A Generalized Entanglement Entropy and Holography

Kotaro Tamaoka (YITP)

Based on 1809.09109 (Phys. Rev. Lett. 122, 141601) and work in progress with Yuya Kusuki (YITP)

It from Qubit school/workshop, June 27, 2019

Measure for Mixed states in AdS/CFT?

Ryu-Takayanagi formula

Ryu-Takayanagi '06,...

$$S(\rho_A) =$$

Entanglement entropy $S(\rho_A)$: nice measure for <u>pure states</u>

How is the measure for mixed states?

There are many candidates in the literature ... (Any nice ones in AdS/CFT?)

Measure for Mixed states in AdS/CFT?

Subregion/subregion duality

Czech-Karczmarek-Nogueira-VanRaamsdonk, Wall '12, Headrick, Hubeny-Lawrence-Rangamani '14...

$$\rho_{AB} = \operatorname{Tr}_{(AB)^c} |0\rangle\langle 0| \quad \longleftarrow$$

reduced density matrix (a mixed state)

entanglement wedge

Measure for Mixed states in AdS/CFT?

Subregion/subregion duality

Czech-Karczmarek-Nogueira-VanRaamsdonk, Wall '12, Headrick, Hubeny-Lawrence-Rangamani '14...

A natural object in the bulk:

Umemoto-Takayanagi '17,

Nguyen-Devakul-Halbasch-Zaletel-Swingle '17

entanglement wedge cross section

Measure for Mixed states in AdS/CFT?

Subregion/subregion duality

Czech-Karczmarek-Nogueira-VanRaamsdonk, Wall '12, Headrick, Hubeny-Lawrence-Rangamani '14...

Purification conjectures:

$$E_P = E_W$$

(min S(AA') for \forall purification $|\Psi_{AA'BB'}\rangle$)

Umemoto-Takayanagi '17,

Nguyen-Devakul-Halbasch-Zaletel-Swingle '17

$$S_R = 2E_W$$

(S(AA') for TFD-like purification $|\Psi_{AA'BB'}\rangle$)

entanglement wedge cross section

Dutta-Faulkner '19

This talk

from CFT without purification

the entanglement wedge should know its cross section without introducing purified states!

It from an "odd" generalization of the entropy

Odd (Entanglement) Entropy

KT '18

$$S_o(\rho_{AB}) := \lim_{n_o: \text{odd} \to 1} \frac{\text{Tr}(\rho_{AB}^{T_B})^{n_o} - 1}{1 - n_o}$$

partial transposition:

$$\langle i_A, j_B | \rho_{AB}^{T_B} | k_A, \ell_B \rangle \equiv \langle i_A, \ell_B | \rho_{AB} | k_A, j_B \rangle$$

- $ho_{AB}^{T_B}$ can have negative eigenvalues
 - ∃ negative eigenvalue
 - → ∃ entanglement btw A&B Peres '96

Odd (Entanglement) Entropy

$$S_o(\rho_{AB}) = -\sum_{\lambda_i > 0} |\lambda_i| \log |\lambda_i| + \sum_{\lambda_i < 0} |\lambda_i| \log |\lambda_i|$$

 λ_i : eigenvalues for $\rho_{AB}^{T_B}$

For pure states, the same as usual EE!

$$S_o(\rho_{AB}) = S(\rho_A)$$
 (if ρ_{AB} is a pure state)

Note: it also counts classical correlations

← logarithmic negativity

$$\mathcal{E} = \lim_{n_e: \text{even} \to 1} \log \text{Tr}(\rho_{AB}^{T_B})^{n_e} \boxed{\propto E_W} \qquad \text{(with back-reaction)}$$

Vidal-Werner '02, Calabrese-Cardy-Tonni '12

Kudler-Flam—Ryu '18

Results in 2d holographic CFT

$$S_o(\rho_{AB}) = S(\rho_{AB}) + E_W(\rho_{AB})$$

minimal surfaces

EWCS

- Vacuum and Thermal state KT'18
- Heavy Excited states
- · Quench by local heavy op.

Yuya Kusuki & KT to appear

Can use Replica trick

Calabrese-Cardy '04 , Calabrese-Cardy-Tonni '12,

Large-c + Sparse spectrum
Hartman '13,

Can use Fusion (Crossing) Kernel

Kusuki '18, Collier-Gobeil-Maxfield-Perlmutter '18, Kusuki-Miyaji '19

A Lesson from the odd entropy

e.g.) an inequality from entanglement wedge

Freedman-Headrick'16, Umemoto-Takayanagi '17, Nguyen-Devakul-Halbasch-Zaletel-Swingle '17

$$E_W(\rho_{AB}) \ge I(A:B)/2$$

$$\Leftrightarrow 2E_W(\rho_{AB}) + S(\rho_{AB}) \ge S(\rho_A) + S(\rho_B)$$

A Lesson from the odd entropy

$$S_o(\rho_{AB}) - S(\rho_{AB}) \ge I(A:B)/2$$

It rather specializes the holographic CFT!

A counterexample:

$$\rho_{AB} = q |\Psi\rangle\langle\Psi| + (1 - q)\sigma_A \otimes \sigma_B$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|0_A\rangle |1_B\rangle - |1_A\rangle |0_B\rangle)$$

$$\sigma = \frac{1}{2} |0\rangle\langle0| + \frac{1}{2} |1\rangle\langle1|$$

Discussion

· More general many body systems

General properties of odd EE? / How holographic CFT is special?

· Relation to conditional & differential entropy

Balasubramanian-Chowdhury-Czech-de Boer-Heller '13, ...

From gravitational path integral

c.f. Lewkowycz-Maldacena, Faulkner-Lewkowycz-Maldacena '13

•

Summary: odd entropy and holography

$$S_o(\rho_{AB}) := \lim_{n_o: \text{odd} \to 1} \frac{\text{Tr}(\rho_{AB}^{T_B})^{n_o} - 1}{1 - n_o}$$

$$S_o(\rho_{AB}) = S(\rho_{AB}) + E_W(\rho_{AB})$$

$$S(\rho_{AB})$$

$$E_W(
ho_{AB})$$

minimal surfaces

FWCS

→ new constraints for holographic CFT