

Universiteit van Amsterdam

Holographic Complexity for Systems with Defects

Shira Chapman - University of Amsterdam

Dongsheng Ge

It from Qubit School and Workshop

YITP, Kyoto

23 June 2019

hep-th/1811.12549

Giuseppe Policastro

Quantum Computational Complexity

Complexity of a quantum state is defined as the minimal number of elementary unitary operations applied to a simple (unentangled) reference state in order to obtain the state of interest.

Complexity in Holography - Two Proposals

Complexity=Volume of a maximal spacelike slice anchored at the boundary time slice at which the state is defined (Stanford & Susskind)

$$C_V = \max \frac{\mathcal{V}}{G_N \ell}$$

Complexity=Gravitational action of the WDW patch – union of all such spacelike slices (Brown, Roberts, Swingle, Susskind & Zhao)

$$C_A = \frac{I_{WDW}}{\pi \hbar}$$

CA = CV?

In many cases the two proposals yield very similar results

Structure of divergences (Carmi, Myers, Rath; Reynolds, Ross) $C_V = \frac{L^{d-1}}{(d-1)G_N} \frac{Vol}{\delta^{d-1}} \qquad C_A = \frac{L^{d-1}}{4\pi^2(d-1)G_N} \frac{Vol}{\delta^{d-1}} \log\left(\frac{\ell_{ct}(d-1)}{L}\right)$ Linear growth at late times

(Stanford, Susskind; Brown, Roberts, Swingle, Susskind, Zhao)

$$\frac{dC_V}{dt}|_{t\to\infty} = \frac{8\pi M}{d-1} \qquad \frac{dC_A}{dt}|_{t\to\infty} = \frac{2M}{\pi}$$

The switchback effect (Stanford, Susskind; Zhao)

Chaotic evolution with Lyapunov exponent $\lambda_L = \frac{2\pi}{\beta}$, followed by delayed linear evolution after $t_{scr}^* = \frac{1}{2\pi T} \ln \frac{T}{\Delta T}$ following the injection of a perturbation.

We want to understand cases where the proposals are not equivalent.

A Conformal Defect in AdS_3

Conformal defect in 1+1 dimensions Preserves one copy of the Virasoro algebra Simple Holographic Model AdS_2 **Brane** in AdS_3 $S = \frac{1}{16 \pi G_N} \int d^3 x \sqrt{-g} \left(R + \frac{2}{L^2} \right) - \lambda \int d^2 x \sqrt{-h}$ Exact Solution Including Backreaction $ds^{2} = L^{2} \left(dy^{2} + \cosh^{2}(|y| - y^{*}) \left(-\cosh^{2} r \, dt^{2} + dr^{2} \right) \right)$ $y^* = 4 \pi G_N L \lambda$ brane tension parameter

A Conformal Defect in AdS₃

Exact Solution Including Backreaction $ds^2 = L^2 \left(dy^2 + \cosh^2(|y| - y^*) \left(-\cosh^2 r \, dt^2 + dr^2 \right) \right)$ $\tanh y^* = 4 \pi G_N L \lambda$ brane tension parameter

Complexity=Volume Fixing the Cutoff in the defect region along a line of constant r - connects smoothly across the defect More volume - larger complexity

$$C_V = \frac{4 c_T}{3} \left(\frac{\pi L_B}{\delta} + 2 \sinh y^* \ln \frac{2L_B}{\delta} - \pi \right)$$

e law

Volume law \swarrow Boundary size $2\pi L_B$

Topological Contribution (Abt, Erdmenger, Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes)

 $S_{EE} = \frac{c_T}{3} \ln \left[\frac{2L_B}{\delta} \sin \left(\frac{\ell}{2L_B} \right) \right] + \log g; \quad \ln g = \frac{c_T y^*}{3}$ (Azeyanagi, Karch, Takayanagi and Thompson) folding trick

Logarithmic Defect Contribution Related

to the Affleck-Ludwig boundary Entropy

Complexity=Action: The WDW Patch

The usual cone is extended by light cones starting at the antipodal points where the brane meets the boundary The two light cones meet at a ridge to form a tent like shape

They are actually portions of the past \neg entangling wedge of a region whose RT surface includes this ridge (therefore the expansion Θ vanishes)

$$\begin{aligned} & Complexity = Action \\ & I = \frac{1}{16\pi G_N} \int_M d^3x \sqrt{-g} (R - 2\Lambda) + \frac{\epsilon_K}{8\pi G_N} \int_{B_{t/S}} d^2x \sqrt{|h|} K \end{aligned}$$
$$\begin{aligned} & + \frac{\epsilon_K}{8\pi G_N} \int_{B_n} d\lambda d\theta \sqrt{\gamma} \kappa - \frac{1}{8\pi G_N} \int_{B_n} d\lambda d\theta \sqrt{\gamma} \Theta \ln(\ell_{ct}|\Theta|) + \frac{\epsilon_a}{8\pi G_N} \int_{\Sigma} dx \sqrt{\gamma} a \end{aligned}$$

$$-\lambda \int_{D \cap WDW} d^2 x \sqrt{-h}$$

Defect Contribution

$$I_d = I_{\lambda} + I_{EH} = -I_{\lambda}$$

Includes the discontinuity of
the Einstein Hilbert term

Null surface contributions

- 1. $k^{\mu} \nabla_{\mu} k_{\nu} = \kappa k_{\nu}$
 - (replaces $K = h^{ab}K_{ab}$ on the null surface)
- 2. Expansion parameter $\Theta = \partial_{\lambda} \ln \sqrt{\gamma}$ (ℓ_{ct} counter-term length scale).
- 3. Joint contribution $a = \ln(k_1 \cdot k_2/2)$
- (L. Lehner, R. C. Myers, E. Poisson and R. D. Sorkin)

 $r_L = r_R$ related to the boundary entropy by folding trick $\theta_R = \cos^{-1} \tanh r_R$ (Azeyanagi, Karch, Takayanagi and Thompson) $\theta_L = -\cos^{-1} \tanh r_L$

Subregion Complexity=Action

$$C_{A} = \frac{c_{T}}{3\pi^{2}} \left(\frac{\ell}{2\delta} \left[\ln\left(\frac{\ell_{ct}}{L}\right) + 1 \right] + \ln\left(\frac{\delta}{L_{B}}\right) \ln\left(\frac{\ell_{ct}}{L}\right) \right) + \text{finite}$$

Defect contribution cancels, additional log divergence

A conformal defect in free QFT

Matching conditions (Bachas, de Boer, Dijkgraaf, Ooguri)

$$\begin{pmatrix} \partial_x \phi_- \\ \partial_t \phi_- \end{pmatrix} = M(\lambda) \begin{pmatrix} \partial_x \phi_+ \\ \partial_t \phi_+ \end{pmatrix}, \qquad M(\lambda) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
$$\begin{pmatrix} \partial_x \phi_- \\ \partial_t \phi_- \end{pmatrix} = M'(\lambda) \begin{pmatrix} \partial_x \phi_+ \\ \partial_t \phi_+ \end{pmatrix}, \qquad M'(\lambda) = \begin{pmatrix} 0 & \lambda^{-1} \\ \lambda & 0 \end{pmatrix}$$

Complexity for Gaussian states in free QFT (Jefferson, Myers; SC, Heller, Marrochio, Pastawski). Use the spectrum assuming that the QFT formula naively generalizes (the boundary size is $2\pi L_B$)

$$C = 4L_B\Lambda \left[\ln \left(\frac{\omega_0}{\Lambda} \right) + 1 \right] - \ln(2L_B\Lambda) - \ln \left(\frac{2\sin(\pi\Delta)}{\Delta} \right) \qquad \begin{array}{l} \omega_0 = \Lambda e^{\sigma} \\ \text{reference state} \\ \text{frequency} \end{array}$$

When the scalar is compact $\lambda = \frac{R_+}{R_-}$ and $\lambda' = \lambda^{-1}$ and we recover the vacuum result.

Log contribution does not depend on the defect parameter – favors CA Zero modes for compact boson?

Future Directions

Higher Dimensions?

Other holographic defects? Janus Solution

Different codimension defects?

Asymmetric defects?

Lots to explore!

Zero modes?

Complexity in CFT?

Thank you!

