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The search for the theory on quantum gravity is guided by basic principles:

 holography: S =7 Area * locality and causality
 quantum information theory * space-time dynamics
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Some helpful tools: many body QM, CFT bootstrap, large N, tensor networks, ....
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The Bekenstein-Hawking relation

A

SZE (1)

forms one of the central guiding principles in the search
for a quantum theory of gravity. The precise meaning
and realm of applicability of (1), however, are still
only partly understood. The two most well-formulated
interpretations (1) are that it quantifies:

i) the number of microstates of a one-sided black hole

with given macroscopic properties

ii) the microscopic entanglement™® across the event horizon
connecting the two sides of an eternal black hole.



These interpretations are quite different but both find support via AdS/CFT.
The second interpretation 11) 1s supported via the Ryu-Takayanagi formula

and by the proposed holographic interpretation of the CFT thermofield double
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as the quantum state of a two-sided black hole connected via an ER bridge.



There are several unsatisfactory aspect to the claim that
a two-sided black hole is uniquely described by the TFD:

The TFD is an idealized theoretical construct: it is a unique pure state
with zero vIN entropy, while two-sided black hole is a macroscopic object - -

which under normal circumstances would carry a large amount of entropy.
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So let’s ask the question:

How much entropy does a two sided black hole contain?

Clearly it is bounded by: 0<S<A/4G,



In this talk | will argue that

iii) a space-time with an ER bridge with cross sectional

area A can carry a macroscopic amount of quantum

~information with entropy equal to Spy = A/4GN.

=> a new holographic conjecture!

Since any macroscopic object usually decoheres into a
mixed state, a corollary of this assertion is that

iii’) the local space-time region of an ER bridge is
typically in a mized state with entropy Spy = A/4G N .




The reasoning makes use of AdS/CFT and the as-
sumption that space-time behaves like a quantum error
correcting code — i.e. that the Hilbert space of the
effective QFT on a given classical space-time lies within a
small code subspace of the full microscopic Hilbert space.
The key insight that leads to statement iii) is that the
Poincaré recurrence time as seen from within the code
subspace is much shorter than the Poincaré recurrence
time of the microscopic theory.
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Consider a time evolved TFD state

'TFD(tr,t5)) Z ittt R) En o =3 B | 1)
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Or more abstractly, we can define a "basis’ of generalized TFD states
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Z[o] = |[(TFD|TFD) |*= Eze B(En+Em)+i(an—am)
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Spectral form factor

-log( Z[ot] ) = measure of complexity’

measure of time passed since TFD




Here f(x) vanishes, and thus flips sign, at the horizon.
As a result, the space-time (5) does not admit a global
time-like Killing vector: the locally defined Killing vector
% switches sign when passing through the horizon H,
and thus comes back in the opposite direction when

transported around the non-contractible cycle in Fig 1.
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Define the unitary operators U,

'TFD) = U, |TFD)

Consider the set of a’s such that

[U&a Ocode] =0

We can think of the Ug’s as time evolution operators over
multiples of the Poincaré time of the code subspace.

The a label superselection sectors = irreps of the QFT operator algebra



CFT Poincare recurrence time is much bigger than the QFT recurrence time

Tefe ~ eXP(e>H) >> Toq ~ exp(e™ft) .

=> General state = incoherent superposition of time-evolved TFD states
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Thermal mixed double = incoherent superposition of time-evolved TFD states
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entropy Spr = _tr(pTMD log PTMD) = SBH.-




Topological entanglement:
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S =" (2lwil* log S — [v:[*log [vi]?)
N T ~ I = Virasoro representations
—— [ du(i) 143 Yog 4

So' = sinh(2npbP) sinh(2pP/b)

cf  McGough, HV, 2012
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The three entropies of TMD are all equal:

Sir =95, =S5z = Sy
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-> Mutual information Iz = 257 g“ L is half as big as that of the TFD
S for TFD
ILr =
SBH/2 for TMD

No true microscopic quantum entanglement!



What about AdS Rindler?

Must introduce UV cutoff and consider
entanglement of purification £ < S,z



Concluding comments:

The microscopic entanglement that creates the fabric of space-time

is encoded in hidden highly delocalized degrees of freedom.

Local QFT entanglement is only a small contribution -- and this is

all the unique quantum entanglement that is needed.

The microscopic state of a local region of space does not need to be in

unique or pure TFD like state.

The QFT operators are defined via a QEC procedure, that acts within

a code subspace.



