Thermal Pure Quantum Matrix Product States ~Quantum Information meets Thermodynamics ~

Iwaki, Shimizu, Hotta, arXiv:2005.06829

Atsushi Iwaki

Komaba, University of Tokyo (Hotta group)

2021/3/5/Fri YITP workshop

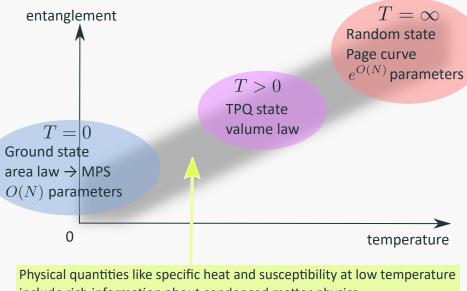
* Thermal Pure Quantum states

* Matrix Product States

* TPQ - MPS method

Thermal Pure Quantum states

Quantum Many Body Pure state



include rich information about condenced matter physics.

Entanglement and Thermal Entropy

Gibbs state

$$\rho_{\beta} = \underbrace{\sum_{n} e^{-\beta E_{n}}}_{Z} \left| n \right\rangle \left\langle n \right.$$

Thermal entropy is von Neumann entropy.

ensemble of exponentially many eigen states

B

 $\rho_{\beta}^{A} = \operatorname{Tr}_{B} |\beta\rangle \langle\beta|$

$$S_{\rm th}(T) = -\mathrm{Tr}\rho_\beta \log \rho_\beta$$

TPQ state

$$|eta
angle=e^{-eta\hat{H}/2}|0
angle$$
 random state

Subsystems play the role of heat bath by entangling each other. TPQ state is locally equivalent to Gibbs state.

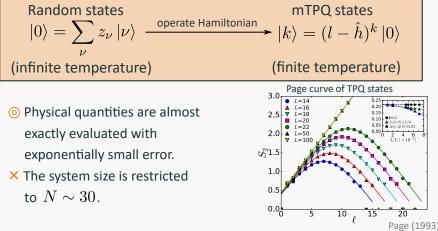
$$S_A = S_{\rm vN}(\rho_\beta^A) = N_A \times s_{\rm th}(T)$$

entanglement volume law

Numerical Application of TPQ states

Specific construction of thermal typical states

Imada, Takahashi (1986) Hams, De Raedt (2000) litaka, Ebisuzaki (2003) Machida, Iitaka, Miyashita (2005, 2012) Sugiura, Shimizu (2012, 2013)



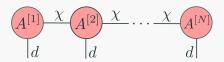
Nakagawa, Watanabem Fujita, Sugiura (2018)

Matrix Product States

MPS and DMRG

Consider an 1D many body system where the size ${\cal N}$ and the local dimension d.

$$|\Psi\rangle = \sum_{\{i\}} \sum_{\{\alpha\}} A^{[1]i_1}_{\alpha_1} A^{[2]i_2}_{\alpha_1\alpha_2} \cdots A^{[N]i_N}_{\alpha_{N-1}} |i_1, \dots, i_N\rangle$$
Fannes, Nachtergaele, Werner



The rank of matrices are called bond dimension $\boldsymbol{\chi}.$

 \odot Represent a pure state by $O(Nd\chi^2)$ parameters.

Density matrix renormalization group (DMRG) calculate ground states with high accuracy. White (1992, 1993)

DMRG is essentially a variational method of MPS.

Ostlund, Rommer (1995, 1997) Dukelsky, Martin-Delgado, Nishino, Sierra (1998)

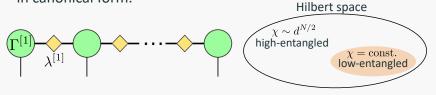
$$|\Psi\rangle = \sum_{\{i\}} \sum_{\{\alpha\}} \Gamma_{\alpha_1}^{[1]i_1} \lambda_{\alpha_1}^{[1]} \Gamma_{\alpha_1 \alpha_2}^{[2]i_2} \lambda_{\alpha_2}^{[2]} \cdots \lambda_{\alpha_{N-1}}^{[N-1]} \Gamma_{\alpha_{N-1}}^{[N]i_N} |i_1, \dots, i_N\rangle$$
Vidal (2003)

 $\lambda {\rm s}$ are Schmidt coefficients when we divide the system at each bond.

$$S_m = -\sum_{\alpha=1}^{\chi} (\lambda_{\alpha}^{[m]})^2 \log(\lambda_{\alpha}^{[m]})^2 \le \log \chi$$

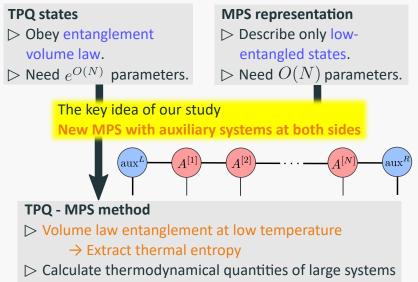
 \rightarrow entanglement area law

We can truncate the bond dimension efficiently in canonical form.



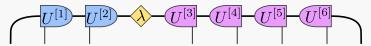
TPQ - MPS method

Outline



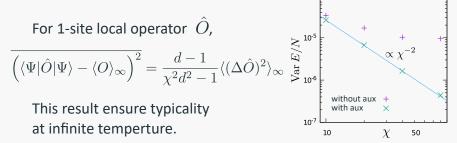
with lower computational cost.

Random MPS with Auxiliaries

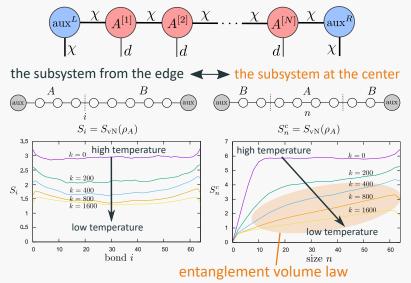


We prepare random MPS (RMPS) in canonical condition by using random unitary matrices. Garnerone, de Oliveira, Zanardi (2010)

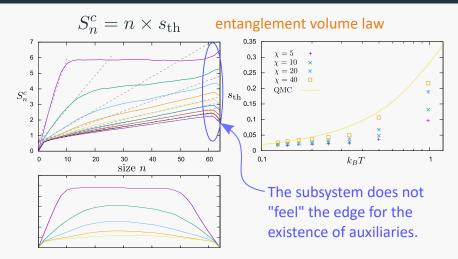
In contrast to previous works, we attach auxiliary systems at both edges of the system and get following analytical result for all sites. N = 64



Auxiliaries at Finite Temperature



Thermal Entropy from Entanglement



There has been no previous works on calculating thermal entropy from entanglement entropy.

Quantum information meets thermodynamics !!!

TPQ - MPS algorithm

1. Prepare an RMPS $|0^{\mathrm{MPS}}
angle$ with auxiliary systems.

 $A_{lphaeta}^{[m]i}$: independent Gaussian distribution 2. Operate $(l - \hat{h})$ to the state $|k - 1^{MPS}\rangle$. $|\tilde{k}^{MPS}\rangle = (l - \hat{h}) |k - 1^{MPS}\rangle$

3. Truncate the increased bond dimension.

$$|\tilde{k}^{\mathrm{MPS}}\rangle \xrightarrow{\mathrm{truncation}} |k^{\mathrm{MPS}}\rangle$$

4. Repeat 2. and 3. until enough low temperature.

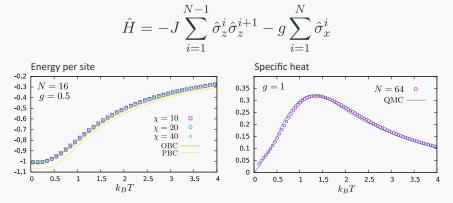
microcanonical inverse $\beta_k = \frac{2k}{N} \frac{1}{l-u_k}, \quad u_k = \frac{\langle k|h|k\rangle}{\langle k|k\rangle}$

5. Calculate physical quantities at finite temperature by using the following formula.

$$\langle O \rangle_{\beta,N} \propto e^{-\beta N l} \left\{ \sum_{k} \frac{(N\beta)^{2k}}{(2k)!} \langle k | \hat{O} | k \rangle + \sum_{k} \frac{(N\beta)^{2k+1}}{(2k+1)!} \langle k | \hat{O} | k+1 \rangle \right\}$$

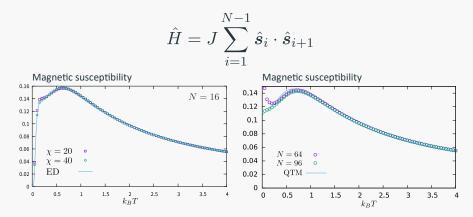
Sugiura, Simizu (2013)

Demonstration : transverse Ising model



- \triangleright We get sufficient exact values with the small bond dimension, $\chi = 10$ for N = 16 and $\chi = 40$ for N = 64.
- \triangleright We take 10 samples for $N=16\,$ and 5 samples for $N=64\,.$ The METTS method typically needs 100 sample for each temperture.

Demonstration : Heisenberg model



Calculation time

 $N = 16, \chi = 20, 10$ samples : about 15 minutes $N = 64, \chi = 40, 5$ samples : about 8 hours

Summary

 By introducing new MPS with auxiliaries, we realized χ⁻² scaling of random fluctuation in RMPS and entanglement volume law at low temperature. We succeeded in extracting thermal entropy from information of entanglement.

Quantum information meets thermodynamics !!!

The TPQ - MPS method is useful for thermodynamical calculation for large systems. The METTS method well known as finite temperture MPS needs 100 samples for each data point. On the other hand, the TPQ - MPS method can obtain physical quantities for all temperature with 5 - 10 samples.