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Quantum Machine Learning
(QML)

Machine Learning/Al
(ML/AI)

¢ ML—QIP (quantum-applied ML) ['74]
¢ QIP—ML (quantum-enhanced ML) [‘94]

¢ QIP«ML (quantum-generalized learning) [‘00]
¢ ML-insipred QM/QIP
¢ Physics inspired ML/AI



Machine learning is not one thing.
Al is not even a few things.

big data analysis unsupervised learning

M L supervised learning

_ generative models
deep learning

non-parametric online learning
learning

computational learning theory

parametric learning

statistical learning Non-convex

optimization

reinforcement
learning

control theory

local search

Symbolic Al

sequential
decision
theory



Quantum-enhanced ML is even more things

big data analysis

M . Quantum Ipervised learning
linear algebra

ricod :
Supe ~anerative models

Shallow quantum

i i online learnino sequential
non-paramci.c circuits T ‘ decision
learning Quantum oracleneory
parame' i §2fitam \diabatic QC/ identification
cc ) ) )
COILT tl}m optimization Quantum

walks & search

Symnoiic Ai



Quantum-enhanced ML is even more things

M ' Quantum arning
linear algebra

i} ive models
Shallow quantum .0 eaming sequentia
hon-paramc circuits reinforcement decision
learning laarning theory
parametric learning Adiabatic QC/ control theory
computationa;tlgt Quantum optimization
B

s;earch

Symbolic Al



And then there's Quantum-applied ML!

QKD parameter .
control Hybrid computation dig -
Al
Quantum network (Al)
QI P optimization
NISQ optimization order
Efficient , t
decoders QAOA & VQE parameters
Adaptive error R
correction Circuit. B Ansatz
synthesis optimization of
Experiment Metrology qubits
synthesis
high-energy






What is machine learning



Machine Learning: the WHAT

Supervised learning

.

Unsupervised learning

CR R
- .

.

Learning P(labels|data) given

samples from P(data,labels)
(also regression)

-generative models
-clustering (discriminative)
-feature extraction

Learning structure in P(data)
give samples from P(data)



Machine Learning: the WHAT

Beyond data: reinforcement learning
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Also: MIT technology review breakthrough technology of 2017
[AlphaGo anyone?]
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Using RL in Real Life

Navigating a city...
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Stop-motion films of agent trained In Paris. The images are superposed with a map of

the city, showing the goal location (in red) and the agent location and field of view (in

green). Note that the agent does not see the map, only the lal/lon coordinates of the

goal location

https://sites.google.com/view/streetlearn
P. Mirowski et. al, Learning to Navigate in Cities Without a Map, arXiv:1804.00168
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Machine Learning: the HOW

Supervised learning

-t‘: % parametrized family {hg}g

.00.0: "
ovde °

o o . argming Err_training set(0) + Reg(6)

output hypothesis / on Data x Labels
approximating P(labels|data)

(" :
In practice

model < Optimizer
parameters 0

<

% *1:§ <§ :i{ﬁg> f:ifig “error
—{( R O Og 0(7611, 5?61";]6956
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Support vector machines

separating hyperplane..

15



Support vector machines

. O X O
\ O O
separating hyperplane.. Y =
=
3
= gt
...In higher-dimensional o o
feature space b
| .
Input space Feature space
Q(x)

Still (algebraic) optimization over hyperplane and
feature function parameters....
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Machine Learning: the HOW

parametrized family {hg}g

argmin, Err_training set(6) + Reg(0)

H(o) = — Z Jijoio; — Z hjo;
i j

N

mxn mxim mxn

nxn

Unsupervised learning

auny
"Ny s

A\ J

Learning structure in P(data)
give samples from P(data)
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Machine Learning: the HOW

Supervised learning

®
‘.'.

argmin, Err_training_set(6) + Reg(#)

RS i

® c®
®

0 ®
e %%

......

output:

Unsupervised learning

whne
o Yo

hypothesis 4 on Data X Labels
approximating P(labels|data)

hypothesis / on Data
‘approximating” P(data)

Reinforcement learning

Agent Environment
= G
A AN | - \ AN
= \“ Y (S|a" '3}6«. -'\\\"//“
w(als) <
output:

policy 1t on Actions X States
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Unsupervised learning
(learning a distribution,

generate. properties from samples,
feature extraction & dim. reduction)

Supervised learning
(learning how to label datapoints,
learning how to approximate a function,

how to classify)

Reinforcement learning
(learning behavior, policy, or optimal control)




That is all ML we need for now

What about quantum computers?

20



Quantum computers...

...and physics ...and computer science
> -likely can efficiently compute more things
-manipulate registers of — “'"K’ than classical computers (factoring)
2-level systems (qubits) / \ > e.g. factor numbers, or generate complex distributions
-full description: g6% gg® gp® -even if QC is “shallow

I
|
|
1
|

n qubits — 2" dimensional
vector

|
1
[
]
[

|
1
[
1
1

|
|
1
1

-manipulation: acting locally (gates)

...and reality

special-purpose \ cca 50 qubit
quantum annealers - Banana aII-.purpose
« 4 forscale  MoIsY
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Quantum computers...

...and physics ...and computer science
\ , — -can compute things likely beyond BPP (factoring)
ﬂgggfﬁtee;esgatfﬁg ‘—:/"'\""K:/ -can proQuce distributions which are hard-to-simulate
- for classical computers (unless PH collapses)
-full description: g8¥% goP g9 -even if QC is “shallow”

n qubits — 2" dimensional
vector

...and reality

cca 50 qubit
special-purpose aII-purp((])se
quantum annealers Banana  noisy <

~ & for scale
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Quantum-enhanced supervised learning:
the quantum pipeline

a) The optimization bottleneck
b) Big data & comp. complexity

c) Machine learning Models

23



Quantum-enhanced supervised learning:
the quantum pipeline

a) The optimization bottleneck — quantum annealers
b) Big data & comp. complexity — wuniversal QC and Q. databases
¢) Machine learning Models — restricted (shallow) architectures
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Quantum-enhanced supervised learning:
the quantum pipeline

a) The optimization bottleneck — quantum annealers
b) Big data & comp. complexity — wuniversal QC and Q. databases
¢) Machine learning Models — restricted (shallow) architectures
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The optimization bottleneck

H(S) — SHfinitial + (1 — S)Htarget; S(time)
* Finding ground states of Hamiltonians via adiabatic evolution

+ Very generic optimization problem: argmin, (1| H |1))

Machine Learning: the HOW

“ Supervised loarning _
[ N e T

parametrized family {hg}o

.°;.'.;" o .-".'. argming Err_training set(8) + Reg(0) o & s\ @ , ®
i i \ CTER
output hypothesis k on Dara x Labels

approximating Plabels|data) ) O(.AM ) > . I.’,m Data
- apyroximating " Pldata)

In practice
model
parameters 0

~ 7~ 7~ e I
A AN N
N P >

«————— Optimizer

3
Lx s . - .
C \: OIS F-"“ estimate
— -4 4 -4, e " .
O 0et Yok Yot - error
@ 54O on sample
> « @ { ) P
— YA FANL FANL K e (dataset)
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QeML is even more things

big data analysis

M ' Quantum Ipervised learning
linear algebra

pvic :
Supe ~anerative models

Shallow quantum

online learning sequential
non-paramc circuits reinforcement ETEIl
learning learning theory
parametric learning Adiabatic Q control theory

1 Quantum
aarclwalks & search

computational learning Quantum optimiz
statistica 1€aining :

Symnoiic Ai



Quantum-enhanced supervised learning:
the quantum pipeline

a) The optimization bottleneck — quantum annealers
b) Big data & comp. complexity — wuniversal QC and Q. databases
¢) Machine learning Models — restricted (shallow) architectures
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Precursors of Quantum Big Data

Gponential data? w

¥ insideBIGDATA

Much of data analysis
IS linear-algebra:

regression = Moore-Penrose
PCA=3VD...

Qe are many sources that predict exponential data growth toward 2020 y
beyond.

29




Enter quantum linear algebra

Gmterpret QM as linear algebra verbatinﬁ

state vector < (data) vector

density matrices
Hamiltonians < linear maps
unitaries

projective
measurements < inner products

k (swap tests) J

Grepare states expressible as linear-algebraic \
manipulations of data-vectors in polylog(N)

Gmplitude encoding
RY > x = (2;);
!

block encoding

v = (o | o] -

functions of operators

~ AT Y)
inner products

When other quantities are well behaved) J

LP(O)w = [{0[¥)[*

ob] = oaw + merw)

F(A ) = aglh) + a1 Aj) + agA%|P) - - -

)

Phys. Rev. Lett. 15,. 103, 250502 (2009)
arXiv:1806.01838



If this worked literally...this would make us INFORMATION GODS.

Prediction: 44 zettabytes by 2020.

If all data is floats, this is 5.5x10°" float values



If this worked literally...this would make us INFORMATION GODS.

Prediction: 44 zettabytes by 2020.

If all data is floats, this is 5.5x10°" float values

... can be stored in state of 73 qubits (ions, photons....)



Clearly there Is a catch.
Many of them.



Timeline

First efficient

We made it so efficient...

that sometimes
we don’t need QCs!!

. : end-to-end
Linear Machine learning scenario Data-robustness
applications & implies
syst§m Improvements q. efficiency
Quantum | |solving |
database l
v QLA, smoothed analysis,
De-quantization of
Quantum
v R low-rank systems
Optimal ecommender _
Regression, aLs Systems
HHL PCA, S_VM -
Pattern -
recognition QRAM
onaQC =
] = —
90% B, L, o, o, 0, 0,
ds LV Yy G P 5




Summary of quantum (inspired) “big data”

interpret QM as linear algebra verbatim

manipulate exponentially-sized data-vectors in system (qubit) number

HOWEVER

need full blown ideal QC

need pre-filled database (QRAM)
need appropriate condition numbers
need robustness to linear error
need right preprocessing applied
can sometimes be done classically
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Summary of quantum (inspired) “big data”

interpret QM as linear algebra verbatim

manipulate exponentially-sized data-vectors in system (qubit) number

HOWEVER

need full blown ideal QC

need pre-filled database (QRAM)
need appropriate condition numbers
need robustness to linear error

need right preprocessing applied
can sometimes be done classically...

15



QeML is even more things

big data analysis

M ' Quantu

linear algeb

ised learning

pvic :
Supe ~anerative models

Shallow quantum

online learning sequential
non-paramc circuits reinforcement ETEIl
learning learning theory
parametric learning Adiabatic Q control theory

computational learning Quantum optimiz

—r n .
statistica 1eaining Quantum

-aarc| walks & search
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Quantum-enhanced supervised learning:
the quantum pipeline

a) The optimization bottleneck = — quantum annealers

b) Big data & comp. complexity — universal QC and Q. databases
¢) Machine learning Models — restricted (shallow) architectures
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(Quantum) Machine learning Models

f“l\/lachine learning” w
model .
parameters 0 ) Optimizer
' i
"""" estimate
_.O 8880_‘ - error
:8 SO0 ;,;g O(IZZ Stampée
RO atase
—OR O

_ J

Improving ML == speeding up algorithms... or is it?

39



Machine learning Models

ﬁ lot of machine learning:

-Take my (training) dataset {(point, label)}

e.q. this-that-structure neural network N

-Train the model (tweak parameters of ‘N,
until it predicts the training set well)

~

-Take a model (tensorflow tutorials will suggest),

J

G he math behind

“cost function”

parametrized family {fo}

argmin, Err_training set(6)

_

~

What is this picture missing?

40




Optimization is a part of the method, not the objective

best fit v.s. “generalization performance” or classifying well beyond the training set

Challenge:

Models:

-
..
palw s b) o n l’.
> ... LA
va Ol r .' .
R e NS
“aete%e 3 o ) S
- ,.:‘-,c)o.: // o/ ¥ ... o\
A . ~ .
3 ._..‘gf.-.,. \\\ _ :
b, i X \
pae Feature space
Q(x)
O &
® ::_:_3'. OR%-
\_v. ) 3 T
T e
‘:n:',';\' Qs 'v.‘.
o ?.'._»‘
& }.‘r:<:') X C :’.:‘o
. 3 'y
';:"“.:\ 5 (©) :':"v.'..
OLE ":f 2;‘1
’.‘ Q
OfE - =R Ty
SN
® e o
U

Not all models (+training algo) are born equal (for real datasets)...

Image: 10.1016/j.compstruct.2018.03.007
41



Machine learning Models

-

~

"Machine learning”

model o
parameters 0 ) Optimizer
* |
estimate
—O 8 80_' -> error
RO atasot

-0 ol

O O

Y

family of functions.
if it's “good’, we can generalize well
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Quantum Machine learning Models

f “‘guantum kernel methods” \

model
parameters 0 <
v Optimizer
_ —
rual (0,) % ) 4 1 /—/f\:
A U(6-)
.‘ U(a,) i 5 J /7(: T
— | U(8s) .
il vy [ estimate
(V) |- S error
—— | v = OIZZ sample
U8 i —
L ' ataset
& ; U (e )

How about “shallow quantum circuits”?

-instead neural network, train a QC!
-related to ideas from q. condensed-matter physics (VQE)

43

Phys. Rev. Lett. 122, 040504 2019
Nature 567, 209-212 (2019)
(c.f. Elizabeth Behrman in ‘90s)



The quantum feature space

* relationship between NNs, SVMs and shallow circuits for supervised learning
(embedding - rotation - measurement = feature function - hyperplane - class)

Simple classical kernels Awe|rd quantum kernel

44



Quantum Machine learning Models
“‘guantum kernel methods”

f The good \
- near term architectures { (mv label )‘L }
- seems to be robust ¢
(noise not inherently critical!)
possibly very expressive Hin (:E) gc lass < Optimizer
The neutral * *
- many parameters (e N Nk T
model advantages less clear = | U(6;) | estimate
(contrast to variational methods!) S8 | — |vey i) error
S [ Toe B T opsample
The bad = HveoH— gyl (dataset)
- barren plateaus (also in DNN) wer - | i
_ /|
k ‘Qb(eznv Hclass)> J

CAVEAT: IS IT CLASSICALLY COMPUTATIONALLY HARD?!

Phys. Rev. Lett. 122, 040504 2019

Nature 567, 209-212 (2019)
45



A hope... Kkiller app for noisy QCs?

rchitecture
be robust
ry express

ML can be run on small QCs
BUT MORE THAN THAT

ML good for dealing with noise (in *data®)...
Can QML deal with its own noise (in *process™)?

46
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QeML is even more things

big data analysis

M Quantu | ning

linear algeb

supervis

Ya

Shallow quagtu

online learning sequential
non-paramc circuits reinforcement ETEIl
learning learning theory
parametric learning Adiabatic Q control theory

computational learning Quantum optimiz

—r n .
statistica 1eaining Quantum

-aarc walks & search

Symnoiic Ai



Application, match, ... conspiracy?

* Nice analogy Hilbert spaces - big data spaces
» Hard optimization (needed) - hard optimization (delivered)
* New learning models (needed) - shallow QC (delivered)
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Application, match, ... conspiracy?

» Nice analogy Hilbert spaces - big data spaces
Problem: preparations can offset speed-up;
ML: not here! processing must be robust -> low cost

» Hard optimization (needed) - hard optimization (delivered)
Problem: optimization just heuristic, quality unknown
ML: well all we do is domain-specific! If it works, it works!

» New learning models (needed) - shallow QC (delivered)
Problem: noisy models, bad estimates (in VQE)
ML.: not estimating! Train model, could be even better than exact
(elements of regularization)

49



Application, match, ... conspiracy?
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Application, match, ... conspiracy?

Unsupervised learning

ann.
- .,

Quantum-enhanced unsupervised learning

Agent Environment
S
5
{
¥ \:—7.‘ a‘(s,a)
Quantum-enhanced reinforcement learning Towards quantum Al
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Application, match, ... conspiracy?
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Application, match, ... conspiracy?

M! Quarfum “veed lcaming
linear algétms;
inear algetrig,
'....
: norstve models " * v,
Shallow quantum — gnfine learning **»., - ential
circuits ‘ ""_~.,..’ Ak
PONPArAMme. e .... :
i Quantunf vragle,
Quantum oy identification
q W Adiabatic /
COLI1 Quantum

aantum optimization
walks & search

Syfmuone Al
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correction Circuit
synthesis

Experiment
synthesis

phase
diagrams
order
parameters
Ground state
control and Ansatz
optimization of
Metrology qubits
high-energy



Machine learning
in the physics domain

o4



QKD parameter
control Hybrid computation

Al
Quantum network i

QI P optimization order

parameters Thagretical

phase
diagrams

: NISQ optimization :
Efficient ) high-ener
e QAOA & VQE gh-energy
Adaptive error Ground state
COI’reCtion CirCUit. contro' and AnsatZ
synthesis optimization of
Experiment Metrology qubits
synthesis Cosmology
Experimental
high-energy
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Unsupervised learning
(learning a distribution,

generate. properties from samples,
feature extraction & dim. reduction)

Supervised learning
(learning how to label datapoints,
learning how to approximate a function,

how to classify)

Reinforcement learning
(learning behavior, policy, or optimal control)
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Big picture

200-petabyte
(20171)

T
Il
|
+
<
&
5
&IB’
&
+
o
’E-n)
(‘I))
~.

g
(i,4),0 J (i,5)

hard computations
new theory & experiments

DATA A =<
SCIENCE "

o
s -

— - :_r:.::—_ o y DArA ’ - —
ARTIFICIAL - BIG
INTOWIGENCE | 2 ¥ ere : D DATA
Agent Environment

Al/ML assisted computation
machine-assisted research

Figure from: https://hackernoon.com/how-big-
data-is-empowering-ai-and-machine-learning-4e93a1004c8f



https://hackernoon.com/how-big-

Particle physics (and cosmology)
Many-body quantum matter
Chemistry and materials

Facilitating quantum computers

59

“Machine learning and the physical sciences”
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf



https://arxiv.org/pdf/1903.10563.pdf

Particle physics and cosmology

-'big data” aspects: event selection, jet tagging, triggering;
(photometric red shift, gravitational lens finding)

-simulation and inverse problems

-applications in theory

“Machine learning and the physical sciences”
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf
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https://arxiv.org/pdf/1903.10563.pdf

Example: Estimating Cosmological Parameters from the Dark Matter Distribution

ACDM

(cosm. parameters) — distr. of matter

\S

P A

. ’: Q\ (l\.\
AL

What are the cosmological parameters from observed universe?

“Inverse simulation?”
arXiv:1711.02033v1



Example: Estimating Cosmological Parameters from the Dark Matter Distribution

Machine learning solution:

< | N/ Heme Train NN to output correct parameters
9 S UESYSd T given the universe;
g 2 ~alld ¢ Training set: (universe, parameters)
Learning goal: (parameters | universe)

(—Z!n 03
cony-net _ .
¢ power-spectrum analysis ' -
o * »
0 %"
- 7K ;‘h..
s x -~
- - e -
2 e .
t 4 . vy
~ Tl e The o "
o, oo
® b ’ . o’ "‘,
+O N
e ..‘!, /
' ‘.
M 5
o )

ground truth ground truth

arXiv:1711.02033v1



Many-body quantum matter

-neural quantum states (approximate the wavefunction)

-expressivity, learning from data, variational approaches

-assisted many-body simulations

-learned hard sampling

-classification of many-body phases of matter

“Machine learning and the physical sciences”
Carleo et al., https://arxiv.org/pdf/1903.10563.pdf
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Machine learning
In quantum information processing
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Enabling quantum information processing devices

Interplay at various levels of complexity and abstraction

optimizing quantum

quantum control ; o ;
communication & computation

choose parameters Optimize local error
(time-dependently) | \ @ correction, and fight
to realize a desired C? noise processes
unitary operation adaptively and
autonomously

economic (quasi)-algorithmic designing new experiments
strategies and doing research

-ML-enhanced classical T

pre&post-processing MERNSN
-decoders for error correction - t-
-quantum memories (dynamical ‘.t ‘i 1
decoupling) By
-tailored error correcting codes
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Application, match, ... conspiracy?

new applications and algorithms instrumental
for building QC devices

novel classical models
progress in relate 2%
theory

<ica\ \earning Methoy,

Reinforcement & Quantum information
Machine learning pe ocessing

———————————

new quantum algorithms:
quantum walks, state preparation

~QUantum algorith™®

theory of . oracles with memory
quantum task environments

one of the best
applications of QC

influence near term quantum devices
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