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ML→QIP (quantum-applied ML) [’74] 
QIP→ML (quantum-enhanced ML) [‘94] 

QIP↭ML (quantum-generalized learning) [‘00]  
ML-insipred QM/QIP 
Physics inspired ML/AI

Quantum Information 
Processing (QIP)Machine Learning/AI 

(ML/AI)

Quantum Machine Learning 
(QML)
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Machine learning is not one thing. 
AI is not even a few things.

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement  
learning

deep learning

statistical learning

non-parametric  
learning 

parametric learning 

local search

Symbolic AI 

computational learning theory
control theory 

non-convex 
optimization

sequential 
decision 
theory

ML
big data analysis
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Quantum-enhanced ML is even more things 
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Quantum-enhanced ML is even more things 



control and 
optimization of 

qubits

high-energy

QIP 

Q. Phys

phase  
diagrams

order  
parameters

Metrology

NISQ optimization, 
QAOA & VQE

Adaptive error 
correction

Experiment 
synthesis

Circuit  
synthesis

Quantum network 
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QKD parameter 
control

Efficient  
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Ground state 
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(AI)
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And then there’s Quantum-applied ML! 
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What is machine learning



Learning P(labels|data) given 
samples from P(data,labels) 
(also regression) 

-generative models 
-clustering (discriminative) 
-feature extraction 

Machine Learning: the WHAT

or

Learning structure in P(data)  
give samples from P(data) 
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Beyond data: reinforcement learning

T (s|s0, a)

Machine Learning: the WHAT



Also: MIT technology review breakthrough technology of 2017 
[AlphaGo anyone?]
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Using RL in Real Life 

Navigating a city…

https://sites.google.com/view/streetlearn
P. Mirowski et. al, Learning to Navigate in Cities Without a Map, arXiv:1804.00168
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Machine Learning: the HOW

output hypothesis h on Data x Labels 
approximating P(labels|data) 
 

model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer
In practice



Support vector machines

separating hyperplane..
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Support vector machines

separating hyperplane..

…in higher-dimensional 
feature space

Still (algebraic) optimization over hyperplane and  
feature function parameters….
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Machine Learning: the HOW

Learning structure in P(data)  
give samples from P(data) 
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output: 
hypothesis h on Data x Labels 
approximating P(labels|data) 
 

output: 
hypothesis h on Data  

“approximating” P(data) 
 Reinforcement learning

output: 
policy π on Actions x States

Machine Learning: the HOW



Reinforcement learning 
(learning behavior, policy, or optimal control)

Supervised learning 
(learning how to label datapoints,  

learning how to approximate a function, 
how to classify)

Unsupervised learning 
(learning a distribution,  

generate. properties from samples, 
feature extraction & dim. reduction)



That is all ML we need for now

What about quantum computers?
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-manipulate  registers of 
2-level systems (qubits)

-full description: 

n qubits  → 2n dimensional 
vector 

-likely can efficiently compute more things  
than classical computers (factoring) 
e.g. factor numbers, or generate complex distributions 

-even if QC is “shallow”

Banana  
for scale

cca 50 qubit 
all-purpose  
noisy

…and physics …and computer science

…and reality

Quantum computers…

-manipulation: acting locally (gates) 

special-purpose 
quantum annealers
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Quantum computers…

…and physics …and computer science

…and reality

-can compute things likely beyond BPP (factoring) 

-can produce distributions which are hard-to-simulate 
for classical computers (unless PH collapses) 

-even if QC is “shallow”

Banana  
for scale

special-purpose 
quantum annealers

cca 50 qubit 
all-purpose  
noisy

-manipulate  registers of 
2-level systems (qubits)

-full description: 

n qubits  → 2n dimensional 
vector 

22



a)  The optimization bottleneck 
b) Big data & comp. complexity 
c)   Machine learning Models 

8

Quantum-enhanced supervised learning: 
the quantum pipeline 
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a)  The optimization bottleneck — quantum annealers 
b) Big data & comp. complexity — universal QC and Q. databases
c)   Machine learning Models — restricted (shallow) architectures 
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Quantum-enhanced supervised learning: 
the quantum pipeline 



a)  The optimization bottleneck — quantum annealers 
b) Big data & comp. complexity — universal QC and Q. databases
c)   Machine learning Models — restricted (shallow) architectures 
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Quantum-enhanced supervised learning: 
the quantum pipeline 
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The optimization bottleneck

• Finding ground states of Hamiltonians via adiabatic evolution 

• Very generic optimization problem:

H(s) = sHinitial + (1� s)Htarget; s(time)

argmin| ih |H| i
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QeML is even more things 
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optimization

sequential 
decision 
theory

ML
big data analysis

Quantum  
linear algebra

Shallow quantum  
circuits

Quantum  
walks & search

Adiabatic QC/ 
Quantum optimization



a)  The optimization bottleneck — quantum annealers 
b) Big data & comp. complexity — universal QC and Q. databases
c)   Machine learning Models — restricted (shallow) architectures 
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Quantum-enhanced supervised learning: 
the quantum pipeline 



Exponential data?

+

Much of data analysis 
is linear-algebra: 

regression = Moore-Penrose 
PCA = SVD…

Precursors of Quantum Big Data 
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Enter quantum linear algebra

| i /
PN

i=1 xi|ii

R

N 3 x = (xi)i
#

f(A)| i = ↵0| i+ ↵1A| i+ ↵0A
2| i · · · ⇡ A�1| i

U |0i| i =

A B
C D

� 
 
0

�
=


A 
C 

�
= |0iA| i+ |0iC| i

f(A)| i = ↵0| i+ ↵1A| i+ ↵0A
2| i · · · ⇡ A�1| i

amplitude encoding

block encoding

functions of operators

Phys. Rev. Lett. 15,. 103, 250502 (2009) 
arXiv:1806.01838

inner products
P (0) = |h0| i|2

exp(n) amplitudes 

in n qubits
interpret QM as linear algebra verbatim

state vector ↔ (data) vector 

density matrices 
Hamiltonians     

unitaries
↔ linear maps 

projective  
measurements 

(swap tests)
↔ inner products 

prepare states expressible as linear-algebraic  
manipulations of data-vectors in polylog(N) 

(when other quantities are well behaved)



Prediction: 44 zettabytes by 2020. 

If all data is floats, this is 5.5x1021 float values 

If this worked literally…this would make us INFORMATION GODS.



Prediction: 44 zettabytes by 2020. 

If all data is floats, this is 5.5x1021 float values 

… can be stored in state of 73 qubits (ions, photons….)

If this worked literally…this would make us INFORMATION GODS.



Clearly there is a catch.  
Many of them.



Timeline

2003
2008

2009
2012

2014
2013

2016
2018

Pattern  
recognition  
on a QC

QRAM
HHL

Regression, 
PCA, SVM

Optimal 
QLS 

Quantum  
Recommender 
Systems

QLA, smoothed analysis, 
De-quantization of  
low-rank systems

2019?

{

Quantum  
database

Linear 
system 
solving

Machine learning 
applications & 
Improvements

First efficient 
end-to-end  
scenario

We made it so efficient… 
that sometimes 

we don’t need QCs!!

Data-robustness 
implies  

q. efficiency



Summary of quantum (inspired) “big data”
15

interpret QM as linear algebra verbatim

manipulate exponentially-sized data-vectors in system (qubit) number

HOWEVER

need full blown ideal QC 
need pre-filled database (QRAM) 
need appropriate condition numbers 
need robustness to linear error 
need right preprocessing applied 
can sometimes be done classically



Summary of quantum (inspired) “big data”
15

interpret QM as linear algebra verbatim

manipulate exponentially-sized data-vectors in system (qubit) number

HOWEVER

need full blown ideal QC 
need pre-filled database (QRAM) 
need appropriate condition numbers 
need robustness to linear error 
need right preprocessing applied 
can sometimes be done classically…

STIL
L 
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QeML is even more things 
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a)  The optimization bottleneck — quantum annealers 

b) Big data & comp. complexity — universal QC and Q. databases
c)   Machine learning Models — restricted (shallow) architectures 
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Quantum-enhanced supervised learning: 
the quantum pipeline 



(Quantum) Machine learning Models 

Improving ML == speeding up algorithms… or is it?

model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer

“Machine learning”
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Machine learning Models 

A lot of machine learning: 

-Take my (training) dataset {(point, label)} 

-Take a model (tensorflow tutorials will suggest),  
e.g. this-that-structure neural network N 

-Train the model (tweak parameters of N,  
until it predicts the training set well)  

The math behind

“cost function” 

parametrized family {f✓}

What is this picture missing?
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Optimization is a part of the method, not the objective

Image: 10.1016/j.compstruct.2018.03.007

best fit v.s. “generalization performance” or classifying  well beyond the training set

Data:

Models:

Not all models (+training algo) are born equal (for real datasets)… 

Challenge:
squeek 

or  
meow?



Machine learning Models 

model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer

“Machine learning”

family of functions.  
if it’s “good”, we can generalize well
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model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer

How about “shallow quantum circuits”? 
-instead neural network, train a QC! 
-related to ideas from q. condensed-matter physics (VQE) 

=

=

=

=

=

Quantum Machine learning Models

“quantum kernel methods” 

Phys. Rev. Lett. 122, 040504 2019 
Nature 567, 209–212 (2019) 
(c.f. Elizabeth Behrman in ‘90s)43



The quantum feature space

• relationship between NNs, SVMs and shallow circuits for supervised learning 
(embedding - rotation - measurement = feature function - hyperplane - class)

Simple classical kernels A weird quantum kernel
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Quantum Machine learning Models
“quantum kernel methods” 

The good 
- near term architectures 
- seems to be robust  

(noise not inherently critical!) 
- possibly very expressive 

The neutral 
- many parameters 
- model advantages less clear 
(contrast to variational methods!) 

The bad 
-     barren plateaus (also in DNN)

(x1 _ x4 _ x10)| {z } (x1 _ x4 _ x10)| {z }

=

=

=

=

=

|�(✓in, ✓class)i

✓class✓in(x)

{(x, label)i}

estimate  
error 

on sample 
(dataset)

Optimizer

(fi
du

cia
l)

Phys. Rev. Lett. 122, 040504 2019 
Nature 567, 209–212 (2019)

CAVEAT: IS IT CLASSICALLY COMPUTATIONALLY HARD?!
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A hope… killer app for noisy QCs?

ML can be run on small QCs 

BUT MORE THAN THAT 

ML good for dealing with noise (in *data*)…  
Can QML deal with its own noise (in *process*)? 

18
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QeML is even more things 
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Application, match, … conspiracy?

• Nice analogy Hilbert spaces - big data spaces 
• Hard optimization (needed) - hard optimization (delivered) 
• New learning models (needed) - shallow QC (delivered)
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Application, match, … conspiracy?

• Nice analogy Hilbert spaces - big data spaces 
Problem: preparations can offset speed-up;  
ML: not here! processing must be robust -> low cost 

• Hard optimization (needed) - hard optimization (delivered) 
Problem: optimization just heuristic, quality unknown 
ML: well all we do is domain-specific! If it works, it works! 

• New learning models (needed) - shallow QC (delivered) 
Problem: noisy models, bad estimates (in VQE) 
ML: not estimating! Train model, could be even better than exact 
(elements of regularization)
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Application, match, … conspiracy?
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Application, match, … conspiracy?

Quantum-enhanced reinforcement learning Towards quantum AI

Quantum-enhanced unsupervised learning
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Application, match, … conspiracy?

still
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Application, match, … conspiracy?
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Machine learning  
in the physics domain
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Phys

Cosmology

Experimental 
high-energy

Theoretical 
high-energy
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Reinforcement learning 
(learning behavior, policy, or optimal control)

Supervised learning 
(learning how to label datapoints,  

learning how to approximate a function, 
how to classify)

Unsupervised learning 
(learning a distribution,  

generate. properties from samples, 
feature extraction & dim. reduction)
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Big picture

hard computations 
new theory & experiments

AI/ML assisted computation 
machine-assisted research

200-petabyte 
(2017!)

Figure from: https://hackernoon.com/how-big- 
data-is-empowering-ai-and-machine-learning-4e93a1004c8f

https://hackernoon.com/how-big-
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Particle physics (and cosmology) 

Many-body quantum matter 

Chemistry and materials 

Facilitating quantum computers

“Machine learning and the physical sciences” 
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf

https://arxiv.org/pdf/1903.10563.pdf
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Particle physics and cosmology 

-“big data” aspects: event selection, jet tagging, triggering;  
(photometric red shift, gravitational lens finding) 

-simulation and inverse problems 

-applications in theory 

“Machine learning and the physical sciences” 
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf

https://arxiv.org/pdf/1903.10563.pdf
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Example: Estimating Cosmological Parameters from the Dark Matter Distribution 

(cosm. parameters) �! distr. of matter

⇤CDM

What are the cosmological parameters from observed universe?

arXiv:1711.02033v1
“Inverse simulation?”
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arXiv:1711.02033v1

Machine learning solution: 

Train NN to output correct parameters  
given the universe; 
Training set:   (universe, parameters) 
Learning goal: (parameters | universe) 

Example: Estimating Cosmological Parameters from the Dark Matter Distribution 
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Many-body quantum matter

“Machine learning and the physical sciences” 
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf

-neural quantum states (approximate the wavefunction)

-expressivity, learning from data, variational approaches

-assisted many-body simulations

-learned hard sampling

-classification of many-body phases of matter

https://arxiv.org/pdf/1903.10563.pdf
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Machine learning  
in quantum information processing
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Enabling quantum information processing devices 



66

Application, match, … conspiracy?
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