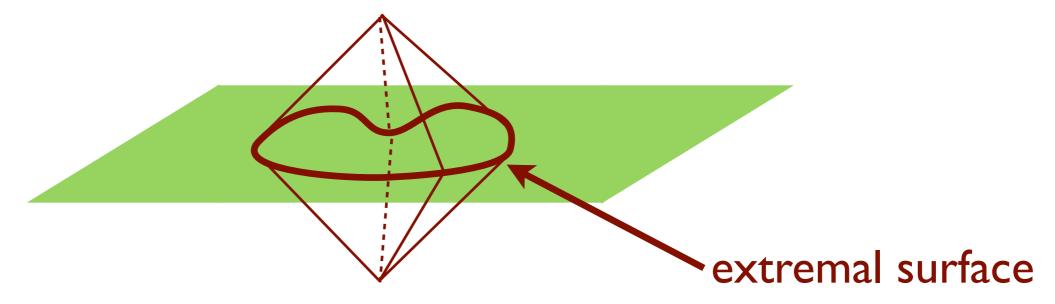
Superselection Sectors of Gravitational Subregions

Joan Camps UCL

1810.01802 1905.10121

Main point

 Unlike for other systems, the quasilocal parts of the gravitational field are always* bounded by surfaces of stationary area



^{*} I consider only pure gravity: GR without matter

Simple argument

JC 1905.10121

- Quasilocal part: degrees of freedom bounded by a surface σ
- To tell which dofs have been excited inside σ under a change of g , we need σ across $\{g\}$
- Quantumly: $\psi[g] \approx \text{``}\delta\text{''}[g-\bar{g}] + \cdots$
- A generic σ in \bar{g} is described by $X^{\mu}_{\bar{g}}(\sigma)$. In $\{g\}$?
- It extends naturally if defined by its local geometry (otherwise it is not 'just a surface')

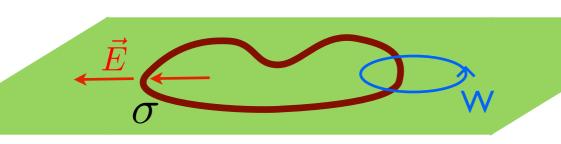
Symplectic form

 Basic object in phase space (= space of initial data, space of solutions to the eoms)

$$W(\delta_1 \phi, \delta_2 \phi) = -W(\delta_2 \phi, \delta_1 \phi)$$

- \bullet A gauge, non-degree of freedom is such that it is a null direction and a symmetry of W
- Imaginary subregions do not introduce dofs
- We then demand: $W\left(\delta g,\pounds_{\zeta}\bar{g}\right)=\delta H_{\zeta}=0$ locally

Symplectic photon



Casini, Huerta, Rosabal
Donnelly, Freidel
Casini, Huerta, Magan, Pontello
Soni, Trivedi
many others...

• For a gauge transformation

$$\delta_{\varepsilon}A = d\varepsilon$$

$$W(\delta_{\varepsilon}A, \delta A) = \int_{\sigma} d^2x \,\varepsilon \,\delta E^{\perp}$$

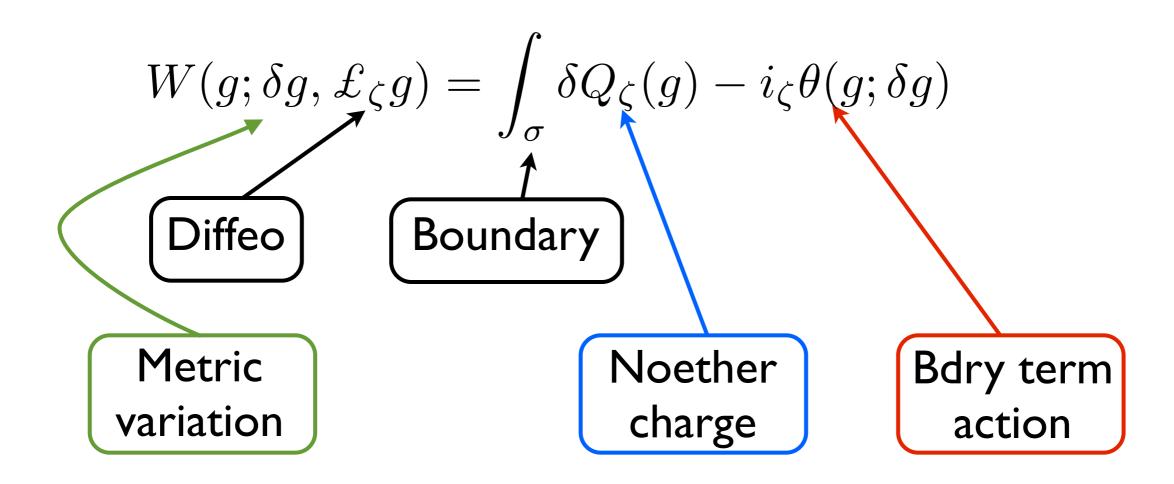
Recall algebraic conclusion

$$\rho = \bigoplus_{\{E_{\sigma}^{\perp}\}} p_{E_{\sigma}^{\perp}} \, \rho_{E_{\sigma}^{\perp}}$$

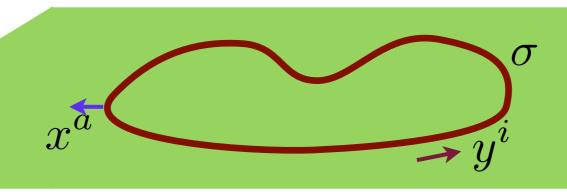
Symplectic graviton graviton Hollands, Wald

Jafferis, Lewkowycz, Maldacena, Suh

Symplectic form on a diffeomorphism



Notation



Induced metric

$$h_{ij} = e^{2\Omega} \bar{h}_{ij}$$

$$\det \bar{h} = 1$$

$$K_{ija} = \frac{1}{D-2} K_a h_{ij} + e^{2\Omega} \bar{K}_{ija}$$

$$h^{ij}\bar{K}_{ija} = 0$$

Extrinsic curvature

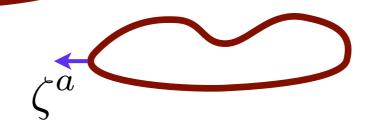
D spacetime dimensions

Types of non-trivial diffs

Boundary diffs

Boosts

Translations



Ham	Null
Y	$\delta \bar{h}_{ij} = 0$
Y	$\delta A = 0$
???	???

$$W(g; \delta g, \pounds_{\zeta^a} g) = \frac{1}{16\pi} \int_{\sigma} \left| \frac{2}{D-2} \zeta^b \epsilon^a{}_b \, \delta(K_a \, \epsilon_h) \right|$$

$$+2\left(\frac{D-3}{D-2}\delta K_a + \frac{1}{2}\bar{K}^{ij}{}_a\,\delta\bar{h}_{ij}\right)\zeta^b\epsilon^a{}_b\,\epsilon_h$$

Graviton bdry conds.

$$W(g; \delta g, \pounds_{\zeta^a} g) = \frac{1}{16\pi} \int_{\sigma} \left[\frac{2}{D-2} \zeta^b \epsilon^a{}_b \, \delta(K_a \, \epsilon_h) + 2 \left(\frac{D-3}{D-2} \delta K_a + \frac{1}{2} \bar{K}^{ij}{}_a \, \delta \bar{h}_{ij} \right) \zeta^b \epsilon^a{}_b \, \epsilon_h \right]$$

- ullet Most natural: fix $\,K^a=0\,$ and $\,ar{K}^{ij}{}_a\deltaar{h}_{ij}=0\,$
- ullet Superselection sectors labelled by $\delta \overline{h}_{ij}$, such that

$$\bar{K}^{ij}{}_a\delta\bar{h}_{ij}=0$$

Examples: Biff surfaces, HRRT surfaces

Intepretation of BCs

$$\rho_{\Sigma} = \bigoplus_{\{\delta \bar{h}_{ij} | \bar{K}^{ija} \delta \bar{h}_{ij} = 0\}} p_{\delta \bar{h}_{ij}} \rho_{\delta \bar{h}_{ij}}$$

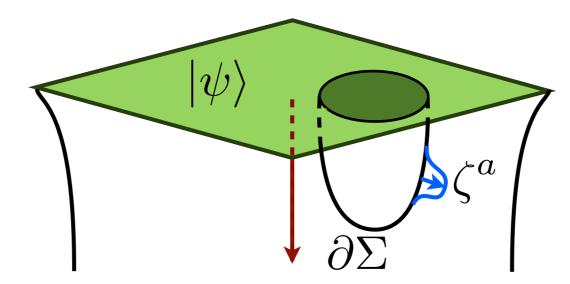
- $K^a = 0$ is a good subregion: It is diff-invariant
- $\bar{K}^{ij}{}_a \delta \bar{h}_{ij} = 0$ discards $\delta \bar{h}_{ij}$ achievable by a displacement (gauge transformation):

$$\delta \bar{h}_{ij} = 2\bar{K}_{ija} \zeta^a$$

- Locally infinitesim. deformable extremal surfaces?
- Jacobi fields?

Deformability of $\partial \Sigma$.

 Claim: Generically, there are inf. nearby extremal surfaces reachable with local translations



Jacobi equation

$$\delta_{\zeta}K^a = -D^2\zeta^a + V^a{}_b\zeta^b = 0$$

When

$$V^a{}_b = -\bar{K}_{ij}{}^a \bar{K}^{ij}{}_b \approx -\bar{K}^2 \delta^a{}_b$$

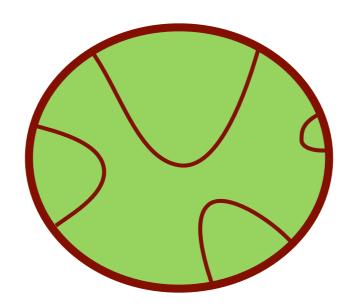
$$V^a{}_b = -\bar{K}_{ij}{}^a \bar{K}^{ij}{}_b \approx -\bar{K}^2 \delta^a{}_b \qquad \zeta^a = c^a J_0 \left(\sqrt{\bar{K}^2} \left| y \right| \right)$$

Recap: Graviton

- Principle: Subregions are imaginary separations: Do not introduce degrees of freedom to the system.
- ullet Symplectic reduction: diffs of subregions should annihilate and be symmetries of W. Non-trivial.
- Boundaries of subregions are extremal surfaces.
- Superselection sectors labeled by \bar{h}_{ij} on $\partial \Sigma$, such that $\bar{K}^{ij}{}_a \delta \bar{h}_{ij} = 0$. This discards $\delta \bar{h}_{ij} = \bar{K}_{ija} \zeta^a$, that take us to nearby extremal surfaces.

Outlook: (i) Holography

- The scarcity of subregions would explain why gravity is holographic from a bulk point of view
- ullet We normally have $e^{N_{
 m dof}} \propto {
 m Vol}$, except for gravity
- If the correct identification is $N_{
 m dof} \propto N_{
 m subregions}$
- ullet We then have, for gravity $N_{
 m dof} \propto N_{
 m \partial}$, so $e^{N_{
 m dof}} \propto {
 m Area}$



(ii) Black Hole entropy

- With Euclidean methods, quantum corrections to BH entropy can be accounted for precisely for extremal BHs in string theory.
- Mismatch for Schwarzschild black hole:

$$S_{\rm Sen} = \frac{A}{4G} + \frac{77}{90} \log \frac{A}{4G} + \cdots$$

And LQG:

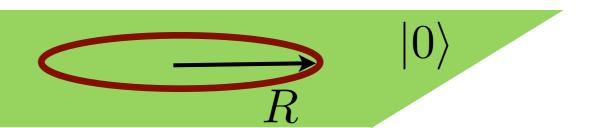
$$S_{\text{LQG}} = \frac{A}{4G} - \log \frac{A}{4G} + \cdots$$

Real-time entanglement-across-horizon picture?

Summary

- Regions are subtle with gauge symmetry
- Important for, eg, Q corrections to BH entropy
- The phase space of a gravitational subregion is gauge invariant if the boundary is extremal surface
- Extremal surfaces are locally deformable?

Photon ambiguities



- Choice of algebra affects what you get
- EE of the photon, in the vacuum, across a sphere, with electric bcs

$$S_{\mathrm{el}} = \# rac{A}{\epsilon^2} - rac{31}{45} \log rac{R}{\epsilon} + \dots$$
 Donnelly, Wall

With another prescription

$$S_{\mathrm{M.I.}} = \#' rac{A}{\epsilon^2} - rac{16}{45} \log rac{R}{\epsilon} + \dots$$
 Casini, Huerta

Symplectic reduction

Lee, Wald

- It is common to embed the physical phase of a gauge thy $\bar{\Gamma}$ in a larger space Γ , eg $\{A_i(x), E^j(x)\}$
- On a constraint surface C in Γ , eg $\nabla_i E^i = 0$, the symplectic form has null directions g

$$I_g W|_C = 0$$

• Can be dispensed via 'symplectic reduction' if this is also a symmetry: $L_g W|_C = 0$

ullet C: Fiber bundle over the physical $ar{\Gamma}$

Comments

 Since closedness is preserved under restriction, one normally expects trivially

$$L_g W|_C = \delta I_g W + I_g \delta W = 0$$

• Failure of g to be hamiltonian on C, $I_gW \neq \delta H_g$ would indicate that restriction $W|_C$ has not been done properly

Cartoon

