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Quantum computer sounds growing well…

This talk = How can we use it for particle physics?



Applications of Quantum Computation  
to

Quantum Field Theory (QFT)

This talk is on

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:

Quantum computation is suitable for Hamiltonian formalism

Liberation from infamous sign problem in Monte Carlo?
(next slide)

(& possibly String/M-theory)

(practical)



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

probability



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

②Numerically Evaluate it by (Markov Chain) Monte Carlo method  
regarding the Boltzmann factor as a probability:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

probability



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

In Hamiltonian formalism,

sign problem is absent from the beginning

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

(∃various approaches within framework of path integral formalism but I’ll skip it )



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

regularization needed!



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

Quantum computers do this job?

regularization needed!



In this talk, we mainly focus on

Schwinger model with topological term in Minkowski space
1+1d QED

supposed to be difficult in the conventional approach:

topological “theta term”

・∃sign problem even in Euclidean case when 𝜃 isn’t small

・real time



In this talk, we mainly focus on

Schwinger model with topological term in Minkowski space
1+1d QED

supposed to be difficult in the conventional approach:

topological “theta term”

・∃sign problem even in Euclidean case when 𝜃 isn’t small

・real time

Results:

・Construction of the true vacuum (ground state)

・Computation of ⟨ ത𝜓𝜓⟩ & consistency check/prediction 

・Estimation of computational resource

[cf. Tensor Network approach: 
Banuls-Cichy-Jansen-Saito ’16 , Funcke-Jansen-Kuhn ’19, etc. ]

・Exploration of the screening vs confinement problem
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[in preparation, MH-Itou-Kikuchi-Nagano-Okuda]



(If time is allowed) I’ll also discuss

possible applications to string/M-theory

[Gharibyan-Hanada-MH-Liu ’20]

how to put BMN model on quantum computer

[Berenstein-Maldacena-Nastase ’02]

(∼supersymmetric matrix QM coupled to 𝑈(𝑁) gauge field)

ln particular, 



(If time is allowed) I’ll also discuss

possible applications to string/M-theory

[Gharibyan-Hanada-MH-Liu ’20]

how to put BMN model on quantum computer

・It is a candidate for a non-perturbative formulation of
M-theory on pp-wave spacetime

・It has holographic duals

[Berenstein-Maldacena-Nastase ’02]

(∼supersymmetric matrix QM coupled to 𝑈(𝑁) gauge field)

ln particular, 

・It describes worldvolume theories of branes in string/M-theory 

∃Various connections to string/M-theory:



2. Schwinger model as qubits

3. Algorithm to prepare vacuum

4. Results on chiral condensate

Contents
1. Introduction

7. Summary & Outlook

5. Screening vs Confinement (briefly)

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[in preparation, MH-Itou-Kikuchi-Nagano-Okuda]

6. String/M-theory (if time is allowed) [Gharibyan-Hanada-MH-Liu ’20]



QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space
(ex. up/down spin system)

Quantum computer = a combination of qubits
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Quantum computer = a combination of qubits

To put QFT on quantum computer,

1. “Regularize” Hilbert space (make it finite-dim.!)

2.  Rewrite the regularized theory in terms of qubits



QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space
(ex. up/down spin system)

Quantum computer = a combination of qubits

To put QFT on quantum computer,

1. “Regularize” Hilbert space (make it finite-dim.!)

2.  Rewrite the regularized theory in terms of qubits

Schwinger model  =
the simplest nontrivial example 
w/ gauge interaction in this context

1+1d gauge field has only 1-dim. physical Hilbert sp.

Lattice fermion has finite-dim. Hilbert sp. 



Schwinger model w/ topological term
Continuum ①:

[Fujikawa’79]Continuum ➁:

(will be used in the confinement vs screening) 

(equivalent via “chiral anomaly”, used here) 



Schwinger model w/ topological term
Continuum ①:

Taking temporal gauge 𝐴0 = 0,

Physical states are constrained by Gauss law:

[Fujikawa’79]

( Π = ሶ𝐴1)

Continuum ➁:

(will be used in the confinement vs screening) 

(equivalent via “chiral anomaly”, used here) 



Accessible region by analytic computation

・Massive limit:

The fermion can be integrated out

the theory becomes effectively pure Maxwell theory w/ 𝜃

&



Accessible region by analytic computation

・Massive limit:

・Bosonization (duality): [Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑔2

8𝜋2
𝜙2 +

𝑒𝛾𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Sign problem in path integral formalism

In Minkowski space,

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒𝑖𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒𝑖𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 +

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑹

highly oscillating



Sign problem in path integral formalism

In Euclidean space,

In Minkowski space,

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒𝑖𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒𝑖𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 +

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑹

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒−𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒−𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 + 𝑖

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑪

highly oscillating

highly oscillating for non-small θ



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

We can make

prediction here



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

x x x x x x
・・・𝜙1, 𝐿1 𝜙2, 𝐿2 𝜙3, 𝐿3 𝜙𝑁−1, 𝐿𝑁−1

𝜒1 𝜒2 𝜒3 𝜒4 𝜒𝑁−1 𝜒𝑁

・Gauge field (on link):

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”

𝜙𝑛 ↔ −𝑎𝑔𝐴1 𝑥 , 𝐿𝑛 ↔ −
Π 𝑥

𝑔



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Redefine fermion to absorb 𝜙𝑛:

Then,

This acts on finite dimensional Hilbert space



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

“Jordan-Wigner transformation”



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”



2. Schwinger model as qubits

3. Algorithm to prepare vacuum

4. Results on chiral condensate

Contents
1. Introduction

7. Summary & Outlook

5. Screening vs Confinement (briefly)

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[in preparation, MH-Itou-Kikuchi-Nagano-Okuda]

6. String/M-theory (if time is allowed) [Gharibyan-Hanada-MH-Liu ’20]



・Action of unitary operator:

・Measurement:

(classical number)

“Rule” of Quantum Computation
Do something interesting by combining the following 2 operations:



Atmosphere (?) of using quantum computer…

Screenshot of IBM Quantum Experience:

Suppose we’d like to measure the state:  𝐻 0 =
1

2
(|0⟩ + |1⟩)



Atmosphere (?) of using quantum computer…

Screenshot of IBM Quantum Experience:

Suppose we’d like to measure the state:  𝐻 0 =
1

2
(|0⟩ + |1⟩)

Output of 1024 times measurements (“shots”) :

Idea: express physical quantities in terms of “probabilities”
& measure the “probabilities”



VEV of mass operator (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as

How can we obtain the vacuum?



Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |𝑣𝑎𝑐0⟩ is known and unique



Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |𝑣𝑎𝑐0⟩ is known and unique

Step 2: Consider the time evolution 

w/



Adiabatic state preparation of vacuum 

If the system w/ the Hamiltonian 𝐻𝐴(𝑡) has a unique gapped vacuum, 
then the desired ground state is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |𝑣𝑎𝑐0⟩ is known and unique

Step 2: Consider the time evolution 

w/

Step 3: Use the adiabatic theorem



Adiabatic state preparation of vacuum (Cont’d)

Here we choose

𝑚0 can be any positive number in principle
but it is practically chosen to have small systematic error 



Time evolution operator
Suzuki-Trotter decomposition:

(𝑀 ∈ 𝒁, 𝑀 ≫ 1)

(more precisely, we actually use its improvement but I skip it)

These operations can be easily implemented (details skipped)



Quantum circuit for time evolution op. (N=4)



Results on chiral condensate

Skipped contents:

・processes of taking ∞ volume & continuum limits

・how to estimate systematic errors, etc...



In real quantum computer,

Qubits in quantum circuit ≠ isolated system

Interactions w/ environment cause errors

(Classical) simulator for Quantum computer



In real quantum computer,

Qubits in quantum circuit ≠ isolated system

Interactions w/ environment cause errors

(Classical) simulator for Quantum computer

Simulator

・Doesn’t have errors → ideal answers

Useful to test algorithm & estimate computational resources 

tool to simulate quantum computer
by classical computer

=

・The same code can be run in quantum computer w/ speed-up

(More precisely, classical computer also has errors but its error correction is established)

(∼# of qubits, gates)

Here we use



Result for massless case (after continuum limit)
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result



Result for massive case at g=1
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

mass perturbation



𝜃 dependence at 𝑚 = 0.1 & 𝑔 = 1

⟨ ത𝜓𝜓⟩

mass perturbation



2. Schwinger model as qubits

3. Algorithm to prepare vacuum

4. Results on chiral condensate
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Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞 has been analytically 
computed for ∞ volume. 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞2𝑔2

2𝜇
(1 − 𝑒−𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

screening



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞 has been analytically 
computed for ∞ volume. 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞2𝑔2

2𝜇
(1 − 𝑒−𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

𝑉 𝑥 ∼ 𝑚Σ 1 − cos 2𝜋𝑞 𝑥 (m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

confinement

Σ ≡ 𝑒1+𝛾/2𝜋3/2

= Const.

∝ 𝑥

for q ∈ 𝒁

for q ∉ 𝒁

Let’s explore this aspect by quantum simulation!



Our strategy
① Introduce the probe charges ±q:

𝑒𝑖𝑞𝑔 ∫𝐶 𝐴
𝐶

ℓ

𝑡 = +∞

𝑡 = −∞

➁ Include it to the action & switch to Hamilton formalism

𝑒
𝑖𝑞𝑔 ∫𝑆,𝜕𝑆=𝐶 𝐹 local 𝜃-term w/ 𝜃 = 2𝜋𝑞!!

𝑥

+𝑞 −𝑞

ℓ

𝜃 = 𝜃0 𝜃 = 𝜃0𝜃 = 𝜃0 + 2𝜋𝑞

③ Compute the ground state energy (in the presence of the probes)



Results for 𝜃0 = 0 & 𝑞 ∈ 𝒁

preliminary

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15 & 21, 𝑇 = 99, 𝑞 = 1

preliminary

Lines: analytical results in the continuum limit (finite & ∞ vols.)

Consistent w/ expected screening behavior



Results for 𝜃0 = 0 & 𝑞 ∉ 𝒁

preliminary

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99, 𝑞 = 0.25,𝑚/𝑔 = 0 & 0.2

Lines: analytical results in the continuum limit (finite & ∞ vol.)

preliminary

Slope for large 𝑔𝑙 (“string tension”):“Potential”:

Consistent w/ expected confinement behavior



Results for 𝜃0 ≠ 0

preliminary

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99, 𝑞 = 1,𝑚/𝑔 = 0.2

(difficult to explore by the conventional Monte Carlo approach)



2. Schwinger model as qubits

3. Algorithm to prepare vacuum

4. Results on chiral condensate

Contents
1. Introduction

7. Summary & Outlook

5. Screening vs Confinement (briefly)

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[in preparation, MH-Itou-Kikuchi-Nagano-Okuda]

6. String/M-theory (if time is allowed) [Gharibyan-Hanada-MH-Liu ’20]



BMN matrix model (𝑈(𝑁) gauged matrix QM)
[Berenstein-Maldacena-Nastase ’02]

・(0+1) dim. 𝑈(𝑁) gauge theory

・all the fields are 𝑁 × 𝑁 Hermitian matrices

・𝑋𝐼: bosonic matrices (𝐼 = 1,⋯ , 9)

・Ψ: 16 component Majorana-Weyl fermion

・𝑖 = 1,2,3, 𝑎 = 4,⋯ , 9



BMN matrix model (cont’d)

related to various interesting “stringy” theories:

・M-theory on pp-wave spacetime

・3d 𝒩 = 8 SYM on 𝑹 × 𝑆2 ∼ D2-branes in IIA string theory

・4d 𝒩 = 4 SYM on 𝑹 × 𝑆3 ∼ D3-branes in IIB string theory

・6d 𝒩 = (2,0) theory on 𝑹 × 𝑆5 ∼ M5-branes in M-theory
[Maldacena-Sheikh-Jabbari-Van Raamsdonk ’02]

[Ishii-Ishiki-Shimasaki-Tsuchiya ’08, etc…]

・holographic duals

[Berenstein-Maldacena-Nastase ’02]



SUSY QFTs from BMN matrix model
𝑋𝑖 part:

SUSY vacua:

𝑋𝑖 =
𝜇

3𝑔
𝐽𝑖 , 𝐽𝑖 , 𝐽𝑗 = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘

𝐽𝑖: 𝑆𝑈(2) generator in 𝑁-dim. (ir)reducible rep.

“Fuzzy sphere”

Expanding the theory around fuzzy sphere sols. w/ appropriate reps.,
we can obtain SUSY QFTs in the large-𝑁 limit via “large-𝑁 reduction”

[Maldacena-Sheikh-Jabbari-Van Raamsdonk ’02, Ishii-Ishiki-Shimasaki-Tsuchiya ’08, etc…]



Concept of Large N reduction
[ Eguchi-Kawai, Bhanot-Heller-Neuberger,

Gonzalez-Arroyo-Okawa, Gross-Kitazawa, etc. ]

Shrink to “one point”(or one site)
(dropping derivative terms)

Original theory Reduced (matrix) model

Expanding around 
a particular vacuum

Matrix size →&

equivalent!

Here we apply it only for space and leave time continuous



SUSY QFTs from BMN matrix model 

𝑋𝑖 =
𝜇

3𝑔
𝐽𝑖 fuzzy sphere

・3d 𝒩 = 8 SYM on 𝑹 × 𝑆2:

𝐽𝑖 = 𝐽𝑖
(𝑠)

⊗𝟏𝑵𝟐
𝑠 =

𝑁5−1

2
, 𝑁5→ ∞

・4d 𝒩 = 4 SYM on 𝑹 × 𝑆3:

𝐽𝑖 =⊕𝑠=𝑛−𝑇
𝑛+𝑇 (𝐽𝑖

(𝑠)
⊗𝟏𝒌) 𝑘, 𝑛, 𝑇, 𝑛 − 𝑇 → ∞

𝐽𝑖 = 𝐽𝑖
(𝑠)

⊗𝟏𝑵𝟐
𝑠 =

𝑁5−1

2
, 𝑁2 → ∞

・6d 𝒩 = (2,0) theory on 𝑹 × 𝑆5:

(𝐽𝑖
(𝑠)
: 𝑆𝑈(2) generator of 2𝑠 + 1 dim. representation )



Hamiltonian formalism

(𝛼, 𝛽: gauge indices)

Hilbert space is ∞-dimensional → regularize it!

Gauss law:

𝐺𝛼 phys = 0 w/

Commutation relations:

𝑋𝐼𝛼 , 𝑃𝐽𝛽 = 𝑖𝛿𝐼𝐽𝛿𝛼𝛽 , 𝜓†𝐼𝑝𝛼 , 𝜓𝐽𝑞
𝛽

= 𝛿𝐼𝐽𝛿
𝑝𝑞𝛿𝛼𝛽

𝐺𝛼 = 

𝛽,𝛾=1

𝑁2



𝐼=1

9

𝑋𝐼
𝛽 𝑃𝐼

𝛾
− 𝑖

𝐼,𝑝

𝜓†𝐼𝑝𝛼 𝜓𝐼𝑝
𝛾



The essence is common w/ single particle QM

𝐻 =
1

2
Ƹ𝑝2 +

𝜔2

2
ො𝑥2 + 𝑉int(ො𝑥)

Most naïve approach = truncation in harmonic osc. basis:

ො𝑎 =
𝜔

2
ො𝑥 +

𝑖

2𝜔
Ƹ𝑝 = 

𝑛=0

∞

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

regularize!



𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

Then replace Ƹ𝑝 & ො𝑥 by

ො𝑥 ቚ
regularized

≡
1

2𝜔
(ො𝑎 + ො𝑎†) ቚ

regularized

Ƹ𝑝 ቚ
regularized

≡
1

𝑖

𝜔

2
(ො𝑎 − ො𝑎†) ቚ

regularized



The essence is common w/ single particle QM (Cont’d)

ො𝑎 ቚ
regularized

= 

𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

We can rewrite the Fock basis in terms of qubits:

𝑛 = 𝑏𝐾−1 𝑏𝐾−2 ⋯|𝑏0⟩

𝑛 = bK−12
K−1 + bK−22

K−2 +⋯+ 𝑏02
0

𝐾 ≡ log2 Λ

(binary representation)

𝑛 𝑛 + 1 =⊗ℓ=0
𝐾−1 (|𝑏ℓ

′⟩⟨𝑏ℓ|)
Then,

either one of 



The essence is common w/ single particle QM (Cont’d)

The ground state of the truncated system can be constructed 
by e.g. adiabatic state preparation: 

𝐻𝐴(𝑡) =
1

2
Ƹ𝑝2 +

𝜔2

2
ො𝑥2 +

𝑡

𝑇
𝑉int(ො𝑥)

= |0⟩

The BMN model has much more variables

but we can regularize it in essentially the same way



Preparation of fuzzy sphere state

To get the SUSY QFTs., we need to construct states
corresponding to the fuzzy spheres at finite coupling 

Steps:

① Expand the theory around the fuzzy sphere 

③ Starting w/ the Fock vacuum, adiabatically turn on the coupling
& apply the adiabatic time evolution

➁ Take its Fock vacuum at weak coupling limit

𝐽𝑖 𝑔→0

𝐽𝑖 𝑔→0𝐽𝑖 =



Computational costs

・Single particle QM w/ truncation Λ requires log2 Λ qubits

# of qubits:

・The BMN model has 9 scalars & 16 component real fermion
which are 𝑁 × 𝑁 matrices

9𝑁2 log2 Λ + 8𝑁2 qubits



Computational costs

・Single particle QM w/ truncation Λ requires log2 Λ qubits

# of qubits:

・The BMN model has 9 scalars & 16 component real fermion
which are 𝑁 × 𝑁 matrices

9𝑁2 log2 Λ + 8𝑁2 qubits

# of spin ops. in Hamiltonian:

・each annihilation/creation op. has less than 𝒪(Λ2) spin ops.

・we have 4-pt. interaction at most 

・∃𝒪(𝑁4) combinations regarding the color indices

< 𝒪(Λ8𝑁4) spin ops.



Possible applications

・Testing holography for real time

・Out of time order correlator

・Black hole thermalization

・decay of fuzzy sphere for non-SUSY cases

etc...

various real time physics such as



Summary & Outlook



Summary
・Quantum computation is suitable for Hamiltonian formalism

which is free from sign problem

・We’ve constructed the vacuum of Schwinger model w/
the topological term by adiabatic state preparation

・Instead we have to deal with huge vector space.
Quantum computers in future may do this job. 

・found agreement in the chiral condensate with the exact   
result for 𝑚 = 0 & mass perturbation theory for small 𝑚

・explored the screening vs confinement problem
[in preparation, MH-Itou-Kikuchi-Nagano-Okuda]

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[Gharibyan-Hanada-MH-Liu ’20]

・string/M-theory on quantum computer via BMN model



Other progress & Outlook

・Finite temperature & Real time?

・Searching critical point [work in progress, Chakraborty-MH-Kikuchi-Izubuchi-Tomiya]

・Including quantum error correction/mitigation?

・Scattering amplitude?

・Other ways to prepare vacuum (e.g. variational method, imaginary time evolution)

[work in progress, MH-Kikuchi-Rendon]

・Simulation of matrix QM

Thanks!

[Buser-Gharibyan-Hanada-MH-Liu ’20]

・Alternative way to put gauge theory on quantum computer
using matrix QM via “orbifold lattice”



Appendix



Basics of quantum computation



Qubit = Quantum Bit
Qubit = Quantum system w/ 2 dim. Hilbert space

Ex.) Spin 1/2 system:

(We don’t need to mind how it is realized as “users”)

Basis:

Generic state:

w/



Single qubit operations
・Acting unitary operator:

・Measurement:

(multiplying 2x2 unitary matrix)

(classical number)

In quantum circuit notation,



Single qubit gates used here

𝑋 is “NOT”:

(just Pauli matrices)



Multiple qubits
2 qubits – 4 dim. Hilbert space:

N qubits – 2N dim. Hilbert space:



Only one 2-qubit gate is used here

or equivalently

Controlled 𝑋 (NOT) gate:



Schwinger model as qubits



Time evolution operator
Suzuki-Trotter decomposition:

(𝑀 ∈ 𝒁, 𝑀 ≫ 1)

Can we express it in terms of elementary gates?

(more precisely, we actually use its improvement but I skip it)



Time evolution operator (cont’d)

・The 1st one is trivial:

・For the others, use the identities: 

Only elementary gates !!

(proof skipped)



Time evolution operator (Cont’d)

Proof:

Thus,



Time evolution operator (Cont’d)

Proof:

Thus,



Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

The 2nd order improvement:

This increases the number of gates at each time step
but we can take larger δt (smaller M) to achieve similar accuracy.
Totally we save the number of gates.

cf. Baker-Campbell-Hausdorff formula:



Details on chiral condensate



Estimation of systematic errors
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]Approximation of vacuum:

Approximation of VEV:

Introduce the quantity

independent of t if

dependent on t if

This quantity describes  intrinsic ambiguities in prediction

Useful to estimate systematic errors



Estimation of systematic errors (Cont’d)

Oscillating around the correct value

Define central value & error as

&



Massless case

[Hetrick-Hosotani ’88]
∃Exact result:

For massless case, 

𝜃 is absorbed by chiral rotation

Nevertheless,

it’s difficult in conventional approach because computation of 
fermion determinant becomes very heavy

Can we reproduce it?

No sign problem

𝜃 = 0 w/o loss of generality



Thermodynamic & Continuum limit

#(measurements)

Thermodynamic limit (w/ fixed 𝑎) Continuum limit (after 𝑉 → ∞)



Massive case

Result of mass perturbation theory: [Adam ’98]

∃subtlety in comparison: this quantity is UV divergent

Use a regularization scheme to have the same finite part

However,

Here we subtract free theory result before taking continuum limit:

ത𝜓 𝑥 𝜓 𝑥 ≃ −0.160𝑔 + 0.322𝑚 cos𝜃 + 𝒪(𝑚2)


