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MOTIVATION

 Holographic entanglement proposals are well understood in the regime 
of planar, strongly coupled field theories, which translates to the hierarchy:

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
6
1
P
_
0
6
1
9
 
v
1

1 Introduction

The open/closed topological duality of Gopakumar-Vafa (GV) [1] between large N Chern-
Simons theory on S3 and closed topological string on a resolved conifold through a geometric
transition provides a useful context to test the general ideas underlying the gauge/gravity
correspondence. As both sides of the duality are topological field theories, one has precision
checks. For instance, [1] already showed how the ’t Hooft expansion of the Chern-Simons
partition function matches with the genus expansion of the closed topological string partition
function. The match between observables was extended to Wilson loop expectation values in
[2], and informed the subsequent developments in the subject such as the all-loop expression
for topological string amplitudes [3], the topological vertex [4], etc.

Whilst the match between conventional observables on the two sides is fascinating, the rel-
ative tractability of this topological duality suggests that one ought to be able to do much more.
It is instructive to compare the situation with the more familiar examples of gauge/gravity
duality. In the physical context, the AdS/CFT correspondence relates large N field theories
realized on D-branes, to closed strings propagating on AdS spacetimes [5]. Early entries into
the holographic dictionary were relations between field theory operators and gravitational
fields and prescriptions for computing correlation functions [6, 7]. These entries, we now be-
lieve, do not altogether capture the complete essence of the holographic duality. Among other
things they fail to provide a rationale for how the degrees of freedom of the quantum field
theory conspire to build a dynamical spacetime where closed strings propagate.

While we are yet to fully fathom the story in the physical context, developments in
the past decade suggest an intimate connection between the emergence of geometry and the
organization of quantum information in the dual field theory. These observations arise from
another entry in the holographic dictionary; one relating the computation of von Neumann
entropy for a spatial subregion of the field theory to the area of an extremal surface in the
dual bulk geometry, viz., the RT/HRT prescriptions of [8, 9]. This geometrization of quantum
entanglement (to leading order in large N), it has been argued, should be interpreted as
responsible for the emergence of macroscopic spacetime geometry [10, 11]. An overview of
some of the salient developments in this area can be found in [12].

Given this status quo, we would like to examine the connection between geometry and
entanglement in the open/closed topological string duality. However, we should first convince
ourselves that this is a useful exercise which could inform our intuition in the physical setting.
Recall that the holographic entanglement entropy prescription is best understood in the limit
when the closed string theory truncates to low energy Einstein-Hilbert gravitational dynamics,
viz., when `AdS � `s � `P , which translates to the leading strong coupling, planar limit of the
field theory.1 Stringy corrections are understood perturbatively in `AdS/`s by encapsulating

1Concretely, in the familiar duality between SU(N) N = 4 Super Yang-Mills (SYM) and string theory on
AdS5 ⇥S5, the map between parameters is

g2Y M N ⇠

✓
`AdS

`s

◆4

, N ⇠

✓
`AdS

`P

◆4

. (1.1)

– 2 –

 Perturbation theory in inverse powers of coupling                                                
lead to geometric (though not extremal) surfaces 
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 Quantum gravitational effects however lead to                                                       
quantum entanglement across the bulk extremal surface
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 Effectively, our understanding of how between geometry arises from 
entanglement in field theory is limited to a small corner of parameter space.  
We should be asking for more…



MOTIVATION

 Explore the connection between entanglement  and geometry in classical 
string theory, when                               . 

 For now, focus on topological context where lack of dynamics is 
compensated by the intrinsic tractability of the theories. 

 Open/closed topological string duality provides a concrete context where 
we can explore what is the topological closed string quantity which 
captures Chern-Simons topological entanglement . 

 More precisely, seek a topological analog of generalized gravitational 
entropy, and ask how the replica construction in Chern-Simons ports across 
to the closed topological string. 

 We’ll argue for a natural replica construction in the closed topological 
string and the notion of an entangling brane in topological string theory.

`AdS ⇠ `s � `P
<latexit sha1_base64="vP9xwf2SozwT/aqApyQknByRxrg="></latexit>



Act I

The topological open/closed string duality



OPEN/CLOSED TOPOLOGICAL STRING DUALITY

 The open/closed topological string duality relates the worldvolume 
theory of topological D-branes with a closed topological string theory. 

 Worldvolume theory of A-model D-branes on the deformed conifold:                                 
Chern-Simons gauge theory on       with                 .   

 Dual closed string theory is the topological A-model on the resolved 
conifold geometry.

S3
<latexit sha1_base64="dqtLbdaT0X8a0fFqpNZ9smhgJLA="></latexit>

SU(N)k
<latexit sha1_base64="OChyiAY4kxD82B749fe0zh6q7dE="></latexit>
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Figure 1: A illustration of the deformed, singular, and resolved conifold geometries viewed as a cone with a base
that is topologically S2

⇥S3. We view the base as living far out along the cone r ! 1, and the different topologies
of the three geometries are captured by the behaviour near the tip. In the deformed conifold (left), S2 shrinks to
a point and the S3 has radius µ. The singular conifold (middle) instead has both the S3 and the S2 shrinking
to a point at the tip. In the resolved conifold (right) on the other hand, the S3 shrinks to a point and the S2

has the Kähler parameter t. We have drawn the three-sphere as two 3-balls, which are to be identified along their
boundaries. We will use this representation explicitly below, and also adhere to the color coding differentiating the
three-ball B from the two-sphere S2 (which will always be in yellowish hue).

are related to rank N and the level k of the Chern-Simons theory as follows:

gs =
2⇡

k +N
, t = i

2⇡N

k +N
= i� , (2.2)

where we have also indicated by � the ’t Hooft coupling of the field theory.
Topological A-models define closed string theories on a Calabi-Yau target space and are

obtained from the physical Type II string theory by a topological twist of the underlying (2, 2)

worldsheet CFT [46]. The A-twist involves shifting the spin current by the vector R-current of
the superconformal theory, and restricts attention to holomorphic maps from the worldsheet
⌃ws to the target Calabi-Yau X6. The resulting theory is independent of the complex structure
deformations of the target and only depends on the Kähler parameters.

Consider then the deformed conifold T
⇤S3 which is described by the following hypersurface

in C4 (coordinates ⇣a = qa + i pa, a = 1, 2, 3, 4)

4X

a=1

⇣
2
a = µ

2 =)
4X

a=1

�
|qa|2 � |pa|2

�
= µ

2 &
4X

a=1

qa pa = 0 (2.3)

qa can be thought of as the ‘coordinates’; so the hypersurface with pa = 0 is indeed an S3

(which is Lagrangian with the canonical symplectic form) with size set by µ. pa are related to
the conjugate momenta. This geometry can be viewed as a cone with base S3 ⇥ S2.8 As long
as µ > 0, the S3 remains of finite size. The normal bundle is topologically R3 with a ‘radial
coordinate’ along which the S2 shrinks to zero at the tip (where S3 has size µ).

8The S2 is non-trivially fibered over the S3 but for the most part we will not explicitly need to refer to this
fibration structure and continue to use the product notation as is conventional in the literature. Likewise in
our illustrations we will simply indicate the S2 and S3 alongside each other.

– 9 –

Zc(R) = ZCS(S
3)

<latexit sha1_base64="snMOcSBsGcovv0jbh07xv3qmWvo="></latexit>

Gopakumar, Vafa ’98 
Ooguri, Vafa ’99, ’02

 The A-model string is independent of the complex structure of the target 
space but depends on Kahler structure. It computes topological invariants 
associated with holomorphic worldsheets into the target CY 3-fold.



TARGET SPACE GEOMETRIES
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T ⇤S3
<latexit sha1_base64="QCCQurbISPfEvGeYse68sDuNet8="></latexit>

Deformed conifold
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Resolved conifold
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2 Topological open/closed string duality

In order to set the stage for our discussion, we briefly review some of the salient facts in the
open/closed topological string duality of [1, 2]. Some of the relevant material can be found in
reviews [47, 48].

Chern-Simons action is specified by a gauge connection A which transforms in the adjoint
of a Lie algebra g, associated with a gauge group G. For definiteness we will focus on g =

su(N). The action which is gauge invariant on a closed three-manifold M3 is given by the
integral of a three-form

SCS =
k

4⇡

ˆ
M3

Tr

✓
A ^ dA+

2

3
A ^A ^A

◆
. (2.1)

k here is the level of the Chern-Simons theory, and is quantized to be integral, k 2 Z, for the
action to be single-valued. We will denote F = DA to be the field strength as usual.

As defined, the classical theory is topological, in the sense of being independent of the
background metric structure, as is manifest from the action (2.1). The quantum theory, first
analyzed in [40], however does care in a mild manner about the metric structure, which we
need to introduce to regulate the theory. This is associated with the ‘framing ambiguity’. For
the most part we will work with a canonical framing choice, which we won’t need to spec-
ify explicitly. As long as we stick to the topological sector, we are only allowed to consider
observables which are similarly independent of the metric structure, i.e., to Wilson loop oper-
ators. Among the many results in [40] it was shown how one can use three-manifold surgery
techniques to compute partition functions and expectation values of Wilson loop observables
defined on knots and links. In addition, we will also need information regarding the Hilbert
space of the theory for our purposes; this was also obtained in [40] as we review below.

Of primary interest to us is Chern-Simons theory on S3 with the gauge group SU(N). Not
only is it an exactly solvable theory, but it also provides an exact effective description of the A-
model open topological string theory with target space T

⇤S3 [33]. In this context, one should
view the Chern-Simons theory as the open string field theory of open string degrees of freedom
living on a topological D-brane. The D-branes of the A-model are half-codimension surfaces
wrapping a Lagrangian cycle. The topological D-brane of interest wraps the background S3,
which is a Lagrangian 3-cycle, and the topological string target space is T

⇤S3 which is a
Calabi-Yau geometry, the deformed conifold (see Fig. 1).

The statement of open/closed string duality stems from the observation that the large N

expansion of the SU(N) Chern-Simons partition function on S3 around the classical solution
can be interpreted in terms of a closed A-model topological string theory. More precisely, the
closed string dual is the N = 2 closed A-model topological string theory whose target space
is the resolved conifold R ⌘ O(�1)�O(�1) ! P1. The resolved conifold is a six dimensional
Calabi-Yau manifold with a single Kähler parameter (which sets the complexified area of the
S2). The string coupling gs and the Kähler parameter t for the closed string target spacetime

– 8 –
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The parameter µ picks out a complex structure on T
⇤S3. Since the A-model is insensitive

to the choice of the complex structure, we can vary it at will, and in particular set µ ! 0

whence we get the conifold singularity, where both the S3 and S2 have shrunk to zero size at
the tip of the cone.

4X

a=1

⇣
2
a = 0 . (2.4)

We can parameterize this geometry slightly differently to exhibit its structure. A change of
coordinates brings allows us to describe it as the following hypersurface in C4:

x y � w z = 0 (2.5)

The singular conifold admits a second desingularization, where we resolve the S2 ⇠ P1.
This can be done as follows. Let ⇠ be an inhomogeneous coordinate on P1. We can solve (2.5)
by setting

x = ⇠ z , w = ⇠ y . (2.6)

This parameterization makes manifest the geometry being a O(�1)�O(�1) bundle over P1.
This is known as the resolved conifold R. An alternate way to parameterize the manifold is
to use complex coordinates ⇠a such that

|⇠1|2 + |⇠4|2 � |⇠2|2 � |⇠3|2 = t (2.7)

The parameter t is complex and captures the Kähler modulus of the resolved conifold. Intu-
itively it is the complexified area of the P1 which is the locus ⇠2 = ⇠3 = 0, which identifies
⇠ = ⇠1/⇠4. We explain some more elements of the topology of the conifold in Appendix A.
Fig. 1 illustrates the basic structure of the topology of the spaces we are interested in.

The Chern-Simons/topological string correspondence has striking similarities with the
more familiar examples of the AdS/CFT correspondence. Consider the duality between N = 4

Yang-Mills in S4 and the closed IIB superstring theory in AdS5⇥S5 [5]. Working for the
moment in Euclidean space, the boundary of the geometry is S4⇥S5 with the radial direction
of AdS5 filling in the S4. As we shall see below, the geometry of the resolved conifold can be
understood as a cone with a base which is topologically S2 ⇥ S3, and the space at infinity is
S2⇥S3 with the S2 having finite size. One should by way of analogy identify the S2 with the
S5 transverse to the D3-branes. Likewise, at a heuristic level, the Chern-Simons theory can
be thought of as living on a large S3, far out along the cone, just like the N = 4 Yang-Mills
which is living on a large S4 at the conformal infinity of AdS5⇥S5 [1].9

9While this perspective provides a useful mnemonic for the duality, there is no real sense in which the
Chern-Simons theory lives far out at the base of the cone, just as the N = 4 SYM theory doesn’t really reside
on the boundary of AdS.
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Figure 1: A illustration of the deformed, singular, and resolved conifold geometries viewed as a cone with a base
that is topologically S2

⇥S3. We view the base as living far out along the cone r ! 1, and the different topologies
of the three geometries are captured by the behaviour near the tip. In the deformed conifold (left), S2 shrinks to
a point and the S3 has radius µ. The singular conifold (middle) instead has both the S3 and the S2 shrinking
to a point at the tip. In the resolved conifold (right) on the other hand, the S3 shrinks to a point and the S2

has the Kähler parameter t. We have drawn the three-sphere as two 3-balls, which are to be identified along their
boundaries. We will use this representation explicitly below, and also adhere to the color coding differentiating the
three-ball B from the two-sphere S2 (which will always be in yellowish hue).

are related to rank N and the level k of the Chern-Simons theory as follows:

gs =
2⇡

k +N
, t = i

2⇡N

k +N
= i� , (2.2)

where we have also indicated by � the ’t Hooft coupling of the field theory.
Topological A-models define closed string theories on a Calabi-Yau target space and are

obtained from the physical Type II string theory by a topological twist of the underlying (2, 2)

worldsheet CFT [46]. The A-twist involves shifting the spin current by the vector R-current of
the superconformal theory, and restricts attention to holomorphic maps from the worldsheet
⌃ws to the target Calabi-Yau X6. The resulting theory is independent of the complex structure
deformations of the target and only depends on the Kähler parameters.

Consider then the deformed conifold T
⇤S3 which is described by the following hypersurface

in C4 (coordinates ⇣a = qa + i pa, a = 1, 2, 3, 4)

4X

a=1

⇣
2
a = µ

2 =)
4X

a=1

�
|qa|2 � |pa|2

�
= µ

2 &
4X

a=1

qa pa = 0 (2.3)

qa can be thought of as the ‘coordinates’; so the hypersurface with pa = 0 is indeed an S3

(which is Lagrangian with the canonical symplectic form) with size set by µ. pa are related to
the conjugate momenta. This geometry can be viewed as a cone with base S3 ⇥ S2.8 As long
as µ > 0, the S3 remains of finite size. The normal bundle is topologically R3 with a ‘radial
coordinate’ along which the S2 shrinks to zero at the tip (where S3 has size µ).

8The S2 is non-trivially fibered over the S3 but for the most part we will not explicitly need to refer to this
fibration structure and continue to use the product notation as is conventional in the literature. Likewise in
our illustrations we will simply indicate the S2 and S3 alongside each other.
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Zo(T
⇤S3) = ZCS(S

3)
<latexit sha1_base64="/d8VQ7L7+KK7SsUy0oy8R7ugXs4="></latexit>

 Chern-Simons (CS) = full open string field theory

 Closed strings on deformed conifold are trivial Zc(T
⇤S3) = 1

<latexit sha1_base64="DA0bJcGORl70Yqa1cdJccHNsV4k=">AABgpHicpVxtc9tIctZd3i7K217yMR+Cjcu30h3tWL5N5WorV3WkSEqWKB1NwpLXpsUFgQGJFQhAAEhbRuFjfk2+Jj8m/ybd8wJgXkDJe67aFYh+uqenZ3qmp2cGiyQMsvzFi//72c//7M//4i//6hd/vf83f/t3f/8PX/3yH6+yeJO65I0bh3H6duFkJAwi8iYP8pC8TVLirBchuV7cHiP9ekvSLIgjO79PyIe1s4wCP3CdHF7Nv/qX2drJV64TFu/KuXtg3/y6mC18a1re/PbQ+r11NP/qyYvnL+g/S3844g9P9vi/8fyX8/XMi93NmkS5GzpZ9v7oRZJ/KJw0D9yQlPuzTUYSx711luQ9PEbOmmQfClqT0noKbzzLj1P4L8ot+rbJUTjrLLtfLwCJemcqDV+aaO83uf+7D0UQJZucRC4ryN+EVh5baBbLC1Li5uE9PDhuGoCulrtyUsfNwXhSKSTJ/A4UhQpmUnWK3Fls5ApuXTADSVGfD8V9vImWgJGZlqmTrAL3U4er3+FVxL/5at1Zb8I8SOOPHSdNnfvOYt1ZwH8kC6JcLotW2k0/FGQD7SnTFotlSsht+KFA1GIRy/RdlcqgEVfEk+VFm/UCDNPJ4jT/lRuvoc9l0IqRky8CpX7rIAoW8ady/6nVfJ3GOXTBaKm+Tzw/zFwnkXtKwSqfB7efn7lei4KyIGhIMO1aqQ0U64exkyvSfWikBJ7k1y7ogW6iqnLvZatQfvvePvpQoPWwd+3DP+up9Uz6Z6VO5MVrKyIfrSzf+L5C5//292eAAJOuAV7M3HhbFkUxA1Pdgztsn5dlKSPs/GMMkBm0uWWX82JeHLw8LMtZR8G9GoGDFZW7vypvQCr5lDPZ9f8sxEEhMnfXKznc8TRikoH3+ABYLOBRKdddVUR4VIh+l9HA49dQCP5QEcerJoT9UjGTJmRiQgybiCFDyJA+NfVsOqxt1NeM/ZlbcOEXn1Va1/sRqH0S5s68mHVm4M1haGM5+1pfOCERSaHB+sQH98A+lrV1h6d0EIRREcaAzAoiC0aQkOxbM4/4s2zleKQHRiZhSHHFItyQr/8ddavokyYdJFEyl2sBKqNYmEA4YpPlZZEuF2Xx4vnvOi+ev8T/uMCLyZMj7GwNpPXkqBTlDU8bZPfeiWTyZNQgo6Zlwaj7T3sw1t6SPFN6VhqV78GzZiHxc+sAZFmzNFiucutQsf4ivW0g3zeQH1RksFykDNsLluGsoFh4TGelpWA9IfbgydHhfHaOHQeUHeLEgI0mo1dOSDsZUIujsnip9pC7DcyCJG1AvqV1t+EXUbyaa7iCobOAH7RaoASrk1r5nHo2QuFJoS3TeJM0HP+EFmltyVbRHt5wCzrRMiTMgvSRtx40DzTfbB14ljX7GukKYJE6COD8VMDXFuJFb4Qhn7SK2H/61OgCkuNYr9BdwHOmKMsCxa3puZVA3cA1cgIjftjiSbJTWQGXQ3WSDZGu4qDE1szpM4ypbOTjLNqgABhbxs9tFXMuJJ6Xc0Wa0jtJ7iAW/4KgFyrdC3y/hwCPDzTnNZLaEO3x+lmcwPiSxxC7yOyvp+eNvvCazhfwSi0FYOD+sxhCR4wsmxytLOcXU000vjMBdwo3MR2PwcRFNWfhT80yVdUWi8JDSQxr0NVj1Vs4aYPhIQ63Kd0g0NUlqnPM688kjSUj3bxoNRO2K8dCWFeMWm0Dnej9yw/4N1lBT4AR9QajgCcYBqhBAGsknOQwXlCCAC5d4RnJPKPH8LzibYxMdTuzIktsRqMMgxBusN0Kz19gtAPhn17VBhsYMUhy/v/8PiRGYwacLYD49DE1DVhNm9VsZzXwsgruYGKVk/hCriNM6o9Sce3gBEBLUCgLRlJ0V1GfawE3L1RdGA1V2Vd7u9TTte7dNgSoQFsZVZqhlYLcMay0cx0ro0bToNaxbs7Xx3ox1QDyIPP1rtKuTaU5Ya6Nqw+W8lgVWYmK67y+HpzsVrMzwMGShRatAg52V/QQXw5qKWoVHtKhVPr+wGCH3mRq75JC6RrbdCgYxWrAbDwzN2Mt2tDozcrKQ5qT+zvnoX7bxNzfPX/15dm53zqZ9Ftn5740O2srQOzY8OcRXRpQx2Yw68r7NIapIpiO5YRLArGlLOWPCYtWefPgOkIFnDLEx8AjNDhrQNUKTM9fqeLmr9RucT7RMDCt3E60/nM+MgJHtHIKtLvVsfPC2VK3UssnoQkMMaEJ3YfX7ehHqMG1eIwSLVKNKgisOmqAEp7ZGN7WMMigJrkJnsJrQwVNsqlkvYIGsVSoQSYTulta3sAwOSroxFCPE13WycJU39pXT0qzXfMV+NsWFp8rjClNdNnlK6gBO9VUEM9TXeEGOA2i5U4XHE6XbLF/8Ozo8KYYzmW0IvtERp/MZdGK2hp6p+zliqlNRyb4gYt/VVtYaXr4g4beFqYfMI/QsZ68tKizq8GmNUvWWnqhTYC2hHe8bpQHAooJjJ9Q2jkJvR7mM1AK5lJmFpVwKFZ0KkOWk2TIEzD2ii4zqb0s1RiLRkWSNGroJlImOKZvYES33DhNSUh3Hyx/E5nSKM62WxYWFO9bjqbTclURlwbiglFhHSYwek4n8CsRHq1La+LBsi5t6/cvxQT0UGIBa5lhLf0ATJ2pnZB6IXdBhUBXEHTxyP1OVZq+rtasDKRipkPF2/Q5sZ/5co7T6murLijBOP+/0hdoGR/dm0nTVzTahjdGR0TpAzbaHZjLoAtYLTZsF9MupWPJQgwVfVAGxpgdPcpU1AkDIiolFsmPqkbNJ7F1dgXGLTywpDap+ca2ls5mSSzWJWnCjPof8RQfHjlrscyHx4WnLQO7WaPrYEaiq+nWhdelBFDo1AVq8rzq7xpuYQQuVORQVWqoKTWUlRrqzfD44npqcT09/JeL6+mz/YjtRTQsLYZJZfasced8xwJHmOUqznLWkqBkgCn8zCWR50S5mu2DEFue2HF7Rt+fkTG4S2OI7xc2i9kXmFwyJFMObNx1+togHhnhDw1V6lW4QQ1b00PjUdRiwpOHhCea8MQkXOX5zIWzJF079ARwJw9A5PJPHij8ZPUIkasvk9kDdG83BLo8imQJ5d04xZ7oxA80Fp/AZB5F8HZK9yo20M9C3HeF7j5yoiXZBpEyH37CuTQIPVK8VYV8wl5evJ3P9M3IT8wj3s65b7DFZrwm1sLJAtfCnKvl1ZtyShVozr1XJ9/nGGqsaa5es5HfyN/6qXNb+OUjGHr1FM6ZjJnLHp+dTCKGjxMxNIuAmvHsIt3JVHW22CDUGjBdx2nobeNwAyb1nPxRIRMzfUQPBGBUGKc4sFmgT+DHoUdHOliRBJSs74YcQzvR8GlBW0Wt0AUbRVm4v7YuaJOjfKwQG0Zj+AllkijDDRM5ZqbcaACLW0CZNZl0No4bh/EevGKTb0nF9LTgnpXAglVlHqxp2lyarWriSnO2kbOs6w3NDmGCOutFcZCRZbOHXkJjL7FfPghkjrO699JYRBbQch/rxtdcn58BADPq8e+mrslGG+VqGt95t7SF8aWOQQ3h+ZY4eQgLcJLuW81KzWwaJc3+kJGcnnkJPhP+7ijJ+dYtY6edQ7GuXReo5ZPtwUVFFdpooLNawJlKG9e0sbbV47o1VeuMWcAbHR7WqpHjNaPBYLdUaZNaqJbMOq5pxywEUcIr2b+GKvuqSZ+dOGtNs8hZhI4shb1TFy8ypq/a5va2CbBU9kShJ6qzyfS1JmCjCNhoOx5TtLuEYa/UyG7MIzsOn8/8sQK5G0u6FHelAXTGQWdmGdPkVCmnONU64mlDhInMm4/mT2mvNaCgoCassoIBSrevGVbModIQqeLpFM97NZvu2YBpgnUlmOkw0Zktt/DZXEQrqputnHRJhJsLeFS24NdiBAOUNoL9ER1OkmSxd5r7KsVl2qj+qTpK9UmNbNgMpBRTLeT2TYeQenTepYO4dx85a/hxt4FVBIQ+pP04knXJJ+qMztTYoCTOOpYfOlucuVMnyvCYFcN0ELRWJlV8xYIU6NnGECRysRqsh+BCQOz0RHH0DM9p6XucuPtOT3dpC5xV7C0JPTyAB1BSfTndxyg/3kReZuI8Hto0W8TEyFtOSGMZ1yHWEk9nnTbMqVZ7I3TU+ojvCJLWK3w2YIuzazHvOVAkMzjPNck8XYHXl+Ar7qYaxackVgoHqP3PHwrEUFtlC7kaxR/KcocGuT2B6GmrFiFXo/g9WW5PlzsIy2Kgsg0qroF2+mYgSjPQ/IFcHoVgQ6xJnoLvGBuCzXeCjf1SIxx8WZVrhPgVplE8R2q2nAiYNpVPRCkaxZ/Iwie63B7IhfWjztqb1I0HZJVrhZ7M20cj+72J1ogIUloFiwZzGwofTJqtqckf1MXT5tIVGEwMrUpVUANcXCm4cRgSlrPGNURKYl9ZL7BVHx3ZzMs8Nib36kXDDmxPLBzqOF5zg5W7SZuAY8xeYWJQm3tXtTQMscY0FyRqKWYA3GsICETEFsnd5+zc3jYrtvPsRpwB3WbZHX3xrR6dCk1wmaAHqO5Womu7ZWs8EVrN4DiVNtoBT+ppY+r54K4szo0mRoqwsYoY3OmWPTfFKiikDlVqPqZYPRXC6ufCWUYkDzK2isXeMk1gQoDmScGeSiDCgxDodVr8759VHVKn/ShoP2rrXEcs0TB9faFxMjqTi8+qk9m1StpyxbcrVo02TUSEqTJRCuOCR22cyisqL1bftf1+2jy5+r2m1veNIr6nZUj0dxL7O439XYP9nUHF9YYCWLBmDKHkWOgyJjSTwKLHR53v9+m+WqXF1kltU0LcHwnISM+rxTyY4hcheHdl2R3DzsZAzzztFlE3kpkduI9XeCRV5cbI7VEKjKf36yTUJdy8bLCzZqiPjHAmvTY7pLGqCElcTkqeCVG6WsaaPVTTL1L1C0r4cvWTcBzn7W3b6HFNbVuNulOY2oe/QMNH9R+jqmbDjnCwqzc5R7o/1aOhRnzN/djQKpUyzWN4Aq4bbYckWvSjpJzHa6d5c0ebp3yBkB313BAb5nWwYx5nXgv6a50Z/Py0ZH9BbS28AOG9d4p4rB681GWx5LIA9+v2VoW+DSoUPBohbPJpMTGfmjijWtvTurrGKp1XgHMzgPpiBaod/7TUkkP+lYBd6ROZIOlz3Lu2munzWc+XOgFN1eoblD7PCghonSSQYJd1PHCpibisuDXaJXaCy7rhFca6i1y29o7zumhDZ6+KPte71Ziu1uFvdRaSLdFx6h4EUZaTIHp24Xz6SMLQgi4ap/fKYuyS7btp1cLQtorY5wX8VBHL7y/KYolEeNCywlBoM8AC2EVbXqYbgT+H91YQ+WH88Tu+P+I94qpYxTqOw3t4xAsuGIgew8ASPZsGax6prFWz4WApjx5j0xxAF1PVcUp/rJ+pOJ5WougJimPtUNiKYhpSZKxapE3ljdmdGk0hW9fIdPsGirRVvTTQiqFmmlY26z/MtvEm47f38PaqNTQfYbqqLXpFz8P4Wir/umGq65bqX41tTY6m93WzctdNleuO5G1c4omliKLrGeh6Zkgf+0hgUs9M2ecpkqeJiXNacWLkb0xvl8Ud+qhuF/+uYr4rK4iqss11VjOxPiXBHxNxmlAi01nj5FTfTL5DIldZXx/djW1Vad5rTh0YaY7Nhj9trgLN2XfRH+vFogHnn51KA/8uoJLtqOEcr1qsoSNtS3P2X1GTrvdM5TN5kqa7sGZlKYdRXRutLQ+zulwBkrSwzQKz0yGmPOmhO7apdlPAG1MoANCJBp20QCea1Emb1IkmdVJJVWrGtWUVe0Bdn+urgM0K+1xjGdyiss91VsDtSitYAXtq9ZzUIyR69m6zDqK4zYswojhjgYRGER0T3UsH+Gd1NNKOkDshdSwKVL2AyoLBwyAGiZWPUC8yFMUl1MNmG0jxCuY/BpVslGcbxdh1UbaZOUdEbmTOa+a8Ysahrs7SWVvi4t0N6/RKVWoMYfCBfcOvK7K85yHMbGMtKj6j0LMbhjRjfAqqm5CDVEnJlMn6Zl5MW0rzOUjI+oaeiu6YxJ0kVFrjSvU39Jgo678t4hmTEmWdlKwcUylMG+xQZrrfUJf1FzPuDmE4c1V0ffaqBNHZqwHUNoBscdDCH94UFlT669bDgPQ4oLpEqfl7P4V/UPMPfgL/+AoTqHTv7gB+dH48VI1xNUZjKDFXZdjHhOtTd/URQkOSPsMD9/fZioXg+C0cq2tBQclGJA1b43hNhqykg6npslAzrkv2erY0HLLAa0rSXSttLwXvJ0kILTECMkIBMbFXRI2Tbp72+A1u3IWdFy+j3xzpaygMq8UNabp+zfjgwqwckOw7K1ndw4IIljZrfkJMlrHYhLcXzcS+lgtHBH4+B5oW/swFixnFPxzCgBf0mIRn0Nx38tfNzQ3DTVaAjCWIvn46w0LpdDYvDqAY/Qa3zRB2O8JZESdnKPZ80w5lmWoBZr92lO1AI9Cy6YOqO6OemamoCAMwpSqU3LZgXwKTvEtaGpcaqHlkZaedGNDeDUQ9msDWujWLNYHW9BaHPhjp2YCkBal3iKgFeakhs0ULVL/jmbYg9RX2XQvydWlMXvBRbmTvzlaoQTY9UoNfWuFD+64h3cS6k89wQ5dyjcw1qwYwLSJa8us31lIR1xWErkJ4A5q9OTg6rM/LsyLYsUFViqhGF+e1L5rVRs7Sptmp5byNddapitW67cYWW8LrDbvvUreIgg0raMiyhjcNrGIvvt1MUyrs8VF2WFWHweqb2xbdrX4Ue/4p4K0x085I5SNnLYg866kA+Ay6/EYldBmhqxGGjDDUCH1G6KuElbPBTCCvD1bhhm5tRHG+wu+haXfrhE43dIZWiEIvI1HoZiQK/ThRpnqT0RIiXFrm5BnXQf3qEIC6AOoKUNcE4scdqqtr4sbLgyckaE9jjzcPDwuzr7WvZHAx9dU6XvSfIq3X0Kr3pwlaNCQtfpootPeocR2hqjL4izg6orBU8ftPid7tEU7+YvhUZsgRzcgZafbIpVEDp9642vSKgLMdAHski7B+Y+0QJkvbhRUHPZvRT+uXQs5sJraNnoEJYIyba9HvJcq/3CUZM7gHZ/Pp4Q4QHmi1m+dDu/LoK/cyBpYuJrSj2bjH4hs8Xmse/hi9a6Bj4IRG5xFUe9MI3NluHJWnC9zZ6hXL2Q4WpVr0cHEpDhxp1y/YqeKKjicm1XvltvjE0Mmub8wkWcBvz9WO3ml1PM3v0PjiLDI/EwsTRrJ6lDQ+cMgSB81z0HggQydTYzYgN+1RAcL7beA5/8Ak2+Nt2/O6CDL8RqETEdxgaV0XD/Drd/RSEI00ScYCTaKsEsZ0ayVdW6flfKqlAGralUob1jT1IsNoKn/liaJ08SdXRpha0mlWlaRQ+oLSL+fqgeT+tqZtVVqQ4Q0jZmZFdZuzjXZ10hFB4xqR/Gqxh0XQFRuP87+r72WBC4AbuJtwk+mdt3llrj7VqCpAkfgNjQaYf/tDQb7VT+9ptwBR2lA6vPe2pVy6HpUOJq5a5gkJFDVN0ZPxPZKm9ydibNA2kxm5K+ia7pRekafNgvpKq1+B44DB3ogbkxLV9ZYiXjcc9gBqV5BvnSQxACo6S2029DiWoR8/98u6MdSrOf2EpX4O6txHUh6WlEtNk2LuqgXum24P+ZM2tHrW9+z6XXXnivYt1qsHm5Adu1HhdNfcxMEI/OS/dU3uQyuIqCdEOfu2rywJEMbFZpUGvm6Jga8bZw6oFHMsqcKs9tia+ti18LAbRD/ok8Pryo0EQ6svcb2bZ2+ZSi2naw2im2ds5QAILd04CHWtBbcMgDc9sEh1BO83+PFqfh+XAgarTmQxajeCTigDjJfapjJm2nCdS8WHYSKP8PPKiXa0ycX3XGHf0mKeKSPT77Wr7UAl1ifMOQSPb5MEc9v4GdaOhepBxyVs9HhypBcgX5hSZ7uRAIg4k3M0S4LfVWHVgp6UtDBEJZSFL8v5JT26nRSHMf04+v13lh9uAu/f4Nc2yO8t8ilxoky7DMy+zkU/vDbhZ6T0y0XDGjRsBfVqUN3d8CRVG4PvrupzauwDChI9nijfGdG0xCpDNwhcon4NZ0E/rHPDvyKWrGCQiSnPE7ylOv/qyZH6OX794erl86PfPn/5+tsnf/hP/qn+X+z9896/7h3sHe39x94f9k73xntv9ty9/9r7773/2fvfH371w+iH6Q9vGPTnP+M8/7Qn/fvh5v8Bb5Eiow==</latexit>

ZCS(S
3) = Zc(R)

<latexit sha1_base64="JoIsZwGfSgQ0zyv3nWcaxmnnTuw="></latexit>

=)
<latexit sha1_base64="CsayjkK8GxrXZ1FxEyTatjZCs4k="></latexit>

Witten ’92



Act II

Topological entanglement in Chern-Simons



CHERN-SIMONS STATE SPACE

 The state space of Chern-Simons can be obtained by canonical 
quantization on               .      ⌃g ⇥ R
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Figure 9: The geometric transition between the deformed and resolved conifolds seen from the perspective 3-
manifold surgery. We identify on the left the uplift of the surgical decomposition of S3

⇢ T ⇤S3. Following this
through the geometric transition brings us to the right figure which will be our starting point for defining the closed
string Hilbert space. While the S2 is non-trivially fibered over the S3 in the deformed and resolved conifolds, for
ease of illustration and discussion, we will indicate it as if it were a direct product; see footnote 8. Note that we
have swapped the direction of the radial coordinate of the cone relative to Fig. 1 for ease of illustration.

string analysis. We extend our bipartitioning into the bulk of the resolved conifold by picking
an ansatz for the location of a ‘topological cosmic brane’ which we refer to as the entangling
brane for reasons described in §1. Requiring that the decomposition be compatible with
the dynamics of the closed topological string, we learn of the topological constraints on the
construction of the reduced density matrix and replicas thereof. Once we have fixed the
replica target space by imposing these, we can immediately compute the closed topological
string partition function and check that the answer is compatible with that expected from
Chern-Simons theory.

5.1 Density matrices in topological string theory

Let us now construct the reduced density matrix in closed topological string theory which we
will think of in terms of a string field theory on the resolved conifold R = O(�1)�O(�1) ! P1.
We must first specify a Cauchy surface in this resolved conifold and then specify a splitting of
this codimension-1 surface into two complementary regions A and Ac. We want to achieve all
of this topologically, so we should remind ourselves of some of the key features of the topology
in question. Further details can be found in Appendix A.

The resolved conifold can be constructed in two steps. The first step is to solve the
defining equation:

|z1|2 + |z2|2 � |z3|2 � |z4|2 = t . (5.2)

Here t is the Kähler parameter of the resolved conifold. The second step is to quotient the
solution obtained by solving (5.2) with the following U(1) action

(z1, z2, z3, z4) !
⇣
e
i ✓
z1, e

i ✓
z2, e

�i ✓
z3, e

�i ✓
z4

⌘
. (5.3)
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ease of illustration and discussion, we will indicate it as if it were a direct product; see footnote 8. Note that we
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an ansatz for the location of a ‘topological cosmic brane’ which we refer to as the entangling
brane for reasons described in §1. Requiring that the decomposition be compatible with
the dynamics of the closed topological string, we learn of the topological constraints on the
construction of the reduced density matrix and replicas thereof. Once we have fixed the
replica target space by imposing these, we can immediately compute the closed topological
string partition function and check that the answer is compatible with that expected from
Chern-Simons theory.
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Let us now construct the reduced density matrix in closed topological string theory which we
will think of in terms of a string field theory on the resolved conifold R = O(�1)�O(�1) ! P1.
We must first specify a Cauchy surface in this resolved conifold and then specify a splitting of
this codimension-1 surface into two complementary regions A and Ac. We want to achieve all
of this topologically, so we should remind ourselves of some of the key features of the topology
in question. Further details can be found in Appendix A.

The resolved conifold can be constructed in two steps. The first step is to solve the
defining equation:

|z1|2 + |z2|2 � |z3|2 � |z4|2 = t . (5.2)

Here t is the Kähler parameter of the resolved conifold. The second step is to quotient the
solution obtained by solving (5.2) with the following U(1) action
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| i

T2
i

Ri

Figure 4: The state | i

T2
i 2 HT2 can be produced by performing the Chern-Simons theory path integral in a solid

torus with a Wilson line in the representation Ri placed along the non-contractible cycle of the solid torus.

• For S2 with one marked point in a representation Ri, the Hilbert space is 1-dimensional
if Ri is trivial; else it is 0-dimensional.

• For S2 with two marked points with representations Ri and Rj , the Hilbert space is one
dimensional if Rj is dual of Ri, and zero dimensional, otherwise.

• For S2 with three marked points in representations Ri, Rj , and Rk, the dimension of the
Hilbert space is given by the fusion coefficients Nijk.

• For torus T2 with no marked points, the Hilbert space HT2 the Hilbert space is m-
dimensional, and they can be associated with the integrable highest weight represen-
tations R0, R1, · · · , Rm�1 of the loop group at level k. More precisely, the basis state
| i

T2
i can be produced by performing the Chern-Simons theory path integral in a solid

torus with a Wilson line in the representation Ri placed along the non-contractible cycle
of the solid torus, as depicted in Fig. 4.

4 Entanglement in Chern-Simons theory

We have now assembled the necessary machinery to start exploring properties of reduced
density matrices in Chern-Simons theory. We can start with a state in the Hilbert space H⌃

constructed above, consider a bipartitioning of ⌃ into two spatial regions ⌃ = A [ Ac, and
ask how these are entangled. Let us see how to extract from the reduced density matrix ⇢A for
some subregion A the topological entanglement entropy [37, 38]. At the outset we note that
the such a computation has already been carried out in [42] using the aforementioned logic
to define the reduced state, and thence using the replica method compute Tr (⇢Aq) and finally
extract the von Neumann entropy

SA = �Tr (⇢A log ⇢A) = lim
q!1

1

1� q
logTr (⇢A

q) . (4.1)

The computation of Tr (⇢Aq) reduces to evaluating the partition function on a new three-
manifold M(q)

3 which is built as a q�fold ‘branched cover’ over M3. The branching occurs

– 15 –

unmarked two-sphere has a 1 dimensional state space. 
prepared by functional integral over a three-ball.

marked two-sphere: state space labelled by 
representations at marked points

torus states labeled by integrable highest weight 
representations. Can be prepared by functional integral 
over solid torus with Wilson line in the representation along 
non-contractible cycle. 

Witten ’89



CHERN-SIMONS ON THREE-SPHERE
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t t

| 
S2 i h 

S2 |

Figure 2: Cutting S3 along an S2 provides two 3-balls B. The origin of one of the 3-ball corresponds to the origin of
S3 which can be viewed as t = �1. The origin of the other 3-ball corresponds to t = 1. Canonical quantization
should be viewed as radial quantization with time t running from the center of the left B to the boundary S2 and
then back down through the boundary of the right B down to its origin (as indicated by the arrows). This helps
prepare the state | 

S2 i and its conjugate h 
S2 |.

Figure 3: S3 can be also obtained by gluing two interlocked solid tori. The gluing is done by identifying the
boundaries of them in a way that the cycles homologous to the a-cycle of one of the boundary torus are identified
to the cycles homologous to the b-cycle of the other boundary torus. On the left we have depicted finite torii to
illustrate the interlocking, while the right figure is more true to the spirit of the decomposition (with the point at
infinity included).

of contractible cycles should be borne in mind (and can be accounted for by the S-transform
of the modular SL(2,Z) group on the torus). This particular decomposition is useful to realize
that the partition function of Chern-Simons on S3 can be obtained from that on S2 ⇥ S1.10

The above discussion makes it clear that knowledge of the physical Hilbert space for the
local decomposition into ⌃⇥ R with ⌃ being either an S2 at genus 0, or a T2 at genus 1 will
be helpful. Let us therefore collate some salient results on this front for H⌃.

• For S2 with no Wilson line piercing through it, the physical Hilbert space HS2 is 1-
dimensional. This state which we label | 

S2 i can be produced at the boundary S2 of a
3-ball by performing the Chern-Simons theory path integral in the 3-ball.

10In fact studying Chern-Simons theory on S2
⇥S1 is more intuitive as the angular coordinate along S1 can

be viewed as (compactified) Euclidean time. While this makes the analysis of the state space and entanglement
properties more straightforward (see Appendix B), it is less well suited to the topological string discussion.
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Figure 6: Starting with the decomposition of the three sphere S3 into two balls B� and B+, we can identify the
state | 

S2 i (h 
S2 |) as being associated with the ball B� (B+). These states are obtained by canonical quantization

as described earlier and are meant to live on S2 = @B� (respectively @B+). This configuration of solid spheres
carrying Chern-Simons path integral without any identification between B� and B+ represents total density matrix
⇢ = | 

S2 ih S2 |. If we now further decompose the boundary of the balls into @B� = A[A
c, and @B+ = A+[A

c
+,

respectively, then we obtain reduced states on subregions of interest which we have indicated above.

value of this inner product is given by

h 
S2 | S2 i = ZCS(S

3), (4.4)

where ZCS(S
3) the partition function of Chern-Simons theory on S3. All we are doing here is

slicing open the path integral to extract the state, and are aided by the ability to decompose
the S3 topologically as indicated.

Our next task is to identify the states on subregions A and Ac and their corresponding
conjugate states. To do so, we start by bipartitioning @B� = S2 = A� [ Ac

� and construct
the states by canonical quantization as explained above. An analogous operation on @B+

produces the conjugate states. We make the choice to orthogonalize the reduced states, by
demanding

h µ1
A | µ2

A i = �µ1,µ2 h ⌫1
Ac | ⌫2

Ac i = �⌫1,⌫2 . (4.5)

Combining the equations (4.3) and (4.4) and accounting for our normalization choice we learn
that X

µ,⌫

|cµ⌫ |2 = ZCS(S
3). (4.6)

Therefore, the reduced density matrix ⇢A takes the form

⇢A =
X

⌫,µ1,µ2

cµ1⌫ c
⇤
µ2⌫

| µ1
A ih µ2

A | . (4.7)

We will leave this reduced density matrix unnormalized and account for the normalizations
when we compute traces of its powers separately.
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The state on a two-sphere can be prepared by functional integral over a 
three-ball.  Useful to view time as the radial coordinate in the three-ball. 

Gluing the balls for the ket and bra together we recover the partition 
function of theory on the three-sphere.



HEEGARD SPLITTING FOR OTHER STATES
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Figure 2: Cutting S3 along an S2 provides two 3-balls B. The origin of one of the 3-ball corresponds to the origin of
S3 which can be viewed as t = �1. The origin of the other 3-ball corresponds to t = 1. Canonical quantization
should be viewed as radial quantization with time t running from the center of the left B to the boundary S2 and
then back down through the boundary of the right B down to its origin (as indicated by the arrows). This helps
prepare the state | 

S2 i and its conjugate h 
S2 |.

Figure 3: S3 can be also obtained by gluing two interlocked solid tori. The gluing is done by identifying the
boundaries of them in a way that the cycles homologous to the a-cycle of one of the boundary torus are identified
to the cycles homologous to the b-cycle of the other boundary torus. On the left we have depicted finite torii to
illustrate the interlocking, while the right figure is more true to the spirit of the decomposition (with the point at
infinity included).

of contractible cycles should be borne in mind (and can be accounted for by the S-transform
of the modular SL(2,Z) group on the torus). This particular decomposition is useful to realize
that the partition function of Chern-Simons on S3 can be obtained from that on S2 ⇥ S1.10

The above discussion makes it clear that knowledge of the physical Hilbert space for the
local decomposition into ⌃⇥ R with ⌃ being either an S2 at genus 0, or a T2 at genus 1 will
be helpful. Let us therefore collate some salient results on this front for H⌃.

• For S2 with no Wilson line piercing through it, the physical Hilbert space HS2 is 1-
dimensional. This state which we label | 

S2 i can be produced at the boundary S2 of a
3-ball by performing the Chern-Simons theory path integral in the 3-ball.

10In fact studying Chern-Simons theory on S2
⇥S1 is more intuitive as the angular coordinate along S1 can

be viewed as (compactified) Euclidean time. While this makes the analysis of the state space and entanglement
properties more straightforward (see Appendix B), it is less well suited to the topological string discussion.
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Figure 3: S3 can be also obtained by gluing two interlocked solid tori. The gluing is done by identifying the
boundaries of them in a way that the cycles homologous to the a-cycle of one of the boundary torus are identified
to the cycles homologous to the b-cycle of the other boundary torus. On the left we have depicted finite torii to
illustrate the interlocking, while the right figure is more true to the spirit of the decomposition (with the point at
infinity included).

of contractible cycles should be borne in mind (and can be accounted for by the S-transform
of the modular SL(2,Z) group on the torus). This particular decomposition is useful to realize
that the partition function of Chern-Simons on S3 can be obtained from that on S2 ⇥ S1.10

The above discussion makes it clear that knowledge of the physical Hilbert space for the
local decomposition into ⌃⇥ R with ⌃ being either an S2 at genus 0, or a T2 at genus 1 will
be helpful. Let us therefore collate some salient results on this front for H⌃.

• For S2 with no Wilson line piercing through it, the physical Hilbert space HS2 is 1-
dimensional. This state which we label | 

S2 i can be produced at the boundary S2 of a
3-ball by performing the Chern-Simons theory path integral in the 3-ball.

10In fact studying Chern-Simons theory on S2
⇥S1 is more intuitive as the angular coordinate along S1 can

be viewed as (compactified) Euclidean time. While this makes the analysis of the state space and entanglement
properties more straightforward (see Appendix B), it is less well suited to the topological string discussion.
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There exist other decompositions of the three-sphere using Heegard 
splitting. A topological three-sphere can be decomposed into two solid torii, 
glued on their boundaries after an S-transform to swap the cycles. 

Using this decomposition we can build torus states by performing the 
functional integral on the solid torii.



CHERN-SIMONS REDUCED DENSITY MATRIX
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Figure 6: Starting with the decomposition of the three sphere S3 into two balls B� and B+, we can identify the
state | 

S2 i (h 
S2 |) as being associated with the ball B� (B+). These states are obtained by canonical quantization

as described earlier and are meant to live on S2 = @B� (respectively @B+). This configuration of solid spheres
carrying Chern-Simons path integral without any identification between B� and B+ represents total density matrix
⇢ = | 

S2 ih S2 |. If we now further decompose the boundary of the balls into @B� = A[A
c, and @B+ = A+[A

c
+,

respectively, then we obtain reduced states on subregions of interest which we have indicated above.

value of this inner product is given by

h 
S2 | S2 i = ZCS(S

3), (4.4)

where ZCS(S
3) the partition function of Chern-Simons theory on S3. All we are doing here is

slicing open the path integral to extract the state, and are aided by the ability to decompose
the S3 topologically as indicated.

Our next task is to identify the states on subregions A and Ac and their corresponding
conjugate states. To do so, we start by bipartitioning @B� = S2 = A� [ Ac

� and construct
the states by canonical quantization as explained above. An analogous operation on @B+

produces the conjugate states. We make the choice to orthogonalize the reduced states, by
demanding

h µ1
A | µ2

A i = �µ1,µ2 h ⌫1
Ac | ⌫2

Ac i = �⌫1,⌫2 . (4.5)

Combining the equations (4.3) and (4.4) and accounting for our normalization choice we learn
that X

µ,⌫

|cµ⌫ |2 = ZCS(S
3). (4.6)

Therefore, the reduced density matrix ⇢A takes the form

⇢A =
X

⌫,µ1,µ2

cµ1⌫ c
⇤
µ2⌫

| µ1
A ih µ2

A | . (4.7)

We will leave this reduced density matrix unnormalized and account for the normalizations
when we compute traces of its powers separately.
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specifying the number of marked points and the associated representations in DA. Similar
statements hold for the complementary region Ac and surfaces associated thereto. We have
pictorially depicted this decomposition in Fig. 5 for ⌃ = T2.

It is perhaps worth noting that owing to the introduction of boundary degrees of freedom,
the superselection sectors H[↵]

A (respectively H[↵]
Ac) can have dimensionality greater than one

(even when HA is unidimensional). Furthermore, the states of H[↵]
A (respectively H[↵]

Ac) can
be organized into representations of the symmetry group arising from large gauge transfor-
mations. That is to say, the presence of the boundary makes physical precisely those gauge
transformations which respect the chosen boundary conditions and are non-vanishing at the
boundaries of the regions A (Ac) [41]. Notice that the Gauss law constraints (3.7) make sure
that any state obtained by combining the states from HA and HAc can be interpreted as a
state produced on ⌃ by performing path integral over the handlebody M⌃ with appropriate
Wilson loops placed along its non-contractible cycles, as required.

4.2 Entanglement on a Riemann sphere

Armed with the construction described above, we are now in a position to study the en-
tanglement structure of Chern-Simons theory on S3. Consider an S2 slice of S3 using the
decomposition depicted in Fig. 2. There is only one independent state in the Hilbert space
HS2 , and we denote it by | 

S2 i. Let us bipartition the S2 into two connected regions A and
Ac. Both the Hilbert space HA restricted to region A and that associated to the comple-
ment Ac have dimensionality greater than one. Furthermore, they also do not contain any
non-trivial superselection sectors within them.

In fact, the states in HA (HAc) are in a representation of the loop group associated with
the gauge group G of the Chern-Simons theory [41]. Let us denote the independent vectors
in HA by | µ

Ai, µ = 1, · · · , dA and the independent vectors in HAc by | ⌫

Ac i, ⌫ = 1, · · · , dA,
respectively, where we defined dA = dim (HA) = dim (HAc). Therefore, we can decompose
the state | 

S2 i as follows
| 

S2 i =
X

µ,⌫

cµ⌫ | µ

Ai ⌦ | ⌫

Ac i, (4.3)

where cµ⌫ are complex numbers.
In order to study the entanglement structure, we must construct the relevant density

matrices, and this requires identifying the geometric configurations associated with the states
| 

S2 i, | Ai, and | Ac i. To obtain this, we recall the picture of radial canonical quantization
described in §3.2 where we realized that S3 can be obtained by gluing two solid 3-balls B�
and B+ by identifying their respective boundaries, see Fig. 2. The boundaries of both B� and
B+ are 2-spheres. Let us pick the S2 which is the boundary of B� and define a state | 

S2 i
on it. Then the state on the other S2 which is the boundary of B+ can be identified as the
conjugate state h 

S2 |. This is illustrated in Fig. 6. This identification makes complete sense
because the operation of taking the inner product between these two states h 

S2 | S2 i can be
understood as the gluing of the Chern-Simons path integral on B� and B+. Consequently, the
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S2 |) as being associated with the ball B� (B+). These states are obtained by canonical quantization

as described earlier and are meant to live on S2 = @B� (respectively @B+). This configuration of solid spheres
carrying Chern-Simons path integral without any identification between B� and B+ represents total density matrix
⇢ = | 

S2 ih S2 |. If we now further decompose the boundary of the balls into @B� = A[A
c, and @B+ = A+[A

c
+,

respectively, then we obtain reduced states on subregions of interest which we have indicated above.

value of this inner product is given by

h 
S2 | S2 i = ZCS(S

3), (4.4)

where ZCS(S
3) the partition function of Chern-Simons theory on S3. All we are doing here is

slicing open the path integral to extract the state, and are aided by the ability to decompose
the S3 topologically as indicated.

Our next task is to identify the states on subregions A and Ac and their corresponding
conjugate states. To do so, we start by bipartitioning @B� = S2 = A� [ Ac

� and construct
the states by canonical quantization as explained above. An analogous operation on @B+

produces the conjugate states. We make the choice to orthogonalize the reduced states, by
demanding

h µ1
A | µ2

A i = �µ1,µ2 h ⌫1
Ac | ⌫2

Ac i = �⌫1,⌫2 . (4.5)

Combining the equations (4.3) and (4.4) and accounting for our normalization choice we learn
that X

µ,⌫

|cµ⌫ |2 = ZCS(S
3). (4.6)

Therefore, the reduced density matrix ⇢A takes the form

⇢A =
X

⌫,µ1,µ2

cµ1⌫ c
⇤
µ2⌫

| µ1
A ih µ2

A | . (4.7)

We will leave this reduced density matrix unnormalized and account for the normalizations
when we compute traces of its powers separately.
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value of this inner product is given by
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S2 | S2 i = ZCS(S

3), (4.4)

where ZCS(S
3) the partition function of Chern-Simons theory on S3. All we are doing here is

slicing open the path integral to extract the state, and are aided by the ability to decompose
the S3 topologically as indicated.

Our next task is to identify the states on subregions A and Ac and their corresponding
conjugate states. To do so, we start by bipartitioning @B� = S2 = A� [ Ac

� and construct
the states by canonical quantization as explained above. An analogous operation on @B+

produces the conjugate states. We make the choice to orthogonalize the reduced states, by
demanding

h µ1
A | µ2

A i = �µ1,µ2 h ⌫1
Ac | ⌫2

Ac i = �⌫1,⌫2 . (4.5)

Combining the equations (4.3) and (4.4) and accounting for our normalization choice we learn
that X

µ,⌫

|cµ⌫ |2 = ZCS(S
3). (4.6)

Therefore, the reduced density matrix ⇢A takes the form

⇢A =
X

⌫,µ1,µ2

cµ1⌫ c
⇤
µ2⌫

| µ1
A ih µ2

A | . (4.7)

We will leave this reduced density matrix unnormalized and account for the normalizations
when we compute traces of its powers separately.
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A i| µ1

Ac i

Figure 7: The action of ⇢A on the state | 
S2 i can be captured by performing the path integral over three 3-balls,

B�, B+, and B with the following identifications: region A
c
� identified with A

c
+, region A+ identified with A. The

net result is a path integral over a single 3-ball whose boundary consists of two complementary regions A� and A
c.

From Fig. 6 it is clear that the reduced state ⇢A can be obtained by performing the
Chern-Simons path integral over B� and B+ with region Ac

� and Ac
+ identified. This is

entirely analogous to the usual functional integral definition of the reduced density matrix
where we open up the path integral around the region A of interest and introduce regulatory
surfaces at t = 0± to prescribe suitable boundary conditions in order to extract the matrix
elements of ⇢A (see eg., [12]). This can be exploited to obtain a useful property of the reduced
density matrix.

Consider acting with ⇢A on the state | 
S2 i which can be done pictorially as illustrated in

Fig. 7. It is clear that this operation involves the path integral over three independent 3-balls,
B�, B+, and B which make up the reduced density matrix and the state | 

S2 i, respectively.
The action involves making identifications of subregions of these three 3-balls. We identify
region Ac

� identified with Ac
+ to make ⇢A as described earlier. In addition, region A+ has

to be identified with A to implement the operation of ⇢A acting on | 
S2 i. Effectively we are

left with a path integral over a single 3-ball whose boundary consists of two regions A� and
Ac. This statement is to be understood topologically, which is essentially all that we need for
the purposes of Chern-Simons computation. The final result after identifications is however
just our original path integral definition for constructing the state | 

S2 i! Thus, we have the
following relation

⇢A | S2 i = | 
S2 i. (4.8)

This translates into the following relation between different coefficients cµ⌫

X

µ1,⌫1

cµ⌫1 c
⇤
µ1⌫1

cµ1⌫ = cµ⌫ . (4.9)

Using the relation (4.6) and (4.9), we obtain a simple result for traces of arbitrary integral
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net result is a path integral over a single 3-ball whose boundary consists of two complementary regions A� and A
c.

From Fig. 6 it is clear that the reduced state ⇢A can be obtained by performing the
Chern-Simons path integral over B� and B+ with region Ac

� and Ac
+ identified. This is

entirely analogous to the usual functional integral definition of the reduced density matrix
where we open up the path integral around the region A of interest and introduce regulatory
surfaces at t = 0± to prescribe suitable boundary conditions in order to extract the matrix
elements of ⇢A (see eg., [12]). This can be exploited to obtain a useful property of the reduced
density matrix.

Consider acting with ⇢A on the state | 
S2 i which can be done pictorially as illustrated in

Fig. 7. It is clear that this operation involves the path integral over three independent 3-balls,
B�, B+, and B which make up the reduced density matrix and the state | 

S2 i, respectively.
The action involves making identifications of subregions of these three 3-balls. We identify
region Ac

� identified with Ac
+ to make ⇢A as described earlier. In addition, region A+ has

to be identified with A to implement the operation of ⇢A acting on | 
S2 i. Effectively we are

left with a path integral over a single 3-ball whose boundary consists of two regions A� and
Ac. This statement is to be understood topologically, which is essentially all that we need for
the purposes of Chern-Simons computation. The final result after identifications is however
just our original path integral definition for constructing the state | 

S2 i! Thus, we have the
following relation

⇢A | S2 i = | 
S2 i. (4.8)

This translates into the following relation between different coefficients cµ⌫

X

µ1,⌫1

cµ⌫1 c
⇤
µ1⌫1

cµ1⌫ = cµ⌫ . (4.9)

Using the relation (4.6) and (4.9), we obtain a simple result for traces of arbitrary integral
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powers of the reduced density matrix:

TrA (⇢A
q) = ZCS(S

3) . (4.10)

This result was obtained in [42] by a similar argument. Their observation was that computing
Tr (⇢Aq) involves the branched cover manifold M(q)

3 which is the q-fold branching of an S3 over
the equatorial S1 bounding A and Ac, respectively. This 3-manifold is topologically an S3

and thus the computation of the trace brings us back to a known evaluation. We have simply
chosen to reinterpret this in terms of a state space picture to enable us make statements later
for the closed topological string. Finally, note that entanglement entropy of the state | 

S2 i
for bipartitioning of S2 is given by:

SA = lim
q!1

1

1� q


logTrA (⇢A

q)� q logTrA (⇢A)

�
= logZCS(S

3). (4.11)

Note that for this choice of bipartitioning we get a universal answer involving the S3

partition function of the Chern-Simons theory, both for the von Neumann and for the Rényi
entropies. It is easy to check S

(q)
A = logZCS(S

3). Such a flat entanglement spectrum is
indicative of the topological nature of the underlying theory. What it encodes is the lack of
penalty due to physical interactions, illustrated by our ability to freely glue different three-
manifolds together as in Fig. 7. This is somewhat reminiscent of tensor network toy models of
holography [60, 61] which likewise exhibit a flat entanglement spectrum, as they are unaware
of the dynamics of gravitational interactions. We will return to this issue in §7.

A1
� A2

� A1
+ A2

+

Ac
� Ac

+

1
ZCS (S

3) A1
� A1

+ A2
� A2

+

Figure 8: The ⇢A for Riemann sphere with two regions A = A
1
[ A

2 and A
c with two interfaces is obtained by

gluing the path integrals over the 3-balls by identifying the boundary regions A
c
� and A

c
+ on the boundaries. The

resultant path integral can be understood as a path integral over two 3-balls without any identification (whose
boundaries comprise the components of A), divided by ZCS(S

3). This figure also makes it clear that action of ⇢A
on the state | 

S2 i gives 1
ZCS (S3)

| 
S2 i.

We have thus far considered situations where the entangling surface is a single connected
surface. We can easily generalize to situations with of the Cauchy surface S2 partitioned into
a set of M disconnected regions A = [iAi, say by cutting along different latitudes, or by
picking sub-domains inside the 3-balls. We illustrate the construction of the corresponding
reduced density matrix in Fig. 8.

Let us repeat the path integral construction for ⇢A | S2 i: we again can start with three
3-balls Bi, i = 1, 2, 3, each with M + 1 components corresponding to our partitioning of the
system into multi-component subregions A and Ac. The action ⇢A | S2 i now is achieved by
first identifying Ac

� in B� with Ac
+ in B+ as before to make up ⇢A , while the action of the
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powers of the reduced density matrix:

TrA (⇢A
q) = ZCS(S

3) . (4.10)

This result was obtained in [42] by a similar argument. Their observation was that computing
Tr (⇢Aq) involves the branched cover manifold M(q)

3 which is the q-fold branching of an S3 over
the equatorial S1 bounding A and Ac, respectively. This 3-manifold is topologically an S3

and thus the computation of the trace brings us back to a known evaluation. We have simply
chosen to reinterpret this in terms of a state space picture to enable us make statements later
for the closed topological string. Finally, note that entanglement entropy of the state | 

S2 i
for bipartitioning of S2 is given by:

SA = lim
q!1

1

1� q


logTrA (⇢A

q)� q logTrA (⇢A)

�
= logZCS(S

3). (4.11)

Note that for this choice of bipartitioning we get a universal answer involving the S3

partition function of the Chern-Simons theory, both for the von Neumann and for the Rényi
entropies. It is easy to check S

(q)
A = logZCS(S

3). Such a flat entanglement spectrum is
indicative of the topological nature of the underlying theory. What it encodes is the lack of
penalty due to physical interactions, illustrated by our ability to freely glue different three-
manifolds together as in Fig. 7. This is somewhat reminiscent of tensor network toy models of
holography [60, 61] which likewise exhibit a flat entanglement spectrum, as they are unaware
of the dynamics of gravitational interactions. We will return to this issue in §7.

A1
� A2

� A1
+ A2

+

Ac
� Ac

+

1
ZCS (S

3) A1
� A1

+ A2
� A2

+

Figure 8: The ⇢A for Riemann sphere with two regions A = A
1
[ A

2 and A
c with two interfaces is obtained by

gluing the path integrals over the 3-balls by identifying the boundary regions A
c
� and A

c
+ on the boundaries. The

resultant path integral can be understood as a path integral over two 3-balls without any identification (whose
boundaries comprise the components of A), divided by ZCS(S

3). This figure also makes it clear that action of ⇢A
on the state | 

S2 i gives 1
ZCS (S3)

| 
S2 i.

We have thus far considered situations where the entangling surface is a single connected
surface. We can easily generalize to situations with of the Cauchy surface S2 partitioned into
a set of M disconnected regions A = [iAi, say by cutting along different latitudes, or by
picking sub-domains inside the 3-balls. We illustrate the construction of the corresponding
reduced density matrix in Fig. 8.

Let us repeat the path integral construction for ⇢A | S2 i: we again can start with three
3-balls Bi, i = 1, 2, 3, each with M + 1 components corresponding to our partitioning of the
system into multi-component subregions A and Ac. The action ⇢A | S2 i now is achieved by
first identifying Ac

� in B� with Ac
+ in B+ as before to make up ⇢A , while the action of the
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Replica computation follows by sequential gluing of balls, made easy, by the 
simple action of the reduced density matrix on the two-sphere state.

Dong, Fradkin, Leigh, Nowling ’08



FEATURES OF CHERN-SIMONS ENTANGLEMENT

 The topological entanglement  has a flat spectrum which can explicitly be 
mapped to the quantum dimension. 

  Can have multiple components for our region: the entanglement is then 
proportional to the number of entangling interfaces:
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we believe these splitting conditions are more tractable owing to their rigidity, and can be
axiomatized succinctly [32]. Conversely, given reduced states of a topological theory, the
presence of the topological entanglement is what allows us to glue back the pieces to recover a
state that only cares about the topological data, and is incognizant of the geometric features.
A key to this is the factorization of topological partition functions under manifold surgery [69],
which we have used extensively in our discussion, both in the context of surgery in Chern-
Simons and in its uplift to the topological closed string. In the Chern-Simons description the
surgery formula of [40] notes that for a 3-manifold M which is the connected sum of two others,
M1 and M2 glued together with an S3, one has ZCS(M)ZCS(S

3) = ZCS(M1)ZCS(M2). Our
proposal amounts to noting in specific cases that this has an analogous closed topological string
uplift; heuristically: Zc(X)Zc(R) ⇠ Zc(X1)Zc(X2) for situations where the target space X can
be viewed as a connected sum of X1,2 glued together by a resolved conifold R. Generalizations
with open string degrees of freedom ought to be possible, but we are not attempting here to
give a general prescription.

A natural corollary of the above observation is a simple explanation for the flat entangle-
ment spectrum and its rather weak dependence on the state of the theory we are bipartitioning.
As we have seen, in all but one example discussed, the Rényi and von Neumann entropies were
given by M logZCS(S

3), with M being the number of entangling interfaces bipartitioning the
state. Viewing topological entanglement as the glue that binds these pieces together without
prescribing additional structure implies that we should only be sensitive to the number of
pieces being glued and an overall factor providing a measure of the number of topological
degrees of freedom being pieced together. The latter is captured by the quantum dimension
which is related to the S3 partition function. This is highly suggestive that the closed string
partition function on the resolved conifold is a measure of the topological closed string degrees
of freedom, viz., a string quantum dimension.

Moreover, it also suggests that our replica construction on the closed string side is penalty
free – the location of the entangling brane is not constrained by the dynamics. This is in
contrast to the physical context, where as explained in [19, 21], placing a cosmic brane induces
non-trivial backreaction. In a certain sense, the topological string is a natural home for the
original attempt of [70] to prove the RT prescription.14 From this vantage point, it is natural
to argue that the tensor network models of holography [60, 61] which give flat entanglement
spectra are at best capturing some topological features of the AdS/CFT correspondence.
Thus they can be useful in encoding some information theoretic properties of the holographic
map [71] but may not provide a deep rationale for the emergence of gravitational dynamics,
which would constitute and essential limitation (a complementary viewpoint is articulated in
[72, 73]). It would be interesting to test this hypothesis (see below for a suggestion).

While our justifications for the closed string bipartitioning, and interpretations this affords
for topological closed string entanglement, were made on physical grounds, based in part on
requiring consistency of the GV duality, it would useful to make these statements more precise.

14We thank Matt Headrick for this suggestion and useful discussions on this issue.
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focused on spatial bipartitions of this state, it should be clear that the closed string story for
decomposing the spatial domain into multiple disconnected regions parallels the Chern-Simons
discussion. Similarly, the perspective that surgery commutes through the geometric transition,
implies that we can consider other states of the Chern-Simons theory and determine the
analogous picture in the resolved conifold. We will briefly discuss some of these generalizations
below, explaining in detail the surgery on the Chern-Simons side, and indicating the necessary
changes for the closed string on the resolved conifold.

6.1 Entanglement on a Riemann surface

In §4 we understood the situation when we decompose the S3 into two 3-balls to define | 
S2 i.

Suppose instead that we are now interested in ⌃g, a codimension-1 Cauchy slice in S3 with a
non-trivial topology, viz., a Riemann surface with g handles. Unlike HS2 , the Hilbert space
H⌃g for ⌃g contains more than one independent element. As described in §3.1 these states
are obtained by performing the Chern-Simons path integral on the handlebody M⌃g bounded
by ⌃g with Wilson loops placed along the non-contractible cycles of M⌃g .

A�

A+

Ac
�

Ac
+

A� A+

Figure 14: The ⇢A for torus is obtained by gluing the path integrals over the two solid tori by identifying the
boundary regions A

c
� and A

c
+ on the boundary tori. The resulting path integral is same as the reduced density

matrix ⇢A for Riemann sphere.

Consider the state | gi 2 H⌃g that corresponds to performing the path integral over
M⌃g with no Wilson loops placed along its non-contractible cycles. Let us compute the
entanglement entropy of | gi for the bipartition of ⌃g into two regions A and Ac with M

number of disconnected interfaces between them. We illustrate in Fig. 14 the state prepared
on a solid torus obtained by slicing open, in an alternate manner, the S3 partition function.

– 32 –

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
6
1
P
_
0
6
1
9
 
v
1

powers of the reduced density matrix:

TrA (⇢A
q) = ZCS(S

3) . (4.10)

This result was obtained in [42] by a similar argument. Their observation was that computing
Tr (⇢Aq) involves the branched cover manifold M(q)

3 which is the q-fold branching of an S3 over
the equatorial S1 bounding A and Ac, respectively. This 3-manifold is topologically an S3

and thus the computation of the trace brings us back to a known evaluation. We have simply
chosen to reinterpret this in terms of a state space picture to enable us make statements later
for the closed topological string. Finally, note that entanglement entropy of the state | 

S2 i
for bipartitioning of S2 is given by:

SA = lim
q!1

1

1� q


logTrA (⇢A

q)� q logTrA (⇢A)

�
= logZCS(S

3). (4.11)

Note that for this choice of bipartitioning we get a universal answer involving the S3

partition function of the Chern-Simons theory, both for the von Neumann and for the Rényi
entropies. It is easy to check S

(q)
A = logZCS(S

3). Such a flat entanglement spectrum is
indicative of the topological nature of the underlying theory. What it encodes is the lack of
penalty due to physical interactions, illustrated by our ability to freely glue different three-
manifolds together as in Fig. 7. This is somewhat reminiscent of tensor network toy models of
holography [60, 61] which likewise exhibit a flat entanglement spectrum, as they are unaware
of the dynamics of gravitational interactions. We will return to this issue in §7.

A1
� A2

� A1
+ A2

+

Ac
� Ac

+

1
ZCS (S

3) A1
� A1

+ A2
� A2

+

Figure 8: The ⇢A for Riemann sphere with two regions A = A
1
[ A

2 and A
c with two interfaces is obtained by

gluing the path integrals over the 3-balls by identifying the boundary regions A
c
� and A

c
+ on the boundaries. The

resultant path integral can be understood as a path integral over two 3-balls without any identification (whose
boundaries comprise the components of A), divided by ZCS(S

3). This figure also makes it clear that action of ⇢A
on the state | 

S2 i gives 1
ZCS (S3)

| 
S2 i.

We have thus far considered situations where the entangling surface is a single connected
surface. We can easily generalize to situations with of the Cauchy surface S2 partitioned into
a set of M disconnected regions A = [iAi, say by cutting along different latitudes, or by
picking sub-domains inside the 3-balls. We illustrate the construction of the corresponding
reduced density matrix in Fig. 8.

Let us repeat the path integral construction for ⇢A | S2 i: we again can start with three
3-balls Bi, i = 1, 2, 3, each with M + 1 components corresponding to our partitioning of the
system into multi-component subregions A and Ac. The action ⇢A | S2 i now is achieved by
first identifying Ac

� in B� with Ac
+ in B+ as before to make up ⇢A , while the action of the
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 Similar results for higher genus states without Wilson lines.
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Geometric transition

r = 1

r = 0

S2B+S2 B�

r = 1

r = 0

S2B+S2 B�

Figure 9: The geometric transition between the deformed and resolved conifolds seen from the perspective 3-
manifold surgery. We identify on the left the uplift of the surgical decomposition of S3

⇢ T ⇤S3. Following this
through the geometric transition brings us to the right figure which will be our starting point for defining the closed
string Hilbert space. While the S2 is non-trivially fibered over the S3 in the deformed and resolved conifolds, for
ease of illustration and discussion, we will indicate it as if it were a direct product; see footnote 8. Note that we
have swapped the direction of the radial coordinate of the cone relative to Fig. 1 for ease of illustration.

string analysis. We extend our bipartitioning into the bulk of the resolved conifold by picking
an ansatz for the location of a ‘topological cosmic brane’ which we refer to as the entangling
brane for reasons described in §1. Requiring that the decomposition be compatible with
the dynamics of the closed topological string, we learn of the topological constraints on the
construction of the reduced density matrix and replicas thereof. Once we have fixed the
replica target space by imposing these, we can immediately compute the closed topological
string partition function and check that the answer is compatible with that expected from
Chern-Simons theory.

5.1 Density matrices in topological string theory

Let us now construct the reduced density matrix in closed topological string theory which we
will think of in terms of a string field theory on the resolved conifold R = O(�1)�O(�1) ! P1.
We must first specify a Cauchy surface in this resolved conifold and then specify a splitting of
this codimension-1 surface into two complementary regions A and Ac. We want to achieve all
of this topologically, so we should remind ourselves of some of the key features of the topology
in question. Further details can be found in Appendix A.

The resolved conifold can be constructed in two steps. The first step is to solve the
defining equation:

|z1|2 + |z2|2 � |z3|2 � |z4|2 = t . (5.2)

Here t is the Kähler parameter of the resolved conifold. The second step is to quotient the
solution obtained by solving (5.2) with the following U(1) action

(z1, z2, z3, z4) !
⇣
e
i ✓
z1, e

i ✓
z2, e

�i ✓
z3, e

�i ✓
z4

⌘
. (5.3)

– 24 –

In the closed string description, employ the Heegard splitting of the three-
sphere again to expose constant time hypersurfaces.



TOPOLOGICAL STRING STATE SPACE

NB: Cauchy surface does not slice through closed string worldsheets 
(holomorphic maps wrapping homology two-cycles).
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r = 1

r = 0

S2B+S2 B�

Figure 10: The resolved conifold is described as a collection of S3s placed along an infinite ray with the coordinate
r 2 [0,1). At each point along the ray we have a five-dimensional space S3

⇥ S2, with the S3 having radius r
and the S2 being of unit radius. In our illustration, we have decomposed the S3 topologically into two 3-balls B�
and B+ (which are assumed to be identified along their boundaries). The purpose of the S2’s drawn alongside each
3-ball is to remind us that each point in the S3 carries with it a S2 of unit radius, and as explained in footnote 8
we are leaving implicit the fibration structure.

The solution to the equation (5.2) can be parameterized by introducing a real variable r,
so that

|z1|2 + |z2|2 = r
2 + t , |z3|2 + |z4|2 = r

2
, 0  r < 1. (5.4)

A-priori we have obtained two S3s defined by the two sets of equations above. Note that at
r = 0 one of the S3s shrinks to a point, while other S3 with coordinates (z1, z2) is always of
finite radius (bounded below by t). Therefore, we are allowed to quotient the solution (5.4)
with the U(1) action (5.3). This can be done easily by freezing the phase of either z1 or z2.
However, freezing the phase of one of the components in the coordinate duple (z3, z4) will
not suffice. This is due to the fact that at r = 0 both z3 and z4 vanish. Let us therefore
use this freedom to fix the phase ✓. The freezing of the phase of both z1 or z2 then reduces
the non-contractible surface from an S3 into an S2. We will find it convenient to redefine
coordinates to make this resulting S2 have unit radius. To wit,

ezi =
zip

|z3|2 + |z4|2 + t
i = 1, 2. (5.5)

We can therefore describe the topology of the resolved conifold O(�1)�O(�1) ! P1 as
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a collection of S3s placed along an infinite ray parameterized by the coordinate r 2 [0,1). At
each point in the ray, specified by the value of the coordinate r, there is an S3 having radius r
as well as a unit radius S2. We depict this perspective in Fig. 10. As indicated in the caption
of Fig. 9 we are ignoring the fact that the S2 is non-trivially fibered over the S3 for ease of
discussion.

This realizes quite explicitly the description of the resolved conifold explained in §2; we
have a cone over a base S2 ⇥ S3, with the radial direction of the cone parameterized by r,
which is valued in R+ [ {0}. The base is a five dimensional space, which itself may be viewed
as a fibre bundle whose base space is an S3 having radius r, while the fibre direction is a fixed
size S2.

r = 1

r = 0

R+R� t = 0

A�(r1) A+(r1)

A�(r2) A+(r2)

Ac
�(r1) Ac

+(r1)

Ac
�(r2) Ac

+(r2)

E� E+

Figure 11: The radial direction of the 3-balls in the pair (B�,B+), depicted by the violet lines in the figure, are
taken to be the time direction. Splitting the resolved conifold at t = 0 involves decomposing it about the red dashed
line that pass through the middle of the pairs of 3-balls, resulting in two geometries R± as indicated. They are
bounded by codimension-1 constant time surfaces �± (not shown explicitly) which comprise of an S2 of radius r
(boundaries of B±, respectively), over which is fibered a unit-radius S2. The entangling branes E± have topology
S2(1)⇥ S1

⇥ (R+ [ {0}) and will be discussed later in the text.

Our next step is to specify a Cauchy surface in the resolved conifold. For this, we must
identify one of five directions comprising the base of the cone as the time direction. Happily,
we can mimic what we did in the Chern-Simons discussion, i.e., we shall identify the radial
direction of the pair of 3-balls (B�,B+) which are being identified along their boundaries to
obtain the S3, as the time direction. Therefore, choosing a Heegaard splitting of all the S3s
that are placed along the radial direction of the resolved conifold into a pair of 3-balls can
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be understood as the splitting of the resolved conifold along a Cauchy surface �. This choice
divides the resolved conifold into two pieces R+ and R�, respectively. Let us for convenience
resolve the Cauchy slice by opening it up about the constant time slice. We denote the
boundary of the first piece (R�, which lies to the left of �) as ��, and the boundary of the
second piece (R+, which lies to the right) as �+, respectively as illustrated in Fig. 11.

We should now argue that the decomposition of the resolved conifold into R± is meaningful
from the closed topological string perspective. To do so, let us start by noting a remarkable
property of the constant time surfaces �±. Neither of them cut through any of the non-
contractible S2s in the resolved conifold – including, in particular, the S2 at the origin r =

0, which is the only non-trivial two-cycle in the resolved conifold. This has the following
important consequence: it allows us to conclude that the splitting of the resolved conifold as
described is a consistent operation which doesn’t slice through any closed string configuration.

To see this we invoke the toric picture of the resolved conifold (see Appendix A). The fact
that �± do not slice any of the homology two-cycle, can be interpreted in the toric picture as
saying that they do not cut through any of the edges of the toric graph (where a certain fibre
degenerates). Since using toric actions, all the topological closed string configurations can be
made to pass through the edges of the toric diagram [65], it follows that the surfaces �± cut
none of the closed strings. Hence we conclude that the splitting of the resolved conifold along
the constant time surface � is a consistent operation to do from the viewpoint of topological
closed string theory. In other words, we can consistently formulate topological closed string
theory in R±, the spacetimes obtained by cutting the resolved conifold R along the constant
time Cauchy surface �.

Since R± are manifolds with boundaries �±, respectively, the closed topological string
field theory path integral over them does not compute a number but rather evaluates to a
vector. This produces states in the Hilbert space obtained by quantizing the topological closed
string theory on the Cauchy surface �. Assume that the path integral over R� (without any
brane) produces the state |�

R
i on ��. The path integral over R+ (without any brane) then

produces the dual state h�
R
| on �+. Consequently, the inner product between these two

states is given by fusing the two functional integrals together; i.e., it is given by the partition
function Zc(R) of the closed topological string theory on the resolved conifold:

h�
R
|�

R
i = Zc(R). (5.6)

Having constructed a state in the closed topological string Hilbert space, we can now
proceed to ask how to construct a reduced density matrix on a subregion A ⇢ �. Recall that
� has the topology of a cone with base S2(r)⇥ S2(1) where we have now indicated the radii
of the spheres for clarity. The S2(r) is the boundary of the ball B. Away from tip of the cone
r = 0, it can be easily bipartitioned into two across the equator by picking the northern and
southern hemispheres, A(r), and Ac(r), respectively. Each such A(r) has the topology of a
disc and we still have the S2(1) fibred over this disk at each point along the ray parameterized
by r. At the tip of the cone, the ball B has zero size, so there is nothing to bipartition.
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1 Introduction

The open/closed topological duality of Gopakumar-Vafa (GV) [1] between large N Chern-
Simons theory on S3 and closed topological string on a resolved conifold through a geometric
transition provides a useful context to test the general ideas underlying the gauge/gravity
correspondence. As both sides of the duality are topological field theories, one has precision
checks. For instance, [1] already showed how the ’t Hooft expansion of the Chern-Simons
partition function matches with the genus expansion of the closed topological string partition
function. The match between observables was extended to Wilson loop expectation values in
[2], and informed the subsequent developments in the subject such as the all-loop expression
for topological string amplitudes [3], the topological vertex [4], etc.

Whilst the match between conventional observables on the two sides is fascinating, the rel-
ative tractability of this topological duality suggests that one ought to be able to do much more.
It is instructive to compare the situation with the more familiar examples of gauge/gravity
duality. In the physical context, the AdS/CFT correspondence relates large N field theories
realized on D-branes, to closed strings propagating on AdS spacetimes [5]. Early entries into
the holographic dictionary were relations between field theory operators and gravitational
fields and prescriptions for computing correlation functions [6, 7]. These entries, we now be-
lieve, do not altogether capture the complete essence of the holographic duality. Among other
things they fail to provide a rationale for how the degrees of freedom of the quantum field
theory conspire to build a dynamical spacetime where closed strings propagate.

While we are yet to fully fathom the story in the physical context, developments in
the past decade suggest an intimate connection between the emergence of geometry and the
organization of quantum information in the dual field theory. These observations arise from
another entry in the holographic dictionary; one relating the computation of von Neumann
entropy for a spatial subregion of the field theory to the area of an extremal surface in the
dual bulk geometry, viz., the RT/HRT prescriptions of [8, 9]. This geometrization of quantum
entanglement (to leading order in large N), it has been argued, should be interpreted as
responsible for the emergence of macroscopic spacetime geometry [10, 11]. An overview of
some of the salient developments in this area can be found in [12].

Given this status quo, we would like to examine the connection between geometry and
entanglement in the open/closed topological string duality. However, we should first convince
ourselves that this is a useful exercise which could inform our intuition in the physical setting.
Recall that the holographic entanglement entropy prescription is best understood in the limit
when the closed string theory truncates to low energy Einstein-Hilbert gravitational dynamics,
viz., when `AdS � `s � `P , which translates to the leading strong coupling, planar limit of the
field theory.1 Stringy corrections are understood perturbatively in `AdS/`s by encapsulating

1Concretely, in the familiar duality between SU(N) N = 4 Super Yang-Mills (SYM) and string theory on
AdS5 ⇥S5, the map between parameters is

g2Y M N ⇠

✓
`AdS

`s

◆4

, N ⇠

✓
`AdS

`P

◆4

. (1.1)
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Replica construction in QFT involves computing partition functions on a q-
fold branched cover of the original background, branched at the entangling 
surface. 

 When                                the bulk spacetime can be obtained using a saddle 
point solution of the quantum gravity path integral, with boundary 
conditions provided by the branched cover. 

 Gravity affords a major simplification for computing the von Neumann 
entropy: the analytic continuation taking q to unity is made simple.



KINEMATICS

 Assume bulk saddles are replica 
symmetric and construct the orbifold 

A@A

r

⌧

B

eq

M̂q

Let us now set up a bulk coordinate chart. First, consider a codimension-2 surface in the

original spacetime M. We pick coordinates adapted to the surface: yi with i = 1, 2, · · · , d�1

parameterize tangential directions, while the normal directions are coordinatized by x, tE.

Expanding the metric in a derivative expansion around the surface, we have

ds
2
E

= dx
2 + dt

2
E +

�
�ij + 2 K

x

ij x + 2 K
t

ij tE

�
dy

i
dy

j + · · · . (3.1) eq:lm0

We have retained only the leading terms in the Taylor expansion about the surface located at

x = 0, tE = 0. One can equivalently parameterize the normal directions in polar coordinates

x ± i tE = r e
±i ⌧ , where ⌧ ⇠ ⌧ + 2⇡ for regularity.16

If we introduce such local coordinates in the vicinity of eq as in (3.1), then the replica

symmetry implies that the action is invariant with respect to a global shift of the polar

coordinate in the normal plane ⌧ , viz., ⌧ ! ⌧ +2⇡; see Fig. 6 for an illustration. Near eq this

replica coordinate has to be identified under ⌧ ⇠ ⌧ + 2⇡ q. We can now use the smoothness

of the covering space Mq,17 to infer that the local geometry near eq in the quotient M̂q has

be of the form18

ds
2 = q

2
dr

2 + r
2
d⌧

2 + ds
2
transverse + ... (3.2) eq:lm1

We have left implicit here the transverse part of the geometry which we will describe in due

course. The main point to note is the explicit q dependence. Its presence implies that in order

for the metric to be smooth near r = 0, we must encounter some non-trivial backreaction;

one cannot simply identify ⌧ ⇠ ⌧ + 2⇡q in (3.1).

Exploiting the replica symmetry we can restrict our attention to a single fundamental

domain (or replica) of the Zq action in the bulk. Thence, the total action of the gravity

computation will be q times that of a single domain, viz.,

I[Mq] = q I[M̂q] (3.3) eq:lmI1

While the quotient space has a conical singularity with defect angle 2⇡
q

, the covering space is

smooth; this observation will play a crucial role in setting up the boundary conditions.

The advantage of thinking about the orbifolded quotient space becomes manifest when

we think about computing the entanglement entropy which requires analytic continuation

from q 2 Z+ to q = 1. From the geometric perspective q is simply a parameter that tells

us the strength of the opening angle at the conical defect in M̂q. Working in the orbifolded

space, we simply analytically continue q by dialing the strength of the singularity. This the

16 For convenience we are going to use the same notation for the normal bundle coordinates in the bulk M

and the boundary B. This is natura; as the fixed point set e is the bulk extension of the entangling surface.
17 One might worry that the geometry is smooth in the bulk, but becomes singular as it approaches the

boundary due to the entangling surface. This singularity however can be dealt with by a suitable regularization

procedure. For example in some situations [7] we can use conformal mapping to send @A to infinity and use

a standard IR cut-o↵.
18 Strictly speaking the geometry has a fibration structure, whereby the normal bundle parameterized by the

(r, ⌧) coordinates is non-trivially fibred over the base. We have for simplicity dropped some of the o↵-diagonal

components in writing (3.2).
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✦ On-shell action we want is simply related
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, the covering space is

smooth; this observation will play a crucial role in setting up the boundary conditions.

The advantage of thinking about the orbifolded quotient space becomes manifest when

we think about computing the entanglement entropy which requires analytic continuation

from q 2 Z+ to q = 1. From the geometric perspective q is simply a parameter that tells

us the strength of the opening angle at the conical defect in M̂q. Working in the orbifolded

space, we simply analytically continue q by dialing the strength of the singularity. This the

16 For convenience we are going to use the same notation for the normal bundle coordinates in the bulk M

and the boundary B. This is natura; as the fixed point set e is the bulk extension of the entangling surface.
17 One might worry that the geometry is smooth in the bulk, but becomes singular as it approaches the

boundary due to the entangling surface. This singularity however can be dealt with by a suitable regularization

procedure. For example in some situations [7] we can use conformal mapping to send @A to infinity and use

a standard IR cut-o↵.
18 Strictly speaking the geometry has a fibration structure, whereby the normal bundle parameterized by the
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components in writing (3.2).
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problem. We will work in a single fundamental domain of the quotient space M̂q, which

we have seen is topologically isomorphic to the original bulk spacetime M. However, these

two spacetimes have vastly di↵erent geometries owing to the boundary conditions. But this

di↵erence can be accounted for by the singular locus eq. This codimension-2 surface can be

treated as a source of energy-momentum which backreacts on the spacetime M to deform

it to M̂q. To ensure that the we have the correct geometry we must require appropriate

boundary conditions at the fixed point locus itself, for eq is not a generic singularity but one

that arises from a smooth spacetime Mq by an orbifold construction. The fact that we are

taking an orbifold of a (d + 1)-dimensional spacetime to get a codimension-2 singular locus

suggests that the singular locus should be treated as a cosmic brane which carries a tension

Tq =
1

4G(d+1)
N

q � 1

q
(5.1.5) eq:ctesion

where we have reinstated all the factors of Newton’s constant appropriate for a source of

energy density localized in a codimension-2 surface of the spacetime.

The claim then is that we can compute the geometry of M̂q and thence Mq by starting

with M with the codimension-2 cosmic brane with the above value of tension. We solve

Einstein’s equations (4.2.3) with Tmatter
AB arising from the cosmic brane tension. Having de-

termined the solution for M̂q we compute the on-shell action of this part of the spacetime

and exploit the locality of the gravitational action to infer that the action contribution of

Mq should be q times that of a single domain, viz.,

I[Mq] = q I[M̂q] (5.1.6) eq:lmI1

While the quotient space has a conical singularity with defect angle 2⇡
q , the covering space

Mq we re-emphasize is smooth; this observation will play a crucial role in setting up the

boundary conditions.

The advantage of the above manipulations become manifest when we have to consider

analytic continuation in q for purposes of computing entanglement entropy. In the gravita-

tional computation involving the cosmic brane the parameter q simply appears as the tension

of the brane. This suggests that we can compute Rényi entropies for non-integral values of

the index by suitably tuning the cosmic brane tension.

This line of thought brings with it a very helpful bonus. We can separate the deformation

of the geometry into two parts: tangential and normal to the cosmic brane. Let us adapt

coordinates to the cosmic brane, whose worldvolume we parameterize by coordinates yi with

i = 1, 2, · · · , d � 1. The normal directions will be coordinatized by {tE , x} since we are still

working in Euclidean space. In the local neighbourhood of the cosmic brane we can adapt

to Gaussian coordinates so that the metric can be written in the canonical form:

ds2
E
= dx2 + dt2E +

�
�ij + 2Kx

ij x+ 2Kt
ij tE

�
dyi dyj + · · · . (5.1.7) eq:lm0

✦ Subtleties arising from global topology, replica  symmetry breaking….

Hartman, Haehl, Marolf, Maxfield, MR ‘14

While this serves to compute the Rényi entropies, in fact, we are interested in computing the

entanglement entropy, which is achieved by an analysis in the limit q ! 1+. The key point of

[6] is that the analytic continuation from integral q to the vicinity of q ⇠ 1 is much simpler

in the gravitational context. We now review this argument, splitting it into two convenient

parts: a purely kinematic piece and one that cares about the gravitational dynamics.

Kinematics: Let us first discuss the case q 2 Z+. For integer q, the boundary manifold Bq

is a q-fold branched cover over B (branched at @A). Per se this provides a clean boundary

condition for the gravity problem as described above. However, we can exploit that fact that

the partition function has a Zq symmetry of Bq that exchanges the di↵erent replicas. This is

a symmetry owing to the cyclicity of the trace in the definition of Rényi entropies.

Assuming as in [6] that this replica Zq symmetry extends to the bulk, we can take the

smooth bulk dual Mq and consider the quotient space M̂q = Mq/Zq. This quotient geometry

is not smooth and generically contains a codimension-2 fixed point locus of the Zq action.15

We will call this fixed point set of the bulk eq – it will be part of the kinematic data as

we build up an ansatz for construction. Apart from being invariant under the Zq symmetry

exchanging the replicas, eq is the natural extension of @A into the bulk.

A@A

r

⌧

B

eq

M̂q

Fig. 6: Illustration of the local geometry near the fixed point locus of the replica Zq symmetry action
on the boundary and the bulk. The region A terminates on the entangling surface @A, which
extends in M̂q into a fixed point locus eq. We use polar coordinates (r, ⌧) to parametrize sections

of the (Euclidean) normal bundle of this fixed point set. fig:bdycondq

15 There are some subtleties with this statement, for it is possible in certain situations that the fixed point

set has ‘wrong’ codimension; cf., [13] for a detailed discussion and examples. We will assume that we have a

family of replica symmetric geometries, parameterized by q, and smooth for q 2 Z+ which, as argued there, is

su�cient to avoid any exotic scenarios.
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✦ Gravitational analytic continuation: dial the tension of cosmic brane! 

✦ Local analysis of eom in the vicinity of singular locus gives RT prescription.
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We have retained only the leading terms in the Taylor expansion about the surface located at

x = 0, tE = 0. To this order the Gaussian coordinate chart only sees the extrinsic curvature

of the codimension-2 surface embedded in spacetime. Working to higher orders one would

entail keeping track of the curvature contributions.

2. Dynamics: Having set-up the basic problem in the gravitational context, we now want

to figure out what configurations dominate and thence compute their on-shell action. To

enforce the boundary conditions in the gravitational solution, let us examine the metric close

to eq in polar coordinate x± i tE = r e±i ⌧ . The replica Zq symmetry implies that the action

is invariant with respect to a global shift of the polar coordinate in the normal plane ⌧ , viz.,

⌧ ! ⌧ + 2⇡. This feature is illustrated in Fig. ??. On the other hand as we approach eq
the coordinate ⌧ has to traverse through all the replica copies before reverting back to itself,

i.e., it should be identified under ⌧ ⇠ ⌧ + 2⇡ q. Using global smoothness of the saddle point

covering space geometry Mq we infer that the local spacetime near eq in the quotient M̂q

has be of the form2

ds2 =
�
q2 dr2 + r2 d⌧ 2

�
+
�
�ij + 2Kx

ij r
q cos ⌧ + 2Kt

ij r
q sin ⌧

�
dyi dyj + · · · , (5.1.8) eq:lm2

eliding over higher order terms again. We wish to draw attention to the explicit q dependence.

Its presence implies that in order for the metric to be smooth near r = 0, we must encounter

some non-trivial backreaction; one cannot simply identify ⌧ ⇠ ⌧ + 2⇡q in (5.1.7).3

Once we have an ansatz we should simply compute the field equations to discern when

they would be satisfied. Evaluating the curvatures for the geometry (5.1.8) we find divergent

contributions proportional to (q � 1) Ka

r where Ka ⌘ Ka
ij �

ij is the trace of the extrinsic

curvature. Examining potential higher order terms, one learns that none of these can help

compensate this contribution. The only way for the equation of motion to be satisfied by

the ansatz (5.1.8) is for the extrinsic geometry of eq to be determined; the set of admissible

codimension-2 surfaces are required to have vanishing trace of the extrinsic curvature in the

normal directions! Since we have a t ! �t symmetry, we have trivally Kt = 0 and one thus

derives the minimal surface condition of [9]:

lim
q!1

eq ! EA , EA 2 M with t = 0, Kx = 0 . (5.1.9) eq:lmrt

Should we consider higher derivative gravitational theories, the general analysis can be

carried through in a similar fashion as discussed in [71, 72]. What becomes clear is that the

local analysis su�ces to pin down the singular locus in the q ! 1 limit, but this does not in

all cases determine the functional which we minimize to obtain the surface.
2 This is heuristic as the geometry is a nontrivial fibration of the normal bundle parameterized by the

(r, ⌧) over the codimension-2 base.
3 One can understand the factors of r e±i⌧ by looking at which of the local mode solutions (rq ei ⌧ )±! and

(rq ei ⌧ )±i ! in the vicinity of r = 0 are admissible.
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Should we consider higher derivative gravitational theories, the general analysis can be

carried through in a similar fashion as discussed in [71, 72]. What becomes clear is that the

local analysis su�ces to pin down the singular locus in the q ! 1 limit, but this does not in
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Working in the local coordinates (5.1.8) in an open neighbourhood of eq, one finds K✏ =
1
q ✏ , and thus we get4

@qI[M̂q] =
Area(eq)

4 q2GN
(5.1.13) eq:renderq

which, as q ! 1 gives us the RT formula.

The orbifold picture allows us to analytically continue the on-shell action I[Mq] to non-

integer q. The physical interpretation of the (parent space) solution for non-integer q is

unclear, but these geometries are just an intermediate step to compute the action.

We should again note that in higher derivative theories the functionals derived in [71]

give us the geometric generalization of the area functional which computes the holographic

entanglement entropy. However, as remarked earlier it is not in all cases that it is these

functionals that themselves are to be extremized to compute the location of the surface EA.

This remains an open question to date.

5.2 Deriving the HRT prescription
sec:covgen

Thus far there isn’t a clear derivation of the covariant HRT prescription in the literature.

Various authors have attempted over the years to show that the prescription is consistent with

the general expectations in QFT. We will review some of these when we discuss properties

of the holographic entanglement entropy in §6. For now we will give a quick sketch of how

the one might prove the HRT prescription based on the unpublished work [73].

The key issue we have face up is that in genuine time-dependent circumstances, we cannot

invoke the trick of passing to a path integral over an Euclidean manifold.5 In the boundary

field theory we have already indicated in §2.3 the necessary changes one needs to incorporate

to the replica construction using the Schwinger-Keldysh path integral construction. We

evolve from the initial state up until the moment of interest, say t, and then retrace our

footsteps back to the far past. This forward-backward evolution induces a kink at the

Cauchy slice ⌃t ⌘ A [ Ac on the boundary B, as we only retain the part of the geometry to

its past J�[⌃t ].

The question then is how to extend this field theory construction in the holographic

context. A prescription for extending field theory Schwinger-Keldysh contours into the

bulk gravitational theory was developed in [77, 78]. The idea is to consider in the bulk an

analogous fold along some Cauchy slice ⌃̃t , with the proviso that the bulk evolution will

4 The variation of the metric (5.1.8) at eq is grr@qgrr

��
eq

= 2
q and vanishes for the other components.

5 In the absence of time-reflection symmetry, the analytic continuation of t ! i tE will lead to a complex

manifold. Moreover we cannot in general assume that we can analytically continue for we could involve

physical non-analytic time-dependent sources.
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3. The on-shell action: Remarkably, a local analysis around the fixed point serves to

determine the RT proposal involving minimal surfaces. The last thing we need to confirm

is that the value of the on-shell action is indeed given by the area formula (4.3.1). There

are many ways to do the computation, but one that is particularly useful is to employ an

argument based on the covariant phase space approach in gravitational theories [75]. In fact,

as originally explained in [70] and recently elaborated upon by [76] one can compute more

readily the derived quantity @qI[M̂q] for any value of q. This is desirable for one not only

obtains information about he entanglement entropy but also we do not have to set q = 1 in

the following discussion.

The main idea involves viewing the derivative with respect to q, @q, as a change of the

bulk solution (and its boundary conditions). Standard variational calculus says that any

variation of a classical action can be written as a combination of the equations of motion

and boundary terms (using integration by parts where necessary). In gravity this takes the

form:

�I[M̂q] =

Z

Mq

⇥
EAB�(gq)AB + d⇥((gq)AB, @q(gq)AB)

⇤
. (5.1.10) eq:var0

where the boundary terms have be collected into a pre-symplectic form ⇥. For a typical

variation that appears in a standard AdS/CFT calculation, this would evaluate to a term

at the asymptotic boundary @Mq = Bq. However, we wish to consider the variation of q,

which instead changes the boundary condition near the fixed point set eq. For the choice

�gAB = @qgAB the variation satisfies @q(gq)AB

��
Bq

= 0, @q(gq)AB

��
eq

6= 0. So we see that the

change engendered by the replica index variation is localized at the fixed point locus and has

no contribution from the asymptotic boundary of the spacetime. One may therefore write

@qI[M̂q] =

Z

eq(✏)

⇥((gq)AB, @q(gq)AB) (5.1.11) eq:var1

where we have chosen to regulate the result by blowing up the singular locus to a tubular

neighbourhood. In other words the fix point set eq which was at r = 0 is now being regulated

by a codimension-1 surface eq(✏) at r = ✏. We will obtain the correct answer when ✏ ! 0.

In the present case we won’t actually evaluate this integral (which can be done given

the symmetries), but will follow an equivalent route. In the presence of a boundary for the

variational calculus to be well-defined and give the correct equations of motion, we would

need to supply the correct boundary terms. While in our case the surface eq(✏) is not

really a physical boundary, one may for purposes of evaluation imagine it is and ascertain

the corresponding boundary terms. The advantage of this trick is that the on-shell action

will be given simply by evaluating these contributions. For Einstein-Hilbert gravitational

dynamics we evaluate the Gibbons-Hawking contribution from eq(✏)

@qI[M̂q] = �@qIbdy[M̂q] , �Ibdy[M̂q] =
1

8⇡GN

Z

eq(✏)

K✏ (5.1.12) eq:var2

where K✏ is the trace of the extrinsic curvature of the codimension-1 surface eq(✏).

kinematic part of the analysis implies that we work in the q ! 1 limit, on a geometry with

a conical deficit of prescribed strength, with the same boundary conditions as the original

background geometry M.

Dynamics: Having set up the basic problem in the gravitational context, we now want

to figure out what configurations dominate and thence compute their on-shell action. For

simplicity we will consider Einstein-Hilbert gravity here; generalizations to other classical

gravitational theories follow along the lines of [23, 24].

To enforce the boundary conditions in the gravitational solution, we examine the metric

close to eq. Consider a wave equation in the local coordinates of (3.2). It is easy to see that it

admits four local mode solutions, viz., (rq e
i ⌧ )±! and (rq e

i ⌧ )±i! in the vicinity of r = 0. To

ascertain which of these is admissible and thus give explicit boundary conditions, we invoke

two facts. Firstly, the replica symmetry requires a 2⇡ periodicity for fields as functions of ⌧ ,

restricting us to purely oscillatory functions and thereby fixing ! 2 Z. Secondly, regularity

of the covering space implies that the fields have to admit an expansion in powers of r
q
e
±i ⌧ ,

thus preventing fields from diverging at r = 0 for integer q. Combining these facts we learn

that r
q
e
±i⌧ will be the generic behaviour of the metric near the origin.19

From the above discussion we then learn that the most general ansatz for the geometry

near e compatible with our boundary conditions is:20

ds
2 =

�
q
2
dr

2 + r
2
d⌧

2
�

+
�
�ij + 2 K

x

ij r
q cos ⌧ + 2 K

t

ij r
q sin ⌧

�
dy

i
dy

j

+
h
r
fq(q�1)

� 1
i
�gµ⌫ dx

µ
dx

⌫ + · · · , (3.4) eq:lm2

where fq is some analytic function of q that takes nonnegative even integer values when q

is a positive integer. [Added Xi’s suggestion] [excellent] This metric is smooth and Zq

symmetric for integer q. Evaluating the Ricci tensor for the geometry (3.4) near q = 1, we

find divergent contributions proportional to (q � 1) K
a

r
where K

a
⌘ K

a

ij
�
ij is the trace of the

extrinsic curvature. This divergent contribution cannot be compensated by modifying other

components of the metric. We are thence led to conclude that the equations of motion give

us a constraint on the allowed eq. The allowed codimension-2 surfaces are required to have

vanishing trace of the extrinsic curvature in the normal directions. Since we have a t ! �t

symmetry, we have trivially K
t = 0. The constraint is equivalent to the minimal surface

condition of [1]:

lim
q!1

eq ! EA , EA 2 M with t = 0, K
x = 0 . (3.5) eq:lmrt

19 The astute reader may worry that as a consequence we will have some components of the curvature being

singular near r = 0 for q /2 Z. This, while true, turns out to be tamable – the singularities will be integrable

in a suitable sense, as we shall see.
20 Notation: Greek (lowercase) indices refer to the full spacetime, mid-alphabet lowercase Latin indices

i, j, · · · refer to the tangent space of the fixed point set eq, and early-alphabet lowercase Latin indices a, b, · · ·

refer to the normal bundle of eq.
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by symmetry

✦  The cosmic brane is the natural continuation of the entangling surface 
ends up as the bulk spatial separatrix in the gravity regime (quantum 
corrections are bulk entanglement across this surface).
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a collection of S3s placed along an infinite ray parameterized by the coordinate r 2 [0,1). At
each point in the ray, specified by the value of the coordinate r, there is an S3 having radius r
as well as a unit radius S2. We depict this perspective in Fig. 10. As indicated in the caption
of Fig. 9 we are ignoring the fact that the S2 is non-trivially fibered over the S3 for ease of
discussion.

This realizes quite explicitly the description of the resolved conifold explained in §2; we
have a cone over a base S2 ⇥ S3, with the radial direction of the cone parameterized by r,
which is valued in R+ [ {0}. The base is a five dimensional space, which itself may be viewed
as a fibre bundle whose base space is an S3 having radius r, while the fibre direction is a fixed
size S2.

r = 1

r = 0

R+R� t = 0

A�(r1) A+(r1)

A�(r2) A+(r2)

Ac
�(r1) Ac

+(r1)

Ac
�(r2) Ac

+(r2)

E� E+

Figure 11: The radial direction of the 3-balls in the pair (B�,B+), depicted by the violet lines in the figure, are
taken to be the time direction. Splitting the resolved conifold at t = 0 involves decomposing it about the red dashed
line that pass through the middle of the pairs of 3-balls, resulting in two geometries R± as indicated. They are
bounded by codimension-1 constant time surfaces �± (not shown explicitly) which comprise of an S2 of radius r
(boundaries of B±, respectively), over which is fibered a unit-radius S2. The entangling branes E± have topology
S2(1)⇥ S1

⇥ (R+ [ {0}) and will be discussed later in the text.

Our next step is to specify a Cauchy surface in the resolved conifold. For this, we must
identify one of five directions comprising the base of the cone as the time direction. Happily,
we can mimic what we did in the Chern-Simons discussion, i.e., we shall identify the radial
direction of the pair of 3-balls (B�,B+) which are being identified along their boundaries to
obtain the S3, as the time direction. Therefore, choosing a Heegaard splitting of all the S3s
that are placed along the radial direction of the resolved conifold into a pair of 3-balls can
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Carrying this out for different radii, we get the desired decomposition of �. We can then
declare the region A of interest to be:

A =

✓ [

r�0

A(r)

◆
⇥ S2(1) . (5.7)

The codimension-2 entangling brane at the boundary of A and Ac is denoted as E. It has the
topology of a cone, except that the tip at r = 0 is now removed since we are not bipartitioning
the shrunken 3-ball at that locus. The base of the cone is S1(r)⇥ S2(1) and thus

E =

✓ [

r>0

S1(r)

◆
⇥ S2(1) . (5.8)

We implement this construction on both �± and denote the decompositions thus obtained
as �� = A� [ Ac

� and �+ = A+ [ Ac
+ and denote the associated entangling branes as E±,

respectively. Now we are in a position to construct the topological closed string density
matrix ⇢ = |�

R
ih�

R
|, and the associated reduced density matrix ⇢

A
with respect to the

chosen bipartition of �. The density matrix ⇢ can be identified with the outer product of the
topological closed string field theory path integral over R⌥. Since we are taking the outer
product we are not to identify the boundaries �±. The reduced density matrix ⇢

A
can be

likewise be identified as the closed topological string field theory path integral over R⌥ with
the proviso that we identify these geometries along the complement i.e., we identify Ac

� on
�� with Ac

+ on �+.

5.2 Replica and Rényi entropies

Having at hand a functional integral definition of the reduced density matrix, we can now
proceed to implement the replica construction. The computation of the Rényi entropy S

(q)
A

requires taking q copies of the path integral computing the reduced density matrix ⇢
A
, and

cyclically gluing them to produce the ‘branched cover’ target spacetime Rq. Recall that the
gluing proceeds by identifying the region A+ from the j

th copy with the region A� from the
(j + 1)st copy. At the end of the day the computation of TrA

�
⇢
q

A

�
reduces to computing the

closed topological string theory partition function on the Calabi-Yau threefold Rq.
We have however not yet normalized the density matrix ⇢

A
. Therefore in performing

the computation we actually need to compare the partition function on the target Rq with q

copies of the result on the resolved conifold, cf., (5.1). The key point to keep in mind is that
the time interval on the ‘branched cover’ replica geometry Rq is q times that of the resolved
conifold R. To facilitate direct comparison, it is useful to mimic the discussion in the physical
gauge/gravity context [19]. Let us therefore reinterpret q-fold product of the resolved conifold
partition function Zc(R)q, as the partition of closed topological string theory with target R�q

whose temporal extent is q times that of the resolved conifold R.
We are now left with determining the new target geometry R�q. We claim that the

manifold R�q can be obtained by taking q copies of R and cyclically gluing them as follows.
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Carrying this out for different radii, we get the desired decomposition of �. We can then
declare the region A of interest to be:

A =

✓ [

r�0

A(r)

◆
⇥ S2(1) . (5.7)

The codimension-2 entangling brane at the boundary of A and Ac is denoted as E. It has the
topology of a cone, except that the tip at r = 0 is now removed since we are not bipartitioning
the shrunken 3-ball at that locus. The base of the cone is S1(r)⇥ S2(1) and thus

E =

✓ [

r>0

S1(r)

◆
⇥ S2(1) . (5.8)

We implement this construction on both �± and denote the decompositions thus obtained
as �� = A� [ Ac

� and �+ = A+ [ Ac
+ and denote the associated entangling branes as E±,

respectively. Now we are in a position to construct the topological closed string density
matrix ⇢ = |�

R
ih�

R
|, and the associated reduced density matrix ⇢

A
with respect to the

chosen bipartition of �. The density matrix ⇢ can be identified with the outer product of the
topological closed string field theory path integral over R⌥. Since we are taking the outer
product we are not to identify the boundaries �±. The reduced density matrix ⇢

A
can be

likewise be identified as the closed topological string field theory path integral over R⌥ with
the proviso that we identify these geometries along the complement i.e., we identify Ac

� on
�� with Ac

+ on �+.

5.2 Replica and Rényi entropies

Having at hand a functional integral definition of the reduced density matrix, we can now
proceed to implement the replica construction. The computation of the Rényi entropy S

(q)
A

requires taking q copies of the path integral computing the reduced density matrix ⇢
A
, and

cyclically gluing them to produce the ‘branched cover’ target spacetime Rq. Recall that the
gluing proceeds by identifying the region A+ from the j

th copy with the region A� from the
(j + 1)st copy. At the end of the day the computation of TrA

�
⇢
q

A

�
reduces to computing the

closed topological string theory partition function on the Calabi-Yau threefold Rq.
We have however not yet normalized the density matrix ⇢

A
. Therefore in performing

the computation we actually need to compare the partition function on the target Rq with q

copies of the result on the resolved conifold, cf., (5.1). The key point to keep in mind is that
the time interval on the ‘branched cover’ replica geometry Rq is q times that of the resolved
conifold R. To facilitate direct comparison, it is useful to mimic the discussion in the physical
gauge/gravity context [19]. Let us therefore reinterpret q-fold product of the resolved conifold
partition function Zc(R)q, as the partition of closed topological string theory with target R�q

whose temporal extent is q times that of the resolved conifold R.
We are now left with determining the new target geometry R�q. We claim that the

manifold R�q can be obtained by taking q copies of R and cyclically gluing them as follows.
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for the bipartition.

cf., Donnelly, Wong ’16, ’18
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a collection of S3s placed along an infinite ray parameterized by the coordinate r 2 [0,1). At
each point in the ray, specified by the value of the coordinate r, there is an S3 having radius r
as well as a unit radius S2. We depict this perspective in Fig. 10. As indicated in the caption
of Fig. 9 we are ignoring the fact that the S2 is non-trivially fibered over the S3 for ease of
discussion.

This realizes quite explicitly the description of the resolved conifold explained in §2; we
have a cone over a base S2 ⇥ S3, with the radial direction of the cone parameterized by r,
which is valued in R+ [ {0}. The base is a five dimensional space, which itself may be viewed
as a fibre bundle whose base space is an S3 having radius r, while the fibre direction is a fixed
size S2.

r = 1

r = 0

R+R� t = 0

A�(r1) A+(r1)

A�(r2) A+(r2)

Ac
�(r1) Ac

+(r1)

Ac
�(r2) Ac

+(r2)

E� E+

Figure 11: The radial direction of the 3-balls in the pair (B�,B+), depicted by the violet lines in the figure, are
taken to be the time direction. Splitting the resolved conifold at t = 0 involves decomposing it about the red dashed
line that pass through the middle of the pairs of 3-balls, resulting in two geometries R± as indicated. They are
bounded by codimension-1 constant time surfaces �± (not shown explicitly) which comprise of an S2 of radius r
(boundaries of B±, respectively), over which is fibered a unit-radius S2. The entangling branes E± have topology
S2(1)⇥ S1

⇥ (R+ [ {0}) and will be discussed later in the text.

Our next step is to specify a Cauchy surface in the resolved conifold. For this, we must
identify one of five directions comprising the base of the cone as the time direction. Happily,
we can mimic what we did in the Chern-Simons discussion, i.e., we shall identify the radial
direction of the pair of 3-balls (B�,B+) which are being identified along their boundaries to
obtain the S3, as the time direction. Therefore, choosing a Heegaard splitting of all the S3s
that are placed along the radial direction of the resolved conifold into a pair of 3-balls can
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formalism of closed string field theory which applies equally to the topological setting allows
one to construct a path integral formulation in terms of a spacetime action.11 We will not
need the details of this construction in what follows. As we shall see below, making a choice
for a Cauchy slice can be done in a sensible manner only with specification of topological data
within the resolved conifold. At the end of the day, all of this follows from the independence of
the theory on geometric data, in particular, the absence of non-trivial gravitational dynamics,
but it will nevertheless be reassuring that one can indeed carry out the constructions to their
logical end simply by following our nose.

In framing the replica construction, we need several pieces of data. Let us quickly recall
some of the basic elements (we have already implicitly used this in our Chern-Simons discussion
in §4). Given a field theory on a manifold X, we define states on a codimension-1 Cauchy
slice � (which w.l.o.g. we think of as the t = 0 slice). As in our discussion of Chern-Simons
entanglement, consider a bipartition � = A [ Ac. In order to define matrix elements of the
reduced density matrix ⇢

A
, we slice open X across t = 0± along A to obtain a manifold with

a cut along A. Then the path integral with suitable boundary conditions �± at t = 0± for
fields in A leads to matrix elements (⇢

A
)�+. The next step is to obtain matrix elements of

⇢
q

A
by taking q-fold copies of the path integral computing ⇢

A
and making the appropriate

identifications (respecting the Zq replica symmetry). As alluded to earlier, this construction
involves q functional integrals cut open along the region A with a cyclic gluing condition.
We are instructed to identify the t = 0+ configuration j

th copy with the t = 0� data on the
(j+1)st copy. These identifications of the q copies of the manifold X construct our ‘branched
cover’ replica manifold X(q). The Rényi entropies of the reduced state are then computed from
the functional integrals as:

S
(q)
A =

1

1� q

✓
logZ[X(q)]� q logZ[X]

◆
. (5.1)

Our basic premise is to start with the picture we have described for the Chern-Simons
theory in §4 and view this taking place on the S3 ⇢ T

⇤S3 in the A-model open+closed string
theory. Heuristically, this amounts to viewing the Cauchy slices and their bipartitioning as
occurring far away from the tip of the cone. However, given a surgical decomposition of
S3, we can consider uplifting it directly into T

⇤S3. This would motivate a splitting along a
Cauchy slice in target space, which will extend all the way close to the tip. We can then dial
the complex structure parameter of the deformed conifold, so that we can pass through the
geometric transition onto the resolved conifold side, where the branes and associated open
string degrees of freedom disappear and we are left with closed topological strings. In this
process we rely on the fact that the geometric transition is localized near the tip of the cone,
and can thus motivate a construction of a state space for the closed string on the resolved
conifold. We have attempted to illustrate this in Fig. 9.

Once we get to this point, we can furthermore take inspiration from [19] for the closed
11See [62–64] for discussions of the physical closed string field theory.
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Rq

A� A+

Ac
� Ac

+

E� E+

R�q

· · · · · ·

A� A+

Ac
� Ac

+

E� E+

Figure 12: The difference between the manifolds Rq and R�q from the viewpoint of closed topological string theory
is localized at the tip of the codimension-two surface E in them, obtained by identifying the surfaces E� and E+.
At the tip, where radial coordinate r = 0, Rq has only one S2, but R�q has q-number of S2s.

The j
th copy of R is glued to the (j + 1)st copy by identifying the codimension-2 regions

associated with the entangling branes. We identify E+ (which is the boundary of A+) from
the j

th copy with E� (which is the boundary of the region A�) from the (j + 1)st copy. See
Fig. 12 for an illustration of Rq and R�q.

Let us verify the claim by demonstrating that we indeed get back the correct answer for
the partition function, viz., Zc(R�q) = Zc(R)q. The striking feature of topological string
theory is that the physical quantities are sensitive only to the topology of the target space.
More precisely, the partition function depends only on the non-trivial cycles and the Chern
classes of the target. We elaborate on this and provide some details in Appendix D.

Let us therefore identify the non-trivial cycles in R�q which should aid our computation
of Zc(R�q). The geometry R�q has q pairs of codimension-2 entangling branes (E�,E+) that
are glued together as follows. Within each pair, E� is identified with E+ so that we make
up the resolved conifold. In addition, the cyclic gluing of E+ in the j

th pair with E� in the
(j + 1)st pair is necessary to grow the time direction by a factor of q.

Recall that the only non-trivial cycle in R is the S2 at the locus r = 0, which corresponds
to the tip of the cone in the resolved conifold. The codimension-2 entangling surfaces E± have
the topology of an infinite cone with the point at the tip removed, each point carrying an S2

of unit radius. Since the surfaces E± do not intersect with any of the non-trivial cycles in R,
the gluing does not introduce any new compact cycles in R�q, on which the closed topological
string worldsheets can wrap. However, each R has a non-trivial two-cycle, which is the S2(1)

at the origin. As a result R�q, which is obtained gluing q copies of R, has q number of
non-trivial two-cycles, all having the same Kähler parameter t as in the resolved conifold.

Armed with this information, we can analyze the Chern class of R�q. The manifold R�q

is a cyclic q-sheeted covering of the resolved conifold R. Interestingly, it is possible to express
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R�q by gluing q-number of Rs along the entangling surfaces E±s. The entangling surface
E± has the topology K± ⇥ S2 where K± is an infinitely long cone with the point at the tip
removed. Then the S2s having infinite Kähler parameters can be identified with the two-cycles
obtained by considering the union of K� and K+ of adjacent Rs. Therefore,

Zc(R�q) = Zc(R)
q (5.11)

We are finally ready to compute the Rényi entropy S
(q)
A , by finding the difference between

the (logarithms of) the partition functions of the closed topological string theory on Rq and
R�q (and then normalizing the answer with 1�q). The difference can be computed by directly
comparing the topology of the two spacetimes. Both the spacetimes are obtained by cyclically
gluing q copies of R. In Rq the identification is along the region A. This region has the
topology of solid cone with an S2(1) at each point of the solid cone. The tip of the solid
cone carries this S2(1), which is the non-trivial two-cycle in the resolved conifold. As a result,
when we glue q copies of R to obtain Rq, we identify all the non-trivial S2s from each copy of
the resolved conifold. Therefore, Rq has only one non-trivial two-cycle. Moreover, the Chern
class of Rq is same as that of R using (5.10). Hence, from the viewpoint of closed topological
string theory, Rq is same as the resolved conifold R. This is clear for the constant map from
the worldsheet. However, for non-constant maps we have not explicitly verified that there
are no new Gromov-Witten invariants from non-trivial wrappings.12 At the very least our
construction works at large N with the aforementioned subtlety contributing at most to ↵

0

corrections to the relation Zc(Rq) = Zc(R).
The conclusion is that the difference between the manifolds Rq and R�q from the viewpoint

of closed topological string theory is localized at the tip of the codimension-two surface E in
them, obtained by identifying the surfaces E� and E+. At the tip, where radial coordinate
r = 0, Rq has only one S2, but R�q has q-number of S2s. We have attempted to illustrate this
in Fig. 12 and also provided a toric perspective of the geometry in Fig. 13. This implies that

S
(q)
A =

1

1� q
log [Zc(Rq)� logZc(R�q)]

=
1

1� q
log [Zc(R)� q logZc(R)]

= logZc(R)

(5.12)

This is of course what we expect from the point of view of the open/closed topological string
duality as we know that Zc(R) = ZCS(S

3).

6 Generalizations to other states

Our discussion thus far has been confined to entanglement properties of the state | 
S2 i which

we uplifted onto the state |�
R
i of the closed string theory on the resolved conifold. While we

12We thank Xi Yin for raising this point.
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DENSITY MATRIX NORMALIZATION

Amusing to compute the 
normalization by a topological 
string analog of the generalized 
entropy.  

Construct a new geometry 
whose time-cycle is comparable 
to that of the replica geometry.  

This geometry has q non-
contractible two-spheres.
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A� A+
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E� E+

Figure 12: The difference between the manifolds Rq and R�q from the viewpoint of closed topological string theory
is localized at the tip of the codimension-two surface E in them, obtained by identifying the surfaces E� and E+.
At the tip, where radial coordinate r = 0, Rq has only one S2, but R�q has q-number of S2s.

The j
th copy of R is glued to the (j + 1)st copy by identifying the codimension-2 regions

associated with the entangling branes. We identify E+ (which is the boundary of A+) from
the j

th copy with E� (which is the boundary of the region A�) from the (j + 1)st copy. See
Fig. 12 for an illustration of Rq and R�q.

Let us verify the claim by demonstrating that we indeed get back the correct answer for
the partition function, viz., Zc(R�q) = Zc(R)q. The striking feature of topological string
theory is that the physical quantities are sensitive only to the topology of the target space.
More precisely, the partition function depends only on the non-trivial cycles and the Chern
classes of the target. We elaborate on this and provide some details in Appendix D.

Let us therefore identify the non-trivial cycles in R�q which should aid our computation
of Zc(R�q). The geometry R�q has q pairs of codimension-2 entangling branes (E�,E+) that
are glued together as follows. Within each pair, E� is identified with E+ so that we make
up the resolved conifold. In addition, the cyclic gluing of E+ in the j

th pair with E� in the
(j + 1)st pair is necessary to grow the time direction by a factor of q.

Recall that the only non-trivial cycle in R is the S2 at the locus r = 0, which corresponds
to the tip of the cone in the resolved conifold. The codimension-2 entangling surfaces E± have
the topology of an infinite cone with the point at the tip removed, each point carrying an S2

of unit radius. Since the surfaces E± do not intersect with any of the non-trivial cycles in R,
the gluing does not introduce any new compact cycles in R�q, on which the closed topological
string worldsheets can wrap. However, each R has a non-trivial two-cycle, which is the S2(1)

at the origin. As a result R�q, which is obtained gluing q copies of R, has q number of
non-trivial two-cycles, all having the same Kähler parameter t as in the resolved conifold.

Armed with this information, we can analyze the Chern class of R�q. The manifold R�q

is a cyclic q-sheeted covering of the resolved conifold R. Interestingly, it is possible to express
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associated with the entangling branes. We identify E+ (which is the boundary of A+) from
the j

th copy with E� (which is the boundary of the region A�) from the (j + 1)st copy. See
Fig. 12 for an illustration of Rq and R�q.

Let us verify the claim by demonstrating that we indeed get back the correct answer for
the partition function, viz., Zc(R�q) = Zc(R)q. The striking feature of topological string
theory is that the physical quantities are sensitive only to the topology of the target space.
More precisely, the partition function depends only on the non-trivial cycles and the Chern
classes of the target. We elaborate on this and provide some details in Appendix D.

Let us therefore identify the non-trivial cycles in R�q which should aid our computation
of Zc(R�q). The geometry R�q has q pairs of codimension-2 entangling branes (E�,E+) that
are glued together as follows. Within each pair, E� is identified with E+ so that we make
up the resolved conifold. In addition, the cyclic gluing of E+ in the j

th pair with E� in the
(j + 1)st pair is necessary to grow the time direction by a factor of q.

Recall that the only non-trivial cycle in R is the S2 at the locus r = 0, which corresponds
to the tip of the cone in the resolved conifold. The codimension-2 entangling surfaces E± have
the topology of an infinite cone with the point at the tip removed, each point carrying an S2

of unit radius. Since the surfaces E± do not intersect with any of the non-trivial cycles in R,
the gluing does not introduce any new compact cycles in R�q, on which the closed topological
string worldsheets can wrap. However, each R has a non-trivial two-cycle, which is the S2(1)

at the origin. As a result R�q, which is obtained gluing q copies of R, has q number of
non-trivial two-cycles, all having the same Kähler parameter t as in the resolved conifold.

Armed with this information, we can analyze the Chern class of R�q. The manifold R�q

is a cyclic q-sheeted covering of the resolved conifold R. Interestingly, it is possible to express
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R�q by gluing q-number of Rs along the entangling surfaces E±s. The entangling surface
E± has the topology K± ⇥ S2 where K± is an infinitely long cone with the point at the tip
removed. Then the S2s having infinite Kähler parameters can be identified with the two-cycles
obtained by considering the union of K� and K+ of adjacent Rs. Therefore,

Zc(R�q) = Zc(R)
q (5.11)

We are finally ready to compute the Rényi entropy S
(q)
A , by finding the difference between

the (logarithms of) the partition functions of the closed topological string theory on Rq and
R�q (and then normalizing the answer with 1�q). The difference can be computed by directly
comparing the topology of the two spacetimes. Both the spacetimes are obtained by cyclically
gluing q copies of R. In Rq the identification is along the region A. This region has the
topology of solid cone with an S2(1) at each point of the solid cone. The tip of the solid
cone carries this S2(1), which is the non-trivial two-cycle in the resolved conifold. As a result,
when we glue q copies of R to obtain Rq, we identify all the non-trivial S2s from each copy of
the resolved conifold. Therefore, Rq has only one non-trivial two-cycle. Moreover, the Chern
class of Rq is same as that of R using (5.10). Hence, from the viewpoint of closed topological
string theory, Rq is same as the resolved conifold R. This is clear for the constant map from
the worldsheet. However, for non-constant maps we have not explicitly verified that there
are no new Gromov-Witten invariants from non-trivial wrappings.12 At the very least our
construction works at large N with the aforementioned subtlety contributing at most to ↵

0

corrections to the relation Zc(Rq) = Zc(R).
The conclusion is that the difference between the manifolds Rq and R�q from the viewpoint

of closed topological string theory is localized at the tip of the codimension-two surface E in
them, obtained by identifying the surfaces E� and E+. At the tip, where radial coordinate
r = 0, Rq has only one S2, but R�q has q-number of S2s. We have attempted to illustrate this
in Fig. 12 and also provided a toric perspective of the geometry in Fig. 13. This implies that

S
(q)
A =

1

1� q
log [Zc(Rq)� logZc(R�q)]

=
1

1� q
log [Zc(R)� q logZc(R)]

= logZc(R)

(5.12)

This is of course what we expect from the point of view of the open/closed topological string
duality as we know that Zc(R) = ZCS(S

3).

6 Generalizations to other states

Our discussion thus far has been confined to entanglement properties of the state | 
S2 i which

we uplifted onto the state |�
R
i of the closed string theory on the resolved conifold. While we

12We thank Xi Yin for raising this point.
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 Combining the results for the partition functions on the replica geometry 
and the normalization factor we recover the expected flat entanglement.

 The difference between the two manifolds entering the above is localized 
at the tip of the geometry (it cares about the number of non-contractible 
two-spheres).



Act III

Wilson line states



WILSON LINES AND THEIR DUAL LAGRANGIANS

 Consider Wilson lines wrapping a knot/link inside the three-sphere and 
decompose using Heegard splitting to obtain other states. 

 Wilson lines can be `spacelike’ or `timelike’ and may or may not interfere 
with the spatial bipartitioning.

 Given a Wilson line in some representation, in the closed string 
description we have probe D-branes wrapping a non-compact Lagrangian 
cycle. 

 This cycle is anchored on the Wilson line in a large radius three-sphere (at 
the bottom of the cone), and wraps the equator of the non-contractible 
two-sphere, extending all along in the radial direction.

Ooguri, Vafa ’99
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6.2.1 Bipartitions avoiding Wilson lines

Ac
+Ac

�

A� A+

| i

T2
i h i

T2
|

Ri Ri

glue Ac

A+

A�

⇢A
i

A+

A�

Figure 15: The construction of the density matrix ⇢A
i from the state | i

T2
i and h i

T2
| for regions A that avoid

interfering with the Wilson line inside the solid torus.

We first consider the case where the Wilson line is entirely contained in Ac. In this case,
we can glue the functional integral on the solid torii along regions Ac

±. The result can be
represented as the path integral over an S3 with the link (L;Ri) and a three-ball BA scooped
out. The S2 boundary of the 3-ball is the union of the two regions A±. Identifying the two
regions clearly gives back the normalization (6.9). We can represent the density operator more
simply by inverting out the scooped ball, so that we have a three-ball, whose boundary is split
into A±, but now there is a link (L;Ri) inside the ball; see Fig. 15.

Given this description, we can consider again the action ⇢A
i| i

T2
i. It is not hard to see

that
⇢A

i | i

T2
i = ZCS(S

3
, L;Ri)

ZCS(S
3)

| i

T2
i (6.10)

To obtain this, it is useful to multiply through by ZCS(S
3) and use its decomposition into

three-balls. Further performing surgery to transplant the link from the solid torus to one of
the balls, as described in Fig. 16, results in (6.10). From here it is easy to see that

S
(q)
A (⇢A

i) =
1

1� q


log

ZCS(S
3
, L;Ri)q

ZCS(S
3)q�1

� q logZCS(S
3
, L;Ri)

�
= logZCS(S

3) . (6.11)

The final answer is the same as that for the bipartitioning of the state | 
S2 i and in general

only depends on the number of components of the entangling surface. For example, the reader
can check immediately that for a state | i

gi on a Riemann surface with M components for A,
and with a Wilson line in representation Ri contained entirely in Ac, the entropies evaluate to
M logZCS(S

3). We illustrate the construction of the density matrix ⇢A for M = 2 in Fig. 17
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interfering with the Wilson line inside the solid torus.

We first consider the case where the Wilson line is entirely contained in Ac. In this case,
we can glue the functional integral on the solid torii along regions Ac

±. The result can be
represented as the path integral over an S3 with the link (L;Ri) and a three-ball BA scooped
out. The S2 boundary of the 3-ball is the union of the two regions A±. Identifying the two
regions clearly gives back the normalization (6.9). We can represent the density operator more
simply by inverting out the scooped ball, so that we have a three-ball, whose boundary is split
into A±, but now there is a link (L;Ri) inside the ball; see Fig. 15.

Given this description, we can consider again the action ⇢A
i| i

T2
i. It is not hard to see

that
⇢A

i | i

T2
i = ZCS(S

3
, L;Ri)

ZCS(S
3)

| i

T2
i (6.10)

To obtain this, it is useful to multiply through by ZCS(S
3) and use its decomposition into

three-balls. Further performing surgery to transplant the link from the solid torus to one of
the balls, as described in Fig. 16, results in (6.10). From here it is easy to see that

S
(q)
A (⇢A

i) =
1

1� q


log

ZCS(S
3
, L;Ri)q

ZCS(S
3)q�1

� q logZCS(S
3
, L;Ri)

�
= logZCS(S

3) . (6.11)

The final answer is the same as that for the bipartitioning of the state | 
S2 i and in general

only depends on the number of components of the entangling surface. For example, the reader
can check immediately that for a state | i

gi on a Riemann surface with M components for A,
and with a Wilson line in representation Ri contained entirely in Ac, the entropies evaluate to
M logZCS(S

3). We illustrate the construction of the density matrix ⇢A for M = 2 in Fig. 17
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i from the state | i

T2
i and h i
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| for regions A that avoid

interfering with the Wilson line inside the solid torus.

We first consider the case where the Wilson line is entirely contained in Ac. In this case,
we can glue the functional integral on the solid torii along regions Ac

±. The result can be
represented as the path integral over an S3 with the link (L;Ri) and a three-ball BA scooped
out. The S2 boundary of the 3-ball is the union of the two regions A±. Identifying the two
regions clearly gives back the normalization (6.9). We can represent the density operator more
simply by inverting out the scooped ball, so that we have a three-ball, whose boundary is split
into A±, but now there is a link (L;Ri) inside the ball; see Fig. 15.

Given this description, we can consider again the action ⇢A
i| i

T2
i. It is not hard to see

that
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i | i

T2
i = ZCS(S

3
, L;Ri)

ZCS(S
3)

| i

T2
i (6.10)

To obtain this, it is useful to multiply through by ZCS(S
3) and use its decomposition into

three-balls. Further performing surgery to transplant the link from the solid torus to one of
the balls, as described in Fig. 16, results in (6.10). From here it is easy to see that

S
(q)
A (⇢A

i) =
1
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3
, L;Ri)q

ZCS(S
3)q�1
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= logZCS(S

3) . (6.11)

The final answer is the same as that for the bipartitioning of the state | 
S2 i and in general

only depends on the number of components of the entangling surface. For example, the reader
can check immediately that for a state | i

gi on a Riemann surface with M components for A,
and with a Wilson line in representation Ri contained entirely in Ac, the entropies evaluate to
M logZCS(S

3). We illustrate the construction of the density matrix ⇢A for M = 2 in Fig. 17
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Ac

A

| i

T2
i

Ri
glue A and A+

A+

A�

⇢A
i

Ac

A�
Ri

Ri

A�

Ri

A�

Ri

Figure 16: The action of the reduced density matrix on | i

T2
i is obtained by gluing the region A+ from ⇢A

i into
A on the T2. The resulting action can be simplified to obtain the representation given in (6.10) by surgery as
indicated on the second row.

for a genus-3 surface.

RiRi

A2
+A2

�

A1
+

A1
�

Ac
+

Ac
�

A2
+A2

�A1
+A1

�
1

ZCS (S
3)

M+
⌃3

M�
⌃3

Figure 17: The state | i
3i on a genus three Riemann surface ⌃3 can be constructed by performing the path integral

over the handle body M
�
⌃3

, a 3-manifold obtained by filling all the three independent a-cycles of ⌃3, with a Wilson
loop along one of its non-contractible b-cycle in representation Ri. The dual state h i

3| can be constructed by
performing the path integral over another handle body M

+
⌃3

obtained by filling the b-cycles of ⌃3, with a Wilson
loop along its non-contractible a-cycle in representation Ri. The path integral representation of ⇢A of | ii for the
bipartition of ⌃3 into two regions A = A

1
[A

2 and A
c can be obtained by gluing the path integrals over M+

⌃3
and

M
�
⌃3

by identifying the regions A
c
� and A

c
+ on their boundaries. The resultant path integral can be understood as

a path integral over two 3-balls, one without any Wilson lines and the other with a Wilson line placed along a knot
in it, normalized by ZCS(S

3). The boundary of one of them is given by the union of the complementary regions A1
�

and A
1
+, and the boundary of the other is given by the union of the complementary regions A

2
� and A

2
+.

Let us now consider uplifting this computation to the closed topological string on the
resolved conifold. As before, we will start by first identifying the analogous construction
in the open+closed string on the deformed conifold, and then proceed to take the resulting
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 Spacelike Wilson lines which are not 
bothered by the bipartitioning are 
straightforward. The dual Lagrangians are 
localized in the one piece of the Cauchy 
surface and play a spectator role.
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ij

B

Figure 18: The state | ij

S2
i is obtained by slicing open ZCS(S

3, Ri, Rj) to expose a three-ball B� with the two
Wilson lines piercing through the S2. The conjugate state is prepared on the other ball B+. Bipartitioning the S2

so that the Wilson line Ri pierces through A while Rj pierces through A
c results in a density matrix ⇢A

ij which
can be seen to be representable via a functional integral on a single three-ball B whose boundary is A� [A+ each
of which has the two marked points with representation label Ri. The interior of the ball contains a Wilson line on
an unknot with the other representation Rj .

boundary A�[A+ with the associated Ri marked points, and a Wilson loop in representation
Rj sitting in its interior. This is our desired representation for ⇢A

ij .

· · · · · · · · · · · ·A� A+

q-pairs
q copies

RjRi

A� A+

Ri

⇢A
ij

B

RjRi

A� A+

Ri

⇢A
ij

B

RjRi

A� A+

Ri

⇢A
ij

B

Ri

Rj

Ri

Rj

ZCS

�
S3

, (Ri, Rj , )
q
�

Figure 19: The replica computation for the density matrix ⇢A
ij constructed in Fig. 18 glues q balls B whose boundary

is the union of A± for the chosen bipartition. As a result one ends up with a functional integral which computes
ZCS(S

3, (Ri, Rj)
q) ⌘ ZCS(S

3, Ri, Rj , · · · , Ri, Rj), the S3 partition function with q-pairs of Wilson lines along
unknots in representations Ri and Rj , respectively.

With this picture for the density matrix, the replica computation is straightforward and
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ij which
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With this picture for the density matrix, the replica computation is straightforward and
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is explained in Fig. 19. We find:

S
(q)
A (⇢A

ij) =
1

1� q
log


ZCS(S

3
, (Ri, Rj)q)

(ZCS(S
3, Ri, Rj))

q

�
= logZCS(S

3) , (6.12)

where the numerator in the argument of the first log is to be understood as the parti-
tion function with q pairs of unlinked Wilson lines carrying representations Ri and Rj .
To derive the second equality we are making use of three-manifold surgery to show that
ZCS(S

3
, (Ri, Rj)q) = ZCS(S

3
, Ri, Rj)q ZCS(S

3)q�1. The argument is as follows: we supply
q� 1 copies of the three-sphere partition function, each decomposed into a pair of three-balls.
We scoop out three-balls containing the pair (Ri, Rj) from the decomposition of the partition
function ZCS(S

3
, (Ri, Rj)q) and replace the resulting hole with one the three-balls we have

supplied. It is clear that we can then extract (q� 1) pairs of (Ri, Rj), leaving behind one-pair
in the original S3. Piecing all of this together, we see that we get the answer given in (6.12).

The uplift of this construction to the deformed conifold is straightforward. We start with
the representation of ZCS(S

3
, Ri, Rj) in terms of having two sets of probe branes on Lagrangian

cycles. Passing through the geometric transition, we land up with the resolved conifold R also
with these Lagrangian cycles, which we can label as LRi and LRj . To build the state |�ij

R
i

dual to | ij

S2
i on the Chern-Simons side, we again employ the Heegard decomposition of the

S3 2 R and open it up into three-balls B±. The new feature now is that the Lagrangian cycles
are sliced through by the decomposition.

The Lagrangians LRi and LRj in the resolved conifold, as mentioned above, have topology
S1 ⇥ R2, where the S1 is to be identified with the unknot. Since we are cutting through the
unknot, the result will be to split the LR = L±

R each with topology I ⇥ R2. I here is an
interval which is obtained from the open Wilson line. Note that the marked points have been
uplifted to marked planes, the ends of the interval, extending along the non-compact direction
of the Lagrangian cycles. Despite the fact that our construction cuts open the Wilson lines,
it is worth keeping in mind that they do not pass through the entangling brane. So while the
global state preparation on the Cauchy surfaces �± involves a more complicated construction,
opening up the probe D-branes, not much is happening at the level of the degrees of freedom
being bipartitioned by the entangling brane. This already suggests the answer we find in
(6.12), and we can recover this in a similar manner from the closed string replica.

To be explicit, we start with the data (R,LRi ,LRj ) which we decompose into the cor-
responding bra and ket pieces (R±,L

±
Ri
,L±

Rj
) and then proceed to bipartition R± across

E. We have attempted to illustrate this construction in Fig. 20. We then construct the
branched cover geometry for ⇢

A
as

⇣
Rq,L

±
Ri
, (LRi ,LRj )

q�1
,LRj

⌘
, where we have already

acknowledged the fact that we glue back the whole cycle with the Rj representation in
each realization of ⇢

A
, and obtain (q � 1) copies of the whole cycle in the Ri representa-

tion from the inner product. The closed string partition function on this geometry gives us
Zc

�
R, (LRi ,LRj )

q
�
= Zc(R,LRi ,LRj )

q Zc(R)q�1. We prove this relation in a manner analo-
gous to the one employed above for Chern-Simons. We can compute the normalization factor

– 41 –

 Timelike Wilson lines may be sliced by the bipartioning leaving behind 
marked points carrying representation data. 
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Figure 20: The surgical split of the resolved conifold R = R� [ R+ when the configuration of interest contains
Wilson lines. The Wilson lines uplift to Lagrangian cycles (indicated by the red surfaces) LRi and LRj if we consider
the closed string dual of the density matrix prepared in Fig. 18. These cycles form an unknot in the S3, are stretched
out along the radial direction of the cone, and wrap the equatorial S1

⇢ S2(1). When we decompose the S3 into
B±, these Lagrangian cycles are decomposed into LR =

�
I± ⇥ R2

�
R

and split endpoints lie on �± as we have tried
to illustrate.

for the density matrix ⇢
A

straightforwardly, and conclude that SA = logZc(R), as expected.

2. Slicing Wilson lines in the interior: We now turn to the case of the Wilson line
keeping away from the regions A and Ac, but the separation of a domain around A necessarily
slicing through the Wilson line. As an example we will consider the state | i

T2
i introduced in

§6.2.1. We take A to be a single-connected region having a two-component entangling surface
with Ac as illustrated in Fig. 21. Given our construction of the state | i

T2
i on a solid torus

M�
T2

with a contractible a-cycle, it follows that the entangling surface is a pair of circles
along the a-cycle of the ket T2

�. The disks which fill in the entangling surfaces are pierced
through by the Wilson line. In the dual state, h i

T2
|, the entangling surfaces are also two

circles which still lie along the a-cycle. We should however bear in mind that the a-cycle is
non-contractible in the dual M+

T2
. It is useful to visualize the cross-section of the cut along

the entangling surfaces as a filled annulus, with boundaries @A. The Wilson line runs along
the non-contractible cycle of this annulus.

Gluing the regions Ac
± from these two torii can be seen to lead to a configuration which

can be mapped to the path integral over a solid torus with a Wilson line placed along a link
L in it. The presence of the link can independently be inferred from the fact that we obtained
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 In the closed string description 
we would now have the Cauchy 
surface slice through the dual 
Lagrangian cycles. 

 However, the entangling brane 
does not interfere with the 
Lagrangian cycles; the marked 
points/planes are either in the 
region or in its complement.
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the state by opening up ZCS(S
3
, L;Ri). The boundary of the resulting solid torus representing

⇢A
iL is a union of the complementary regions A� and A+, see the top part of Fig. 21. Further

identifying A± gives us back a three-sphere with the link inside, so we recover again (6.9).

A� Ac
�

A+

Ac
+

Ri

| i

T2
i

Ri

h i

T2
|

A� A+

L;Ri

⇢A
iL

A� A+

Ri

⇢A
iL

Figure 21: Density matrix and Rényi entropy for the bipartitioning of the state | i

T2
i. The regions A and A

c

split the T2 into two-connected cylinders, and have a two-component entangling surface. We have constructed
the density matrix by gluing the complement region A

c
± from the solid torii M⌥

T2
used to build the state and its

conjugate, and found a convenient representation for it. The density matrix ⇢A
iL can be obtained by performing

the Chern-Simons path integral over a solid torus with a Wilson line placed along a link L in it. The boundary of
the solid torus is given by the union of the complementary regions A� and A+.

The q
th-Rényi entropy is obtained by cyclically gluing q copies of the path integral rep-

resenting the reduced density matrix ⇢A
iL . To obtain the result, it is useful to open up the

solid torus into a pair of solid cylinders, and implement the cyclic gluing. Identification of
the regions A+ from the i

th-copy of ⇢A iL with the (i + 1)st one ends up linking the loops Li

and Li+1, respectively. The final trace converts the solid torus into an S3, but the link is still
present. In fact, each gluing creates an overcross and an undercross for neighboring pairs of
links. We denote the final result as L

(q) = L1 + · · · + Lq. The computation is depicted in
Fig. 22. As a consequence, the q-fold replica can be understood as a path integral over S3

with a Wilson line representation Ri placed along a link L
(q). We therefore have

S
(q)
A (⇢A

iL) =
1

1� q

h
logZCS(S

3
, L

(q);Ri)� q logZCS(S
3
, L;Ri)

i
= 2 logZCS(S

3
, R̄i) . (6.13)

We have simplified the answer above to one involving the partition function of Chern-Simons
on S3 with a Wilson line in the conjugate representation R̄i. This can be explained as follows.
Each pair of neighboring links Li and Li+1 in L

(q) have two crossings between them, We
consider ZCS(S

3
, L

(q);Ri) and supply 2(q � 1) copies of ZCS(S
3
, R̄i). We play the usual game

of decomposing the latter factors into three-balls, and use the balls containing R̄i to replace
the local neighbourhood of the overcross and undercross between Li and Li+1. This results in
cutting out the links, leaving behind the factor coming from the normalization. The remainder
then boils down to the supplied factor which gives the answer quoted. We note that [42] derive
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, L;Ri). The boundary of the resulting solid torus representing

⇢A
iL is a union of the complementary regions A� and A+, see the top part of Fig. 21. Further

identifying A± gives us back a three-sphere with the link inside, so we recover again (6.9).
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Figure 21: Density matrix and Rényi entropy for the bipartitioning of the state | i

T2
i. The regions A and A
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split the T2 into two-connected cylinders, and have a two-component entangling surface. We have constructed
the density matrix by gluing the complement region A

c
± from the solid torii M⌥

T2
used to build the state and its

conjugate, and found a convenient representation for it. The density matrix ⇢A
iL can be obtained by performing

the Chern-Simons path integral over a solid torus with a Wilson line placed along a link L in it. The boundary of
the solid torus is given by the union of the complementary regions A� and A+.

The q
th-Rényi entropy is obtained by cyclically gluing q copies of the path integral rep-

resenting the reduced density matrix ⇢A
iL . To obtain the result, it is useful to open up the

solid torus into a pair of solid cylinders, and implement the cyclic gluing. Identification of
the regions A+ from the i

th-copy of ⇢A iL with the (i + 1)st one ends up linking the loops Li

and Li+1, respectively. The final trace converts the solid torus into an S3, but the link is still
present. In fact, each gluing creates an overcross and an undercross for neighboring pairs of
links. We denote the final result as L

(q) = L1 + · · · + Lq. The computation is depicted in
Fig. 22. As a consequence, the q-fold replica can be understood as a path integral over S3

with a Wilson line representation Ri placed along a link L
(q). We therefore have
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We have simplified the answer above to one involving the partition function of Chern-Simons
on S3 with a Wilson line in the conjugate representation R̄i. This can be explained as follows.
Each pair of neighboring links Li and Li+1 in L

(q) have two crossings between them, We
consider ZCS(S

3
, L

(q);Ri) and supply 2(q � 1) copies of ZCS(S
3
, R̄i). We play the usual game

of decomposing the latter factors into three-balls, and use the balls containing R̄i to replace
the local neighbourhood of the overcross and undercross between Li and Li+1. This results in
cutting out the links, leaving behind the factor coming from the normalization. The remainder
then boils down to the supplied factor which gives the answer quoted. We note that [42] derive
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 Spacelike Wilson lines may be cut by the biparition in the interior. In this 
case we can get non-trivial answers for the entropies as surgery induces 
non-trivial linking of the Wilson lines. 

 The Lagrangian cycles will end up being linked, but since the entangling 
brane doesn’t interfere with them, we anticipate recovering the Chern-
Simons answer from the closed string.



Act IV

Summary



SUMMARY

 Topological entanglement in topological closed string theory can be 
meaningfully defined, by suitably uplifting three-manifold surgery 
techniques. 

 There is a natural notion of an entangling brane which plays the dual role 
of a cosmic brane and a bulk entangling surface.  

 For the examples studied, the entangling branes do not interfere with the 
closed string worldsheets, so one is able to make progress without detailed 
understanding of the closed topological string Hilbert space. 

 Topological entanglement  is the glue that allows surgery without 
reference to detailed geometric features.  This explains the flatness of the 
entanglement spectrum, for it can only depend on the number of pieces 
being glued, with a degrees of freedom count for each gluing (the 
quantum dimension).

cf., Donnelly, Wong ’16, ’18
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OPEN QUESTIONS

  Is the fact that there is no preferred geometric/topological construct that 
computes the entanglement entropy in topological string theory an 
indication that the physical string theory would likewise in the classical limit 
admit no simple RT/HRT type prescription, viz.,  
entanglement maps to entanglement and there is no semiclassical 
part of it that is suitably geometrized when                              ? 

 The flat entanglement spectrum is a consequence of lack of penalty (i.e., 
no backreaction) in the closed string description. Should we therefore 
interpret tensor network approaches as at best capturing topological 
aspects of AdS/CFT with no insight into the dynamical aspects?


